首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
海-气界面CO2通量的估算对于碳的生物地球化学循环和全球气候变化等研究具有重要的意义,利用遥感手段是进行全球尺度海表面碳通量估算的唯一手段,但是由于不确定性的存在限制了海-气界面CO2通量遥感估算产品在决策应用上的可靠性。本文通过建立海-气界面CO2通量直接控制参量(气体交换速率k、海表面CO2溶解度S和海表面CO2分压pCO2sw)误差结构图,以通量估算的主要影响因子——海表温度(SST)为例,建立了SST在通量计算中的误差传递流程图,并采用Monte Carlo方法模拟了SST误差在通量计算中的传递规律和对最终误差的贡献。结果表明在遥感SST误差为±0.5°C并为正态分布的假设下,误差在k、S计算中的传递为指数分布和近似指数分布,而在pCO2sw模型计算中为正态分布,最终在通量FC O中的传递为指数分布;在大气CO22分压为固定值370μatm的情况下,SST对最终的通量结果带来的误差为±1.2mmol/(m2·d)左右。本文以SST为例,提供了一种通量计算中遥感参数误差传递和贡献的计算方法,可以为其它遥感获取的参量提供分析依据和参考。  相似文献   

2.
依托2017年8月23日至2017年9月6日在长江口及邻近海域连续走航测得的二氧化碳分压(pCO2)值,结合温度、盐度、溶解氧等数据,阐述该海域pCO2的分布特征,并利用一次大风事件前后一个断面的重复观测数据,讨论天气事件对长江口海-气CO2通量的影响。夏季长江口及邻近海域表层海水pCO2范围为145~929 μatm,总体呈近岸高远岸低的分布特征,在受长江冲淡水影响的区域,海表pCO2较低,整体表现为大气CO2的汇。大风事件(最大风速达9.7 m·s-1)加强了水体的垂直混合,导致近岸区域从大气CO2的弱源变为强源(CO2通量从0.2±1.9上升到 55.0±12.4 mmol·m-2·d-1),而远岸区域的碳汇略有加强(CO2通量从-12.7±2.3变为-16.8±2.5 mmol·m-2·d-1)。因此,在估算东海海-气CO2通量时,台风、冷空气等短时间尺度天气事件的影响也不容忽视。  相似文献   

3.
海-气CO2通量估算模型中参数的可靠性是决定模型可靠性的重要因素, 也决定了模型估算结果的可靠性, 因此开展海-气CO2通量计算模型中误差传递规律与敏感性分析, 对模型参数端元因子的误差控制, 提高模型预测精度和降低不确定性十分重要。但由于模型中参数众多, 且各种参数间彼此相互影响, 使得误差传递过程与敏感性分析十分复杂困难。本文在海-气界面CO2通量观测建模过程详细分析的基础上, 以海-气界面CO2分压差的经典通量计算模型为基础, 以实测数据通量计算过程为例, 针对模型中的参数变量, 在假设参数变量的误差正态分布的前提下, 利用Monte Carlo手段分析各参数变量的误差在模型中的传递规律, 并将单因子扰动试验法用于海-气界面CO2通量建模的参数敏感性分析。模拟和分析结果表明:CO2通量计算过程中误差经模型传递后的分布规律存在正态分布、指数分布等多种形式;气体交换系数对通量计算结果的敏感性最大, 通量估算中的风速和表层海水温度是必须进行精度控制的关键参数。  相似文献   

4.
大洋海区海-气CO_2通量单参数遥感算法的适用性检验   总被引:1,自引:0,他引:1  
王郝京 《台湾海峡》2011,30(2):286-291
利用卫星遥感技术的优势,基于LDEO数据库的全球海表二氧化碳分压(PCO2)及海表温度(SST)等实测数据,初步建立东太平洋海区PCO2与SST的单参数经验算法,并采用相同区域的独立实测数据检验.结果表明,单参数算法在寡营养大洋海区具有良好的适用性,反演值与实测值之间的均方根误差(RMS)为0.51 Pa(1 Pa=9.869μatm),由此估算出2003年6月该海域CO2通量为-1.4 mmol/(m2.d),与实测估算的碳通量基本相符,能够很好地反映出海区CO2源汇特征.将该遥感算法运用到西大西洋海域(15°~25°N,60°~75°W),反演值与实测值之间均方根误差(RMS)为0.69 Pa.检验结果表明,在寡营养大洋海区,单参数遥感算法具有一定的适用性,在受相似因子调控的同纬度海区可以使用同一遥感算法.  相似文献   

