首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
In this paper, new pre- and post-processing schemes are developed to process shallow-water sonar data to improve the accuracy of target detection. A multichannel subband adaptive filtering is applied to preprocess the data in order to isolate the potential target returns from the acoustic backscattered signals and improve the signal-to-reverberation ratio. This is done by estimating the time delays associated with the reflections in different subbands. The preprocessed results are then beamformed to generate an image for each ping of the sonar. The testing results on both the simulated and real data revealed the efficiency of this scheme in time-delay estimation and its capability in removing most of the competing reverberations and noise. To improve detection rate while significantly minimizing the incident of false detections, a high-order correlation (HOC) method for postprocessing the beamformed images is then developed. This method determines the consistency in occurrence of the target returns in several consecutive pings. The application of the HOC process to the real beamformed sonar data showed the ability of this method for removing the clutter and at the same time boosting the target returns in several consecutive pings. The algorithm is simple, fast, and easy to implement  相似文献   

2.
王磊  金绍华  崔杨  边刚  魏源 《海洋测绘》2021,41(3):69-73
为进一步降低侧扫声纳回波信号中非高斯分布的乘性噪声,获取更佳效果的侧扫声纳图像,提出了一种利用小波和NLM(nonlocal means)滤波的组合降噪方法.首先采用同态变换将侧扫声纳回波ping信号中的乘性噪声转换为加性噪声,然后利用小波阈值和NLM滤波对侧扫声纳每ping回波数据实施降噪处理,最后经过小波反变换和指...  相似文献   

3.
This paper describes a complete set of methods for arranging acoustic images of the sea floor by projecting and interpolating data gathered with a novel front-scan sonar system, developed in the context of the EC-COSMOS project. Traditional sonar imaging systems for sea-floor analysis generate acoustic images during the motion of a ship; on the contrary, the front-scan sonar system not only provides information unreachable by traditional devices (blind region), but also does not need the ship motion to compose a whole image of the sea floor. Two different projection methods have been devised: a simpler analytical solution and a more precise ray-tracing approach. The development of an analytical solution is possible under the classical assumptions about a flat sea floor and a constant sound velocity profile; when these hypotheses are not realistic or a more precise image is required, a numerical solution obtained by a ray-tracing approach can be applied, which is based on some ad hoc solutions worked out for the front-scan sonar system. To move from the projection results to an image defined over a dense matrix of pixels, an interpolation stage is needed. To this end, an algorithm based on the generation of virtual-beam signals (only where necessary) has been tested and compared with more-traditional techniques. The potentials of the proposed projection and interpolation methods have been evaluated and some comparisons have been made, using real data gathered with the COSMOS sonar prototype during trials at sea.  相似文献   

4.
Sidescan sonar image processing techniques   总被引:1,自引:0,他引:1  
A four-step processing sequence is described to produce image mosaics from the various segments of a sidescanned acoustic imaging survey of a given seafloor area. Starting with data consisting for each ping of acoustic backscatter levels versus horizontal range across-track, median prefiltering is used first to reduce the influence of outliers on subsequent linear processes. Artifacts that are clearly unrelated to the backscattering properties of the seafloor are then isolated on a ping by ping basis through a spectral analysis that relies on a decomposition using Chebyshev polynomials to filter the low spatial frequency components of the image. Contrast enhancement is then achieved through an original implementation of the classical gray level histogram equalization technique by balancing local versus global histogram contributions. Pixels are mapped on a geographic grid taking due account of the geometry of the measurement and of the spacing between pings to minimize along-track smearing of features. Examples of results obtained with these processing techniques are given for SeaMARC II data recorded during a complete survey of Fieberling Guyot (32°.5 N, 128° W)  相似文献   

