首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Seagrass meadows are natural carbon storage hotspots at risk from global change threats, and their loss can result in the remineralization of soil carbon stocks and CO2 emissions fueling climate change. Here we used expert elicitation and empirical evidence to assess the risk of CO2 emissions from seagrass soils caused by multiple human-induced, biological and climate change threats. Judgments from 41 experts were synthesized into a seagrass CO2 emission risk score based on vulnerability factors (i.e., spatial scale, frequency, magnitude, resistance and recovery) to seagrass soil organic carbon stocks. Experts perceived that climate change threats (e.g., gradual ocean warming and increased storminess) have the highest risk for CO2 emissions at global spatial scales, while direct threats (i.e., dredging and building of a marina or jetty) have the largest CO2 emission risks at local spatial scales. A review of existing peer-reviewed literature showed a scarcity of studies assessing CO2 emissions following seagrass disturbance, but the limited empirical evidence partly confirmed the opinion of experts. The literature review indicated that direct and long-term disturbances have the greatest negative impact on soil carbon stocks per unit area, highlighting that immediate management actions after disturbances to recover the seagrass canopy can significantly reduce soil CO2 emissions. We conclude that further empirical evidence assessing global change threats on the seagrass carbon sink capacity is required to aid broader uptake of seagrass into blue carbon policy frameworks. The preliminary findings from this study can be used to estimate the potential risk of CO2 emissions from seagrass habitats under threat and guide nature-based solutions for climate change mitigation.  相似文献   

2.
It has long been accepted that the relative affluence and technological efficiency of nations are important contributors to their rate of emissions. These associations have, in turn, driven questions about the feasibility of mitigating anthropogenic greenhouse gas emissions through incremental transition to “business as usual” policy structures in variant social contexts. Here, I explore the extent to which the historical context of colonial relations impacts the feasibility of a nation mitigating emissions per capita, emissions per dollar, and total emissions under current development logics. To do so I examine the structure of variation for 152 nations during the 1960–2018 period. Subsequently, I examine how being situated as an extractive colony in the past serves to moderate the association of GDP per capita with CO 2 emissions per capita, CO 2 emissions per dollar, and total CO 2 emissions in the present. I find that roughly 11% of cross-national variation in CO 2 emissions per capita and CO 2 emissions per dollar, as well as nearly 6% of variation in total CO 2 emissions between 1960 and 2018 is attributable to having been historically subjected to extractive colonial processes. These findings suggest that mitigation of emissions through transition of “business as usual” policy structures appears significantly less feasible for nations positioned as extractive colonies in the past, relative to all others.  相似文献   

3.
China is now the world's biggest annual emitter of greenhouse gases with 7467 million tons (Mt) carbon dioxide equivalent (CO2e) in 2005, with agriculture accounting for 11% of this total. As elsewhere, agricultural emissions mitigation policy in China faces a range of challenges due to the biophysical complexity and heterogeneity of farming systems, as well as other socioeconomic barriers. Existing research has contributed to improving our understanding of the technical potential of mitigation measures in this sector (i.e. what works). But for policy purposes it is important to convert these measures into a feasible economic potential, which provides a perspective on whether agricultural emissions reduction (measures) are low cost relative to mitigation measures and overall potential offered by other sectors of the economy. We develop a bottom-up marginal abatement cost curve (MACC) representing the cost of mitigation measures applicable in addition to business-as-usual agricultural practices. The MACC results demonstrate that while the sector offers a maximum technical potential of 402 MtCO2e in 2020, a reduction of 135 MtCO2e is potentially available at zero or negative cost (i.e. a cost saving), and 176 MtCO2e (approximately 44% of the total) can be abated at a cost below a threshold carbon price ≤¥ 100 (approximately €12) per tCO2e. Our findings highlight the relative cost effectiveness of nitrogen fertilizer and manure best management practices, and animal breeding practices. We outline the assumptions underlying MACC construction and discuss some scientific, socioeconomic and institutional barriers to realizing the indicated levels of mitigation.  相似文献   

