首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
2.
3.
4.
5.
We have carried out single and multisite photometry of the three β Cephei stars β and 15 CMa as well as KZ Mus. For the two stars in CMa, we obtained 270 h of measurement in the Strömgren uvy and Johnson V filters, while 150 h of time-resolved Strömgren uvy photometry was acquired for KZ Mus. All three stars are multiperiodic variables, with three (β CMa) and four (15 CMa, KZ Mus) independent pulsation modes. Two of the mode frequencies of 15 CMa are new discoveries and one of the known modes showed amplitude variations over the last 33 yr. Taken together, this fully explains the diverse behaviour of the star reported in the literature.
Mode identification by means of the amplitude ratios in the different passbands suggests one radial mode for each star. In addition, β CMa has a dominant  ℓ= 2  mode while its third mode is non-radial with unknown ℓ. The non-radial modes of 15 CMa, which are  ℓ≤ 3  , form an almost equally split triplet that, if physical, would imply that we see the star under an inclination angle larger than 55°. The strongest non-radial mode of KZ Mus is  ℓ= 2  , followed by the radial mode and a dipole mode. Its weakest known mode is non-radial with unknown ℓ, confirming previous mode identifications for the pulsations of the star.
The phased light curve for the strongest mode of 15 CMa has a descending branch steeper than the rising branch. A stillstand phenomenon during the rise to maximum light is indicated. Given the low photometric amplitude of this non-radial mode this is at first sight surprising, but it can be explained by the aspect angle of the mode.  相似文献   

6.
7.
8.
Gamma-ray bursts are often modelled as jet-like outflows directed towards the observer; the cone angle of the jet is then commonly inferred from the time at which there is a steepening in the power-law decay of the afterglow. We consider an alternative model in which the jet has a beam pattern where the luminosity per unit solid angle (and perhaps also the initial Lorentz factor) decreases smoothly away from the axis, rather than having a well-defined cone angle within which the flow is uniform. We show that the break in the afterglow light curve then occurs at a time that depends on the viewing angle. Instead of implying a range of intrinsically different jets – some very narrow, and others with a similar power spread over a wider cone – the data on afterglow breaks could be consistent with a standardized jet, viewed from different angles. We discuss the implication of this model for the luminosity function.  相似文献   

9.
10.
11.
The BeppoSAX High Energy Large Area Survey (HELLAS) has surveyed several tens of deg2 of the sky in the     band down to a flux of about     . The source surface density of     at the survey limit corresponds to a resolved fraction of the     X-ray background (XRB) of the order of     per cent. The extrapolation of the HELLAS     towards fainter fluxes with a Euclidean slope is consistent with the first XMM–Newton measurements, in the same energy band, which are a factor of 20 times more sensitive. The source counts in the hardest band so far surveyed by X-ray satellites are used to constrain XRB models. It is shown that in order to reproduce the     counts over the range of fluxes covered by BeppoSAX and XMM–Newton a large fraction of highly absorbed     , luminous     active galactic nuclei is needed. A sizeable number of more heavily obscured, Compton-thick, objects cannot be ruled out but they are not required by the present data. The model predicts an absorption distribution consistent with that found from the hardness ratios analysis of the so far identified HELLAS sources. Interestingly enough, there is evidence of a decoupling between X-ray absorption and optical reddening indicators, especially at high redshifts/luminosities where several broad-line quasars show hardness ratios typical of absorbed power-law models with     .  相似文献   

12.
We present results from a study of short-term variability in 19 archival observations by XMM–Newton of 16 ultraluminous X-ray sources (ULXs). Eight observations (six sources) showed intrinsic variability with power spectra in the form of either a power-law or broken power-law-like continuum and in some cases quasi-periodic oscillations (QPOs). The remaining observations were used to place upper limits on the strength of possible variability hidden within. Seven observations (seven sources) yielded upper limits comparable to, or higher than, the values measured from those observations with detectable variations. These represented the seven faintest sources, all with   fx < 3 × 10−12 erg cm−2 s−1  . In contrast, there are four observations (three sources) that gave upper limits significantly lower than both the values measured from the ULX observations with detectable variations, and the values expected by comparison with luminous Galactic black hole X-ray binaries (BHBs) and active galactic nuclei (AGN) in the observed frequency bandpass (10−3–1 Hz). This is the case irrespective of whether one assumes characteristic frequencies appropriate for a stellar mass  (10 M)  or an intermediate mass  (1000 M)  black hole, and means that in some ULXs the variability is significantly suppressed compared to bright BHBs and AGN. We discuss ways to account for this unusual suppression in terms of both observational and intrinsic effects and whether these solutions are supported by our results.  相似文献   

13.
14.
15.
16.
17.
18.
We present Chandra and XMM–Newton observations of 12 bright  [ f (2–10 keV) > 10−13 erg cm−2 s−1]  sources from the ASCA search for the High Energy Extragalactic Population (SHEEP) survey. Most of these have been either not observed or not detected previously with the ROSAT mission, and therefore they constitute a sample biased towards hard sources. The Chandra observations are important in locating the optical counterpart of the X-ray sources with accuracy. Optical spectroscopic observations show that our sample is associated with both narrow-line (NL) (six objects) and broad-line (BL) active galactic nuclei (AGN) (five objects), with one source remaining unidentified. Our sources cover the redshift range 0.04–1.29, spanning luminosities from 1042 to  1045 erg s−1  (2–10 keV). The NL sources have preferentially lower redshift (and luminosity) compared to the BL ones. This can be most easily explained in a model where the NL AGN are intrinsically less luminous than the BL ones in line with the results of Steffen et al. The X-ray spectral fittings show a roughly equal number of obscured  ( N H > 1022 cm−2)  and unobscured  ( N H < 1022 cm−2)  sources. There is a clear tendency for obscured sources to be associated with NL AGN and unobscured sources with BL ones. However, there is a marked exception with the highest obscuring column observed at a BL AGN at a redshift of z = 0.5.  相似文献   

19.
20.
Within the framework of the internal–external shocks model for γ -ray bursts, we study the various mechanisms that can give rise to quiescent times in the observed γ -ray light curves. In particular, we look for the signatures that can provide us with evidence as to whether or not the central engine goes dormant for a period of time comparable to the duration of the gaps. We show that the properties of the prompt γ -ray and X-ray emission can, in principle, determine whether the quiescent episodes are caused by a modulated relativistic wind or a switching off of the central engine. We suggest that detailed observations of the prompt afterglow emission from the reverse shock will strongly constrain the possible mechanisms for the production of quiescent times in γ -ray bursts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号