5.
针对水下地形测量仿真器中的多波束测深结果仿真环节中,对海量已知水深点云数据进行处理时存在的检索效率低、内存占用大的问题,设计了一种基于四叉树的数据处理方案。以四叉树数据结构并采用序列化方式存储索引文件,提高点云数据的检索效率;通过内存映射的方法读取海量点云数据,减少内存占用。数据实验表明:相对于常见的遍历检索,在检索点云数不超过总点云数的约四分之三时,四叉树水深点云检索效率提高了1倍以上;在检索点云数越少,总点数云越多时,四叉树水深点云检索的效率最多可提升30倍以上。基于四叉树的数据处理算法可有效地提高点云数据的检索效率,适合于多波束测深结果仿真过程中的海量点云数据的处理。  相似文献   

6.
多波束海底声像图的形成及应用研究   总被引:6,自引:3,他引:3  
在探讨多波束海底声像图形成原理基础上,重点研究多个扇面、多个条带的反向散射强度数据拼接、镶嵌方法,将海底反向散射强度值向图像灰度值转换,最后形成海底声像图,为海底地貌解译、海底目标物探测以及海底底质类型划分提供判读依据。  相似文献   

7.
In this communication, the problem of determining effective pinging strategies in multistatic sonar systems with multiple transmitters is addressed. New algorithms are presented to determine effective pinging strategies for generalized search scenarios. An important part of this work is the development of metrics to be used in the optimization procedures. For maintaining search coverage, a “probability of target presence” metric formulation is used. This formulation utilizes sonar performance prediction and a Bayesian update to incorporate negative information (i.e., searching an area but finding no targets) into the optimization procedure. The possibility of targets moving into previously searched areas is accounted for by using a Fokker–Planck (FP) drift/diffusion formulation. Monte Carlo simulations are used to show the accuracy and efficiency of this formulation. This formulation is shown to be computationally efficient compared to Monte Carlo simulations. It is also demonstrated that by choosing the ping sequence intelligently, the field performance can be improved compared to random or sequential ping sequencing.   相似文献   

8.
多波束反向散射强度数据处理研究   总被引:13,自引:5,他引:8  
在探讨多波束测深系统反向散射强度与海底底质类型的关系基础上,研究影响反向散射强度的各种因素,主要分析了海底地形起伏、中央波束区反射信号对反向散射强度的影响,并给出了消除这些影响的方法;将处理后的“纯”反向散射强度数据镶嵌生成海底声像图,为海底底质类型划分以及地貌解译提供了基础数据和辅助判读依据.  相似文献   

9.
以多波束精确的水深数据为参照源,采用原始回波时间对多波束测深数据与其同源声纳数据进行匹配,从而获得高精度和高分辨率的海底影像数据,并避免了传统声纳图像处理过程中斜距改正所带来的几何形变。匹配结果采用光照图输出,并与三维水深图、原始声纳图像和CARIS处理后的声纳图像进行比较分析。该方法有效地提高了多波束数据的利用率,增强了对海底地形的探测分辨率。  相似文献   

10.
Over the past few years there have been remarkable and concomitant advances in sonar technology, positioning capabilities, and computer processing power that have revolutionized the mapping, imaging and exploration of the seafloor. Future developments must involve all aspects of the “seafloor mapping system,” including, sonars, ancillary sensors (motion sensors, positioning systems, and sound speed sensors), platforms upon which they are mounted, and the products that are produced. Current trends in sonar development involve the use of innovative new transducer materials and the application of sophisticated processing techniques including focusing algorithms that dynamically compensate for the curvature of the wavefront in the nearfield and thus allow narrower beam widths (higher lateral resolution) at close ranges . Future developments will involve “hybrid”, phase-comparison/beam-forming sonars, the development of broad-band “chirp” multibeam sonars, and perhaps synthetic aperture multibeam sonars. The inability to monitor the fine-scale spatial and temporal variability of the sound speed structure of the water column is often a limiting factor in the production of accurate maps of the seafloor; improvements in this area will involve continuous monitoring devices as well as improved ocean models and perhaps tomography. Remotely Operated Vehicles (ROV’s) and particularly Autonomous Underwater Vehicles (AUV’s) will become more important as platforms for seafloor mapping systems. There will also be great changes in the products produced from seafloor mapping and the processing necessary to create them. New processing algorithms are being developed that take advantage of the density of multibeam sonar data and use statistically robust techniques to “clean” massive data sets very rapidly. A range of approaches are being explored to use multibeam sonar bathymetry and imagery to extract quantitative information about seafloor properties, including those relevant to fisheries habitat. The density of these data also enable the use of interactive 3-D visualization and exploration tools specifically designed to facilitate the interpretation and analysis of very large, complex, multi-component spatial data sets. If properly georeferenced and treated, these complex data sets can be presented in a natural and intuitive manner that allows the simple integration and fusion of multiple components without compromise to the quantitative aspects of the data and opens up new worlds of interactive exploration to a multitude of users.  相似文献   