4.
This paper presents a set of technically feasible multi-gas emission pathways (envelopes) for stabilising greenhouse gas concentration at 450, 550 and 650 ppm CO2-equivalent and their trade-offs between direct abatement costs and probabilities to meet temperature targets. There are different pathways within the envelope. Delayed response pathways initially follow the upper boundary of the emission envelope and reduce more by the end of the century. In contrast, early action pathways first follow the lower boundary and then the upper boundary. The latter require an early peak in the global emissions but keeps the option open for shifting to lower concentration targets in the future. Costs evaluations depend on the discount rate. Early action profiles have high costs early on, but learning-by-doing and smoother reduction rates over time lead to in most cases to lower costs across the century (net present value (NPV)). To achieve the 450 ppm CO2-equivalent, the global emissions need to peak before 2020. The NPV of costs increase from 0.2% of cumulative gross domestic product to 1.0% as the shift is made from 650 to 450 ppm (discount rate 5%). However, the chances of limiting global mean warming to 2 °C above pre-industrial levels are very small for peaking and stabilisation at 650 ppm (1–23%) and 550 ppm (1–48%), but increase for a peaking at 510 ppm with subsequent stabilisation 450 ppm to 14–67%.  相似文献   

5.
Various aspects of the role of uncertainty in greenhouse gas emission reduction policy are analyzed with the integrated assessment model FUND. FUND couples simple models of economy, climate, climate impacts, and emission abatement. Probability distribution functions are assumed for all major parameters in the model. Monte Carlo analyses are used to study the effects of parametric uncertainties. Uncertainties are found to be large and grow over time. Uncertainties about climate change impacts are more serious than uncertainties about emission reduction costs, so that welfare-maximizing policies are stricter under uncertainty than under certainty. This is more pronounced without than with international cooperation. Whether or not countries cooperate with one another is more important than whether or not uncertainty is considered. Meeting exogenously defined emission targets may be more or less difficult under uncertainty than under certainty, depending on the asymmetry in the uncertainty and the central estimate of interest. The major uncertainty in meeting emissions targets in each of a range of possible future is the timing of starting (serious) reduction policies. In a scenario aiming at a stable CO2 concentration of 550 ppm, the start date varies 20 years for Annex I countries, and much longer for non-Annex countries. Atmospheric stabilization at 550 ppm does not avoid serious risks with regard to climate change impacts. At the long term, it is possible to avoid such risks but only through very strict emission control at high economic costs.  相似文献   

6.
Assessing phosphate rock depletion and phosphorus recycling options   总被引:1,自引:0,他引:1  
We analyze global elemental phosphorus flows in 2009 for (1) mining to products, (2) animal and human manure flows, (3) crop harvests and animal production, (4) food production, (5) soil erosion, (6) and crop uptake. Informed by the flow assessment the potential and cost of phosphorus usage reduction and recycling measures are quantified, and fed into a constructed phosphorus supply-demand model with reserve assessment to assess the impact of these measures on phosphate rock resource availability. According to our results in 2009 globally 21.4 Mt elemental phosphorus from rock phosphate was consumed in products of which 17.6 Mt used as fertilizers, fully able to cover erosion losses and outputs in agriculture in aggregate, but insufficient from the perspective of bio-available phosphorus in soils. We find substantial scope for phosphorus use reduction, at potentially 6.9 Mt phosphorus, or 32% of 2009 phosphate rock supply. Another 6.1 Mt, or 28% can technologically be recycled from waterways and wastewater, but at a cost substantially above any foreseeable phosphate rock fertilizer price. The model results suggests phosphate rock reserves are sufficient to meet demand into the 22nd century, and can be extended well into the 23rd century with assessed use reduction and recycling measures.  相似文献   

7.
Many developed countries in Annex B of the Kyoto Protocol have been able to report decreasing emissions, and some have officially fulfilled their CO2 reduction commitments. This is in part because current reporting and regulatory regimes allow these countries to displace emissions intensive production offshore. Using a new highly detailed account of emissions embodied in international trade we investigate this phenomenon of emissions leakage. We independently confirm previous findings that adjusting for trade, developed countries emissions have increased, not decreased. We find that the sectors successfully holding or lowering their domestic emissions are often the same as those increasing their imports of embodied CO2. We also find that the fastest growing flow paths of embodied CO2 largely originate outside the Kyoto Annex B signatory nations. Finally, we find that historically the same phenomenon of emissions displacement has already occurred for air pollution, with the result that despite aggressive legislation in major emitters total global air pollution emissions have increased. If regulatory policies do not account for embodied imports, global emissions are likely to rise even if developed countries emitters enforce strong national emissions targets.  相似文献   