5.
白令海BR断面海-气CO2通量及其参数特征   总被引:1,自引:0,他引:1  
通过对2008年夏季白令海大气和海水pCO2连续观测资料,结合BR断面上站位水体垂直采样测量,对白令海不同海区pCO2的分布特征及其与理化参数的关系进行了初步研究,结果表明,将白令海划分为4个具有不同CO2吸收能力的海区,其中陆坡流区碳通量高达-18.72 mmol/(m2·d),是海盆北区的近2倍,比海盆南区高一个量...  相似文献   

6.
使用World Ocean Altas 2009提供的气候态月平均温度、盐度和磷酸盐浓度资料,以及Globalview和NCEP的大气资料,借助较为可靠的经验公式,估算了东海海表CO2分压(pCO2)和海-气CO2通量的平均分布特征和季节变化。结果表明,pCO2的空间分布形态四季大体相同,但其强度随季节变化,春、冬季低,夏、秋季高。CO2通量在东海陆架区为汇,汇的强度从NW向SE逐渐减弱;在黑潮区为源,强度从SW向NE逐渐减弱。东海整体于春、冬季为CO2的汇,夏、秋季为CO2的源。进一步分析东海pCO2和CO2通量季节变化的主要影响因子表明,东海海表pCO2变化主要受温度控制,而在陆架区,盐度和磷酸盐的作用不可忽略。东海整体CO2通量变化在4至10月由风速主导,11月至翌年3月由海表pCO2控制;陆架区CO2通量的季节变化主要由风速决定;黑潮区CO2通量的变化在夏季由风速主导,秋季由风速和pCO2共同影响。  相似文献   

7.
依据2011年3月4日对胶州湾走航连续实测所得pCO2数据,结合水文、化学和生物等要素的同步实测资料,对胶州湾海域pCO2分布及其影响因素进行了初步探讨,并估算了3月海-气CO2通量。结果表明:3月胶州湾表层海水pCO2实测值在191~332μatm之间,平均值为278μatm,海-气CO2通量在-22.76~-7.13mmol·m-2·d-1,平均值为-14.2mmol·m-2·d-1,这一时期胶州湾从大气吸收约1.59×103t C,表现为大气CO2的强汇。生物活动是影响这一时期表层海水pCO2分布的主要原因。  相似文献   

8.
海浪对北太平洋海-气二氧化碳通量的影响   总被引:1,自引:0,他引:1  
利用4种海-气界面气体传输速率公式对比研究了北太平洋气体传输速率及其CO2通量的季节变化特征。与单纯依赖风速的算法相比, 考虑波浪影响的气体传输速率和CO2通量在空间分布和季节变化上具有明显差异。在低纬度地区(0°~30°N), 波浪参数使气体传输速率下降, 海洋对大气CO2的吸收减少, 而在30°N以北范围内则出现新的气体传输速率高值区, 海洋对大气的吸收增加。进一步研究了黑潮延伸体区域的气候态月平均气体传输速率和CO2通量。结果表明, 该区域气体传输速率和CO2通量最大值分别出现于冬季和春季, 引入波浪参数后, 虽然该区域气体传输速率和CO2通量平均值没有明显差异, 但季节变化强度显著增强。  相似文献   

9.
北黄海夏季pCO2分布及海-气CO2通量   总被引:1,自引:0,他引:1  
基于在2006年夏季北黄海收集的的高分辨率的表层CO2分压(pCO2)数据,结合水文和生物地球化学同步观测参数,探讨了夏季北黄海pCO2空间分布的控制因素。结果表明,夏季北黄海与大多数中低纬度陆架海类似,由于水温较高,表层pCO2较高(平均值为(463±41)μatm),整个海域相对大气CO2过饱和。表层pCO2分布具有明显的区域差异,辽南和鲁北近岸海域pCO2明显高于中部区域,辽南近岸的高pCO2主要与河流输入和水产养殖引起的生物好氧呼吸有关,而鲁北沿岸的高pCO2主要与烟台近岸的底层冷水涌升及由混合引起的高碳酸盐含量的黄河泥沙的再悬浮有关;在海区中部大部分水域,pCO2与温度之间有较好的相关性,说明温度是这一区域pCO2分布较为重要的控制因子。另外,采用Wannikhof的海-气气体交换系数估计了北黄海夏季海-气CO2通量,结果表明整个北黄海是大气CO2的源,平均释放速率为(4.00±0.57)mmol.m-2.d-1,高于南黄海夏季海-气CO2通量。  相似文献   

10.
利用南海北部的海上综合观测平台,开展了基于涡相关方法的海-气界面CO2通量的长期观测,得到了2010年9月至2012年9月近2年的海-气界面CO2通量数据,结果分析表明,观测平台附近海域全年表现为一个碳汇,年平均值为-0.088 mg m-2s-1,存在明显的季节变化规律,秋冬季节海洋表现为一个强碳汇,春季海洋依然是一个碳汇,但强度明显减弱,而夏季海洋呈现不稳定的源汇变化特征;从日周期特征上看,夜间通量强度较强,白天减弱;进一步的分析表明,海上风和大气稳定性对海-气界面CO2通量有明显的贡献。  相似文献   