11.
A new highly precise source of data has recently become available using multibeam sonar systems in hydrography. Multibeam sonar systems can provide hydrographic quality depth data as well as high-resolution seafloor sonar images. We utilize the seafloor backscatter strength data of each beam from multibeam sonar and the automatic classification technology so that we can get the seafloor type identification maps. In this article, analyzing all kinds of error effects in backscatter strength, data are based on the relationship between backscatter strength and seafloor types. We emphasize particularly analyzing the influences of local bottom slope and near nadir reflection in backscatter strength data. We also give the correction algorithms and results of these two influent factors. After processing the raw backscatter strength data and correcting error effects, we can get processed backscatter strength data which reflect the features of seafloor types only. Applying the processed backscatter strength data and mosaicked seafloor sonar images, we engage in seafloor classification and geomorphy interpretation in future research.  相似文献   

12.
A linear FM sonar system was developed to support the objective of remote acoustic classification of seafloor sediments. It is a calibrated, wideband, digital, frequency modulated sonar that provides quantitative, high-resolution, low-noise sub-bottom data. Since the linear sonar system can precisely transmit a specified waveform, the calibrated digitally recorded reflection data can be processed to estimate the acoustic impulse response of the seabed and sediment attenuation. An acoustic pulse with special frequency domain weighting characteristics is designed to provide low temporal sidelobe levels and a nearly constant resolution with depth even after passing through a sediment with high losses such as sand. After correlation processing, the wideband acoustic pulse yields an effective beam pattern with high spatial resolution and insignificant sidelobe levels. Data sets generated with the FM profiler indicate that the required temporal and spatial characteristics of the sonar are realized in practice  相似文献   

13.
Processing Multibeam Backscatter Data   总被引:1,自引:0,他引:1  
A new highly precise source of data has recently become available using multibeam sonar systems in hydrography. Multibeam sonar systems can provide hydrographic quality depth data as well as high-resolution seafloor sonar images. We utilize the seafloor backscatter strength data of each beam from multibeam sonar and the automatic classification technology so that we can get the seafloor type identification maps. In this article, analyzing all kinds of error effects in backscatter strength, data are based on the relationship between backscatter strength and seafloor types. We emphasize particularly analyzing the influences of local bottom slope and near nadir reflection in backscatter strength data. We also give the correction algorithms and results of these two influent factors. After processing the raw backscatter strength data and correcting error effects, we can get processed backscatter strength data which reflect the features of seafloor types only. Applying the processed backscatter strength data and mosaicked seafloor sonar images, we engage in seafloor classification and geomorphy interpretation in future research.  相似文献   

14.
The Cramer-Rao lower bounds on the cross-track translation and rotation of a displaced phase-center antenna (DPCA) in the slant range plane between two successive pings (known as DPCA sway and yaw in what follows) are computed, assuming statistically homogeneous backscatter. These bounds are validated using experimental data from a 118-182-kHz sonar, showing an accuracy of the order of 20 microns on the ping-to-ping cross-track displacements. Next, the accuracy required on the DPCA sway and yaw in order to achieve a given synthetic aperture sonar (SAS) beampattern specification, specified by the expected SAS array gain, is computed as a function of the number P of pings in the SAS. Higher accuracy is required when P increases to counter the accumulation of errors during the integration of the elementary ping-to-ping estimates: the standard deviation must decrease as P/sup -1/2/ for the DPCA sway and P/sup -3/2/ for the yaw. Finally, by combining the above results, the lower bounds on DPCA micronavigation accuracy are established. These bounds set an upper limit to the SAS length achievable in practice. The maximum gain Q in cross-range resolution achievable by a DPCA micronavigated SAS is computed as a function of the key SAS parameters. These theoretical predictions are compared with simulations and experimental results.  相似文献   