8.
Dramatic increases in liquid biofuel production have led to concerns about associated impacts on food prices, with many modeling studies showing significant biofuel-related price inflation. In turn, by changing patterns of food demand, biofuel production may indirectly influence greenhouse gas emissions. We estimated changes to dietary energy (calorie) demand and greenhouse gas emissions embodied in average diets under different biofuel-related food-price scenarios for Brazil, China and the United States, using food-price projections and food-price elasticities. Average energy demand decreased in all countries, from about 40 kcal per person per day in Brazil under a moderate price inflation scenario – a reduction of 1% relative to the (2009) reference scenario – to nearly 300 per day in the United States with high price inflation – almost 8% of reference levels. However, emissions per calorie increased slightly in all three countries. In terms of total greenhouse gas emissions, the results are suggestive of overall reductions only in the United States, where average reductions ranged from about 40 to 110 kg of carbon dioxide equivalent emissions per person per year. In China, the direction of impact is unclear, but the net change is likely to be small. Brazilian results were sensitive to parameter values and the direction and magnitude of impact is therefore uncertain. Despite the uncertainty, even small changes (positive or negative) in individual dietary emissions can produce large changes at the population level, arguing for the inclusion of the dietary pathway in greenhouse gas accounting of liquid biofuels.  相似文献   

9.
Scientists have argued that no more than 275 GtC (IPCC, 2013) of the world’s reserves of fossil fuels of 746 GtC can be produced in this century if the world is to restrict anthropogenic climate change to ≤2 °C. This has raised concerns about the risk of these reserves becoming “stranded assets” and creating a dangerous “carbon bubble” with serious impacts on global financial markets, leading in turn to discussions of appropriate investor and consumer actions. However, previous studies have not always clearly distinguished between reserves and resources, nor differentiated reserves held by investor-owned and state-owned companies with the capital, infrastructure, and capacity to develop them in the short term from those held by nation-states that may or may not have such capacity. This paper analyzes the potential emissions of CO2 and methane from the proved reserves as reported by the world's largest producers of oil, natural gas, and coal. We focus on the seventy companies and eight government-run industries that produced 63% of the world’s fossil fuels from 1750 to 2010 (Heede, 2014), and have the technological and financial capacity to develop these reserves. While any reserve analysis is subject to uncertainty, we demonstrate that production of these reported reserves will result in emissions of 440 GtC of carbon dioxide, or 160% of the remaining 275 GtC carbon budget. Of the 440 GtC total, the 42 investor-owned oil, gas, and coal companies hold reserves with potential emissions of 44 GtC (16% of the remaining carbon budget, hereafter RCB), whereas the 28 state-owned entities possess reserves of 210 GtC (76% of the RCB). This analysis suggests that what may be needed to prevent dangerous anthropogenic interference (DAI) with the climate system differs when one considers the state-owned entities vs. the investor-owned entities. For the former, there is a profound risk involved simply in the prospect of their extracting their proved reserves. For the latter, the risk arises not so much from their relatively small proved reserves, but from their on-going exploration and development of new fossil fuel resources. For preventing DAI overall, effective action must include the state-owned companies, the investor-owned companies, and governments. However, given that the majority of the world's reserves are coal resources owned by governments with little capacity to extract them in the near term, we suggest that the more immediate urgency lies with the private sector, and that investor and consumer pressure should focus on phasing out these companies’ on-going exploration programs.  相似文献   

10.
This paper describes the possible developments in global energy use and production, land use, emissions and climate changes following the SSP1 storyline, a development consistent with the green growth (or sustainable development) paradigm (a more inclusive development respecting environmental boundaries). The results are based on the implementation using the IMAGE 3.0 integrated assessment model and are compared with a) other IMAGE implementations of the SSPs (SSP2 and SSP3) and b) the SSP1 implementation of other integrated assessment models. The results show that a combination of resource efficiency, preferences for sustainable production methods and investment in human development could lead to a strong transition towards a more renewable energy supply, less land use and lower anthropogenic greenhouse gas emissions in 2100 than in 2010, even in the absence of explicit climate policies. At the same time, climate policy would still be needed to reduce emissions further, in order to reduce the projected increase of global mean temperature from 3 °C (SSP1 reference scenario) to 2 or 1.5 °C (in line with current policy targets). The SSP1 storyline could be a basis for further discussions on how climate policy can be combined with achieving other societal goals.  相似文献   