11.
Multiple biotic and abiotic drivers regulate the balance between CO2 assimilation and release in surface waters. In the present study, we compared in situ measurements of plankton carbon metabolism (primary production and respiration) to calculated air–water CO2 fluxes (based on abiotic parameters) during 1 year (2008) in a hypereutrophic tropical estuary (Recife Harbor, NE Brazil – 08°03′S, 34°52′W) to test the hypothesis that high productivity leads to a net CO2 flux from the atmosphere. The calculated CO2 fluxes through the air–water interface (FCO2) were negative throughout the year (FCO2: –2 to –9 mmol C·m?2·day?1), indicating that Recife Harbor is an atmospheric CO2 sink. Respiration rates of the plankton community ranged from 2 to 45 mmol C·m?2·hr?1. Gross primary production ranged from 0.2 to 281 mmol C·m?2·hr?1, exceeding respiration during most of the year (net autotrophy), except for the end of the wet season, when the water column was net heterotrophic. The present results highlight the importance of including eutrophic tropical shallow estuaries in global air–water CO2 flux studies, in order to better understand their role as a sink of atmospheric CO2.  相似文献   

12.
用吹扫-捕集气相色谱法对北黄海常见的4种挥发性卤代烃(VHC)的研究表明,秋季北黄海表层海水中CHCl3,C2HCl3,CHBr2Cl和CHBr3的浓度和平均值分别为9.9~63.4(14.1±8.1),7.1~29.4(15.4±6.2),0.1~30.3(8.8±10.0)和4.2~56.4(21.6±12.2)pmol/dm3。这4种VHC在水平分布上呈现一定的空间变化,其浓度可能是陆地径流、人为活动和生物产生的影响程度不同造成的。VHC在垂直分布上受到地理位置和水文条件的不同影响,在不同站位有较大差异。周日变化研究表明,VHC具有一定的周日变化特征,受光照和潮汐等因素的共同影响最大值均出现在13:00—16:00。采用Liss和Slater双层模型理论对北黄海表层海水和大气之间CHCl3,C2HCl3和CHBr3的海-气通量进行估算,得到这3种物质在北黄海的海-气通量平均值和范围分别为14.8(0.2~104.4),23.2(1.8~93.0)和15.6(0.7~55.1)nmol/(m2.d)。结果表明,在秋季该研究海域是大气CHCl3,C2HCl3和CHBr3的源。  相似文献   

13.
基于控制因子分析的方法,本研究建立了夏季珠江口海域海水CO2分压(pCO2)的遥感反演模型。基于珠江水与黑潮水的两端元混合,建立了水平混合和热力学作用的量化模型,并生成了查找表。同时,建立了基于黄色物质(含碎屑)吸收系数的盐度遥感算法,实现珠江口海域表层盐度的遥感反演。利用走航pCO2和匹配的遥感叶绿素质量浓度产品,建立了生物作用的量化模型。通过集成水平混合和生物作用,最终实现夏季珠江口海域pCO2的遥感反演。与走航pCO2比较表明,仅考虑水平混合和热力学作用的遥感结果会显著高估,考虑生物作用后,遥感结果无论在量值和空间变化趋势上均与实测结果相符。此外,遥感反演结果表明,夏季珠江口近岸水域为CO2的汇区,而离岸的陆架水域则为CO2的弱源。  相似文献   

14.
海洋叶绿素a质量浓度遥感产品是海洋初级生产力与海洋生态系统固碳能力研究的重要数据源,为了保证数据的可靠性,对遥感产品进行精度验证以及验证误差的成因分析尤为重要.遥感产品的验证过程中,由于空间变异的存在,使得遥感像元尺度内的实测数据具有不同的离散程度和统计分布特征,并由此产生了不同的误差统计结果.本文选择MODIS-Aq...  相似文献   