15.
为获得反映海区磁异常分布的磁异常图,海洋磁力测量数据处理中需要将离散数据通过插值方法进行格网化。给出了几种常用的数据格网化方法,并采用磁异常均匀分布和复杂分布情况对方法有效性进行了评价。结论表明:磁异常分布越复杂,对插值方法的要求越严格,无论是磁异常均匀分布还是复杂分布情况,Kriging法的效果最好,建议在海洋磁力测量数据处理中使用。  相似文献   

16.
This paper focuses on estimating the two-dimensional (2-D) target-speed vector (course and speed) using a multistatic sonar that consists of one monostatic sonar and one bistatic receiver. The speed and course estimates are obtained after a single transmission. The theory on bistatic Doppler and 2-D target-speed vector estimation is first considered and then applied to simulated and real data. The results can be used to improve classification algorithms or to feed speed information to tracking algorithms, for example.  相似文献   

17.
Transition zones (or ‘ecotones’) are ecologically important spatial elements of subtidal landscapes that represent a mixture of different habitat elements. We provide a method for identifying such areas in broad-scale surveys of the seafloor using the acoustic discrimination system QTC VIEW. QTC VIEW is an acoustic processing system that assigns sonar ping stacks to clusters of like points, to identify different habitats on the seafloor. Paired QTC VIEW transects (20 m spacing) were run at intervals of 200 m, at two separate sampling locations, to assess the consistency of clustering of individual ping stacks into acoustic classes. Very consistent spatial patterns of class change were found between transect pairs, suggesting high stability in the classification process. QTC VIEW assigns confidence values to each individual record; running averages calculated using a moving window along transects showed drops in confidence values associated with areas of transition in habitat class assignment, but this was not always consistent. The Berger–Parker index, a class dominance statistic, provided a more consistent transition indicator. Class transition ranged from abrupt to gradual, along with areas where a mixture of acoustic classes occurred. However, acoustically detected transition zones did not consistently respond to visual observations of the sea floor.  相似文献   

18.
Sector-scanning sonar systems image the sea bottom to detect objects that can be distinguished from the background structure of the sea bottom. In current systems, images are displayed and discarded as new image data become available, In this paper, a method for improving sonar detection by utilizing all images in a sequence is investigated. The proposed method requires that sonar data are acquired with a sector-scanning sonar in a side-looking configuration. It is demonstrated that these data can be used to detect observation-point-dependent changes in sea-bottom backscattering characteristics. These changes provide additional cues for discrimination that can improve the detection of objects on the sea bottom. Results of applying the method to experimental data are presented  相似文献   

19.
以多波束水深数据作为源数据,分析了网格水深建模中的数据内插,介绍了网格水深建模所用的常用内插方法,并从水深建模的精度和效率出发,计算分析了网格水深建模过程中内插方法的应用效果。实验结果表明:在当前网格水深建模常用的内插方法中,加权平均法是较适合多波束水深源数据内插网格水深模型点的方法,双线性曲面法是较适合网格水深模型点推估模型表面任意点水深的方法。  相似文献   

20.
In order to enhance the efficiency of the interpretation of surface images obtained with a side scanning sonar, it is proposed to supplement the standard processing software with a program for obtaining acoustic stereo images. Examples of such images synthesized with this program using the data of a bottom sonar survey with a side scanning sonar and an echo sounder are presented. The cases are considered when the information on the bottom relief contained in sonar images obtained with a standard side scanning sonar or its modifications can be used instead of the data of an echo sounding survey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号