11.
Estimating the impacts on PM2.5pollution and CO2emissions by human activities in different urban regions is important for developing efficient policies.In early 2020,China implemented a lockdown policy to contain the spread of COVID-19,resulting in a significant reduction of human activities.This event presents a convenient opportunity to study the impact of human activities in the transportation and industrial sectors on air pollution.Here,we investigate the variations in air quality attributed to the COVID-19 lockdown policy in the megacities of China by combining in-situ environmental and meteorological datasets,the Suomi-NPP/VIIRS and the CO2emissions from the Carbon Monitor project.Our study shows that PM2.5concentrations in the spring of 2020 decreased by 41.87%in the Yangtze River Delta(YRD)and 43.30%in the Pearl River Delta(PRD),respectively,owing to the significant shutdown of traffic and manufacturing industries.However,PM2.5concentrations in the Beijing-Tianjin-Hebei(BTH)region only decreased by 2.01%because the energy and steel industries were not fully paused.In addition,unfavorable weather conditions contributed to further increases in the PM2.5concentration.Furthermore,CO2concentrations were not significantly affected in China during the short-term emission reduction,despite a 19.52%reduction in CO2emissions compared to the same period in 2019.Our results suggest that concerted efforts from different emission sectors and effective long-term emission reduction strategies are necessary to control air pollution and CO2emissions.  相似文献   

12.
《Climate Policy》2001,1(4):465-480
This paper aims at exploring options for differentiation of future commitments in global greenhouse gas emissions control, linked to climate targets. This is done on the basis of the EU target of a maximum global temperature increase of 2°C compared to pre-industrial levels. The Framework to Assess International Regimes for the differentiation of commitments (FAIR) is used to explore the implications of two possible climate regimes: (1) increasing participation (i.e. a gradual increase in the number of parties involved and their level of commitment according to participation and differentiation rules) and (2) ‘contraction and convergence’ (C&C) with universal participation and a convergence of per capita emission permits. It is found that in a regime of increasing participation, stabilising the CO2 concentration at 450 ppmv by 2100 requires participation of major developing countries before 2050 in global emission control, irrespective of the participation and differentiation rules chosen. In the case of stringent climate targets, a convergence regime seems to provide more incentives for a timely participation of developing countries, and opportunities for an effective and efficient regime for controlling global emissions than increasing participation.  相似文献   

13.
As a Party to the United Nations Framework Convention on Climate Change, Israel conducts a periodical inventory of greenhouse gases emissions. These data allowed the generation of time series of CO2 emissions per capita and per GDP for the period 1990–2004. It was found that CO2 emissions per capita increased dramatically from 1990 to 2000, reflecting the rapid economic growth that was initiated by the massive immigration wave at the beginning of the nineties. These emissions remained stable between 2000 and 2004, reflecting the economic stagnation caused by the uprising in the Palestinian Territories, as well as stagnation in the global economy. CO2 emissions per GDP (CO2 intensity) remained stable along the whole reviewed period. This stability can be explained by a shift in electricity consumption from the industrial sector towards the commercial and the residential sectors, corresponding to an increase in the standard of living in the same period. A comparison was held with countries considered as developed for many years represented by the five largest economies (G-5) and recently developed countries (RDCs). Although Israel exhibits emission levels within the range of the G-5 countries, it does not fit the patterns demonstrated by these countries. Trends observed in Israel resemble these observed in other RDCs, such as Spain or Greece, confirming the classification of Israel in this category.  相似文献   

14.
With the use of goals from the Convention on Biological Diversity we evaluated two climate stabilisation profiles on their merits for conservation of biodiversity, comparing them with a baseline profile. Focusing on plant ecosystems at the pan-European level, we concluded that although a maximum global-mean temperature increase of 2 °C is likely to be met in a 550 ppmv CO2-equivalent stabilisation profile, large areas of ecosystems in Europe will be affected. Most of the impacts manifest themselves in northern countries, with a high net increase of plant species, and in Mediterranean countries, with a decrease in the number of plant species and stable area. Other impacts are less robust, given the regional variation in climate results for different climate models.  相似文献   