15.
姜德娟  张华  常远勇  李瑞泽 《海洋科学》2015,39(10):116-124
降水是全球能量平衡和水分循环中的关键要素,但海洋区域实时、准确的降水观测资料难以获取,因此,遥感卫星资料在海洋降水及全球能量和水分循环研究领域具有十分重要的应用前景。本文基于1998~2012年6个气象站点(岛屿或海岸带)的实测降水资料,评估TRMM(Tropical Rainfall Measuring Mission)V7版本3B42、3B43两个降水产品对渤海降水量的估算精度,在此基础上,分析并揭示渤海区域年、季和月降水量的时空特征。结果表明:在日尺度,3B42产品对渤海降水量的估算效果总体较差,而在月、年尺度,3B42、3B43产品与实测降水量比较接近,而且,3B43产品的估算精度稍高;总体上,TRMM表现出低估降水的特点,且当实测月降水量大于300 mm时,这种特征尤为显著;1998~2012年,渤海年降水量表现出明显的年际丰枯变化特征,多年均值为631.6 mm;夏季降水量占年降水总量的62.0%,7月是降水量最丰富的月份;空间上,渤海中南部降水量相对较高,而近岸区域降水量相对较低;受大气环流等因素的影响,夏季降水量重心向西北方向偏移,冬季则向东南方向偏移。  相似文献   

16.
基于海洋光学辐射传输原理,采用蒙特卡洛方法,建立水体光学特性的正演模型,该模型可以利用水体的固有光学特性作为输入,模拟水体的表观光学特性。文中将其应用在我国近岸海域,利用本模型与2003年春季黄东海区的实测数据进行模拟,并对模拟所得遥感反射率光谱的谱型和数值与实测数据进行对比分析,结果表明:模型给出的遥感反射率的模拟结果与实测数据谱型一致,符合我国近岸二类水体的典型光谱,并且数值偏差能够控制在20%以内,为今后进一步研究我国近岸水体光学特性打下基础。  相似文献   

17.
南印度洋海—气二氧化碳分压差及其通量   总被引:5,自引:0,他引:5  
本文研究了第八次中国南极科学考察中在普里兹湾附近的南印度洋考察区所观测到的海-气二氧化碳分压资料,结果表明:研究区海-气二氧化碳分压差值Δp在—24.5~2.4Pa之间,平均为—3.8lPa,除西北部有一小块狭长的Δp>0的区域外,其余部分Δp<0,因此,总体上研究区海域是大气二氧化碳的汇区,其碳通量平均为-310.0mg/(m2·d),在南极的夏半年,约能吸收1Gt的大气CO2。在研究区83°E以西海域,Δp大致是西北高东南低、普里兹湾最低的分布趋势,在此线以东,则呈块状分布。研究区的Δp与环流、水温、磷酸盐和叶绿素a的分布有很好的相关性。  相似文献   

18.
近年来,受全球气候变化及极端天气的影响,全球范围频繁出现珊瑚礁白化现象,遥感SST已广泛应用于珊瑚白化的监测和预警中。海南岛近岸及北部湾海域的珊瑚礁近年也倍受白化压力,然而,遥感SST在海南岛近岸及北部湾海域珊瑚白化预警中的适用性尚不清楚。为此,本研究比较了3种常用的遥感SST数据(OISST、GHRSST和CoralTemp)在研究海域的异同及其在夏季珊瑚白化预警中的适用性。结果表明,GHRSST的SST最高、CoralTemp次之、OISST最低,OISST的偏差在2013年以前比较明显,GHRSST和CoralTemp在2003年之后比较接近;与浮标的现场观测值相比,2006—2020年CoralTemp的平均偏差和均方根误差分别为0.03℃和0.92℃,GHRSST为0.08℃和0.96℃,OISST为-0.25℃和1.21℃,CoralTemp在研究区域内更为准确;3种遥感SST计算的DHW与使用现场SST计算的趋势一致,CoralTemp的结果更为接近现场SST。因此,3种遥感SST资料中,CoralTemp相对来说更适用于研究海域。  相似文献   

19.
孙丽娜  张杰  孟俊敏  崔伟 《海洋学报》2022,44(7):137-144
海洋内孤立波和中尺度涡是南海北部常见的中尺度动力过程。本文利用2010−2015年的Terra/Aqua-MODIS、ENVISAT ASAR和多源卫星高度计资料开展了南海海洋内孤立波和中尺度涡遥感探测研究,分析了中尺度涡对内孤立波传播方向的影响。结果表明,中尺度涡和内孤立波主要在南海东北部海域共存,当二者共存时,气旋(冷涡)促使内孤立波偏离原来的传播方向,向西偏南方向传播;反气旋(暖涡)促使内孤立波向西偏北方向传播,气旋与反气旋改变的内孤立波传播方向刚好相反。内孤立波和中尺度涡共存时间主要集中在3−9月,其中,3月受气旋和反气旋的共同作用,内孤立波传播方向几乎无变化;4月和5月,主要受气旋影响,内孤立波偏离原来传播方向向南传播;6−9月,主要受反气旋影响,内孤立波偏离原来的传播方向向北传播。本文利用遥感手段探索了海洋中尺度涡对内孤立波传播方向的影响,结果与现场观测结果一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号