15.
To enhance global water use assessment, the WaterGAP3 model was improved for back-calculating domestic, manufacturing and thermoelectric water uses until 1950 for 177 countries. Model simulations were carried-out on a national scale to estimate water withdrawals and consumption as well as cooling water required for industrial processes and electricity production. Additionally, the amount of treated and untreated wastewater as generated by the domestic and manufacturing sectors was modeled. In the view of data availability, model simulations are based on key socio-economic driving forces and thermal electricity production. Technological change rates were derived from statistical records in order to consider developments in water use efficiency, which turned out to have a crucial role in water use dynamics. Simulated domestic and industrial water uses increased from ca. 300 km3 in 1950 to 1345 km3 in 2010, 12% of which were consumed and 88% of which were discharged back into freshwater bodies. The amount of domestic and manufacturing wastewater increased considerably over the last decade, but only half of it was untreated. The downscaling of the untreated wastewater volume to river basin scale indicates a matter of concern in East and Southeast Asia, Northern Africa, and Eastern and Southern Europe. In order to reach the Millennium Development Goals, securing water supply and the reduction of untreated wastewater discharges should be amongst the priority actions to be undertaken. Population growth and increased prosperity have led to increasing water demands. However, societal and political transformation processes as well as policy regulations resulting in new water-saving technologies and improvements counteract this development by slowing down and even reducing global domestic and industrial water uses.  相似文献   

16.
Hourly data of CO2 fugacity (fCO2) at 8°N–38°W were analyzed from 2008 to 2011. Analyses of wind, rainfall, temperature and salinity data from the buoy indicated two distinct seasonal periods. The first period (January to July) had a mean fCO2 of 378.9 μatm (n = 7512). During this period, in which the study area was characterized by small salinity variations, the fCO2 is mainly controlled by sea surface temperature (SST) variations (fCO2 = 24.4*SST-281.1, r2 = 0.8). During the second period (August–December), the mean fCO2 was 421.9 μatm (n = 11571). During these months, the region is subjected to the simultaneous action of (a) rainfall induced by the presence of the Intertropical Convergence Zone (ITCZ); (b) arrival of fresh water from the Amazon River plume that is transported to the east by the North Equatorial Countercurrent (NECC) after the retroflection of the North Brazil Current (NBC); and (c) vertical input of CO2-rich water due to Ekman pumping. The data indicated the existence of high-frequency fCO2 variability (periods less than 24 h). This high variability is related to two different mechanisms. In the first mechanism, fCO2 increases are associated to rapid increases in SST and are attributed to the diurnal cycle of solar radiation. In addition, low wind speed contributes to SST rising by inhibiting vertical mixing. In the second mechanism, fCO2 decreases are associated to SSS decreases caused by heavy rainfall.  相似文献   

17.
The prospects of the Clean Development Mechanism (CDM) and for carbon income, up to and beyond 2012, in the industrial sectors of Iran and five other Asian countries are investigated. The attractiveness and suitability of each host country, the status of their industrial sectors (based on four post-2012 scenarios), and the post-2012 potential of the CDM (or similar carbon projects) in these sectors are all examined. A multi-criteria analysis of Iran, Saudi Arabia, the UAE, Qatar, China, and India, based on seven sets of criteria (institutional, regulatory, economic, political, social, CDM experience, and energy production/consumption), is conducted, and the post-2012 potential carbon incomes of each country – based on CO2e emissions of industrial processes – are calculated. Finally, the Iranian industrial sector and the impact of deregulation of energy prices are examined. The post-2012 potential savings in the Iranian industrial sector are calculated based on energy savings, carbon income, and environmental savings. The results indicate that there is strong demand for investment and new technology in this sector to combat several-fold energy price increases. Moreover, high-priced carbon credits could play a meaningful role in post-2012 energy policies in this sector.

Policy relevance

This research is the first study to quantify the carbon market potentials in the industrial sectors of the selected Organization of the Petroleum Exporting Countries (OPEC) members. The Kyoto Protocol is considered by most OPEC countries to be a mixed bag of threats and opportunities and they have shown ambivalence towards it, mainly due to the threat a reduction of fossil fuel consumption poses to their economies. On the other hand, energy efficiency is a desirable goal for their industrial sectors. Iran, as an OPEC member country with vast energy resources, has mostly ignored the CDM during the first commitment period of the Kyoto Protocol and has performed poorly on CDM implementation. However, the current deregulation of energy prices in Iran, with profound cuts in energy subsidies, would definitely alter the perspective of its industrial decision makers on the post-2012 carbon potentials.  相似文献   

18.
《Climate Policy》2001,1(2):229-249
This article provides a first-cut estimate of the potential impacts of the clean development mechanism (CDM) on electricity generation and carbon emissions in the power sector of non-Annex 1 countries. We construct four illustrative CDM regimes that represent a range of approaches under consideration within the climate community. We examine the impact of these CDM regimes on investments in new generation, under illustrative carbon trading prices of US$ 10 and 100/t C. In the cases that are most conducive to CDM activity, roughly 94% of new generation investments remains identical to the without-CDM situation, with only 6% shifting from higher to lower carbon intensity technologies. We estimate that the CDM would bolster renewable energy generation by as little as 15% at US$ 10/t C, or as much as 300% at US$ 100/t C.A striking finding comes from our examination of the potential magnitude of the “free-rider” problem, i.e. crediting of activities that will occur even in the absence of the CDM. The CDM is intended to be globally carbon-neutral — a project reduces emissions in the host country but generates credits that increase emissions in the investor country. However, to the extent that unwarranted credits are awarded to non-additional projects, the CDM would increase global carbon emissions above the without-CDM emissions level. Under two of the CDM regimes considered, cumulative free-riders credits total 250–600 Mt C through the end of the first budget period in 2012. This represents 10–23% of the likely OECD emissions reduction requirement during the first budget period. Since such a magnitude of free-rider credits from non-additional CDM projects could threaten the environmental integrity of the Kyoto protocol, it is imperative that policy makers devise CDM rules that encourage legitimate projects, while effectively screening out non-additional activities.  相似文献   

19.
The variability of sea surface Total Alkalinity (TA) and sea surface Total Inorganic Carbon (CT) is examined using all available data in the western tropical Atlantic (WTA: 20°S-20°N, 60°W-20°W). Lowest TA and CT are observed for the region located between 0°N-15°N/60°W-50°W and are explained by the influence of the Amazon plume during boreal summer. In the southern part of the area, 20°S-10°S/40°W-60°W, the highest values of TA and CT are linked to the CO2–rich waters due to the equatorial upwelling, which are transported by the South Equatorial Current (SEC) flowing from the African coast to the Brazilian shore. An increase of CT of 0.9 ± 0.3 μmol kg−1yr−1 has been observed in the SEC region and is consistent with previous published estimates. A revised CT-Sea Surface Salinity (SSS) relationship is proposed for the WTA to take into account the variability of CT at low salinities. This new CT-SSS relationship together with a published TA-SSS relationship allow to calculate pCO2 values that compare well with observed pCO2 (R2 = 0.90).  相似文献   

20.
An improvement of methods for the inventory of greenhouse gas (GHG) emissions is necessary to ensure effective control of commitments to emission reduction. The national inventory reports play an important role, but do not reflect specifics of regional processes of GHG emission and absorption for large-area countries. In this article, a GIS approach for the spatial inventory of GHG emissions in the energy sector, based on IPCC guidelines, official statistics on fuel consumption, and digital maps of the region under investigation, is presented. We include mathematical background for the spatial emission inventory of point, line and area sources, caused by fossil-fuel use for power and heat production, the residential sector, industrial and agricultural sectors, and transport. Methods for the spatial estimation of emissions from stationary and mobile sources, taking into account the specifics of fuel used and technological processes, are described. Using the developed GIS technology, the territorial distribution of GHG emissions, at the level of elementary grid cells 2 km?×?2 km for the territory of Western Ukraine, is obtained. Results of the spatial analysis are presented in the form of a geo-referenced database of emissions, and visualized as layers of digital maps. Uncertainty of inventory results is calculated using the Monte Carlo approach, and the sensitivity analysis results are described. The results achieved demonstrated that the relative uncertainties of emission estimates, for CO2 and for total emissions (in CO2 equivalent), depend largely on uncertainty in the statistical data and on uncertainty in fuels’ calorific values. The uncertainty of total emissions stays almost constant with the change of uncertainty of N2O emission coefficients, and correlates strongly with an improvement in knowledge about CH4 emission processes. The presented approach provides an opportunity to create a spatial cadastre of emissions, and to use this additional knowledge for the analysis and reduction of uncertainty. It enables us to identify territories with the highest emissions, and estimate an influence of uncertainty of the large emission sources on the uncertainty of total emissions. Ascribing emissions to the places where they actually occur helps to improve the inventory process and to reduce the overall uncertainty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号