首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seismotectonic method is used to study the seismogenic structures and the maximum potential earthquake around an engineering site in order to determine the seismic risk at the site. Analysis of seismic risk from site effect seismic intensity data, in combination with regional seismo-geologieal data, using the seismotectonic method can provide a more reliable result. In this paper, taking the area of six reservoir dam sites in western Anhui as an example, we analyze the seismic risk from site effect seismic intensity data in combination with the seismotectonic conditions and find that P (I≥i) = 10% over 50 years. The result shows that the seismogenic structure and the maximum potential earthquake have a controlling effect on seismic risk from future earthquakes in the area around the site.  相似文献   

2.
We have studied the characteristics of the active faults and seismicity in the vicinity of Urumqi city, the capital of Xinjiang Autonomous Region, China, and have proposed a seismogenic model for the assessment of earthquake hazard in this area. Our work is based on an integrated analysis of data from investigations of active faults at the surface, deep seismic reflection soundings,seismic profiles from petroleum exploration, observations of temporal seismic stations, and the precise location of small earthquakes. We have made a comparative study of typical seismogenic structures in the frontal area of the North Tianshan Mountains, where Urumqi city is situated,and have revealed the primary features of the thrust-foldnappe structure there. We suggest that Urumqi city is comprised two zones of seismotectonics which are interpreted as thrust-nappe structures. The first is the thrust nappe of the North Tianshan Mountains in the west, consisting of the lower(root) thrust fault, middle detachment,and upper fold-uplift at the front. Faults active in the Pleistocene are present in the lower and upper parts of this structure, and the detachment in the middle spreads toward the north. In the future, M7 earthquakes may occur at the root thrust fault, while the seismic risk of frontal fold-uplift at the front will not exceed M6.5. The second structure is the western flank of the arc-like Bogda nappe in the east,which is also comprised a root thrust fault, middle detachment, and upper fold-uplift at the front, of which the nappe stretches toward the north; several active faults are also developed in it. The fault active in the Holocene is called the South Fukang fault. It is not in the urban area of Urumqi city. The other three faults are located in the urban area and were active in the late Pleistocene. In these cases,this section of the nappe structure near the city has an earthquake risk of M6.5–7. An earthquake M_S6.6, 60 km east to Urumqi city occurred along the structure in 1965.  相似文献   

3.
In this study, the North China seismic region was selected as the study area, and evaluation of seismic hazard using the spatial smoothing seismicity model was performed. Firstly, the study area is divided into grids, and some parameters (e.g. b-value, M0, Mu, azimuth and M-L relationship) for each seismotectonic model were assigned. Secondly, using elliptical smoothing based on a seismotectonic background model, the statistical earthquake incidence rate in each grid is successively calculated. Lastly, the relevant ground motion attenuation relationship is chosen to assess seismic hazard of general sites. The maps for the distribution of horizontal peak ground acceleration with 10% probability of exceedance in 50 years were obtained by using the seismic hazard analysis method based on grid source. This seismicity model simplifies the methodology of probabilistic seismic hazard analysis, especially appropriate for those places where seismic tectonics is not yet clearly known. This method can provide valuable references for seismic zonation and seismic safety assessment for significant engineering projects.  相似文献   

4.
Many uncertainty factors need be dealt with in the prediction of seismic hazard for a 10-year period.Restricted by these uncertainties,the result of prediction is also uncertain to a certain extent,so the probabilistic analysis method of seismic hazard should be adopted.In consideration of the inhomogeneity of the time,location,and magnitude of future earthquakes and the probabilistic combination of the background of long-term seismic hazard(geology,geophysical field,etc.)and the precursors of earthquake occurrence,a model of probabilistic prediction of seismic hazard in a period of 10 years s proposed.Considering the inhomogeneity of data and earthquake precursors for different regions in China,a simplified model is also proposed in order to satisfy the needs of different regions around the country.A trial in North China is used to discuss the application of the model.The method proposed in this paper can be used in the probabilistic prediction of seismic hazard in a period of 10 years.According to the  相似文献   

5.
The regional seismotectonic environment for the Zhangbei- Shangyi earthquake is described, and in combination with the distribution of macroscopic seismic intensity, source mechanism solution, and interpretation of lineaments on satellite images, the seismogenic structure for the earthquake and possible seismogenic fault are discussed in this paper. It is suggested that the Zhangbei-Shangyi earthquake is a result of the latest movement along the northwestern termination of the Zhangjiakou-Penglai fault zone and we should pay serious attention to the future trend of seismic activity along this fault zone.  相似文献   

6.
This paper introduces briefly the basic principles of various seismic prospecting techniques and working methods according to nationwide practices of seismic prospecting of active faults beneath big cities in recent years.Furthermore,it analyzes the application range of different seismic prospecting methods,main achievements and solved problems,and discusses the best combination of seismic exploration methods for detecting crustal structures and locating the faults used in the present stage,that is,to trace faults which are at depths of hundred of meters underground using shallow seismic investigation,to detect the faults which are above basement(at a depth of kilometers) using high resolution refraction sounding,and the deep crustal faults using combined seismic prospecting methods of reflection seismic sounding and wide-angle reflection/refraction sounding,and furthermore,to use the 3-D deep seismic sounding method to obtain 3-D velocity structures beneath urban areas.Thus,we can get information about fault attitude and distribution at different depths and a complete image of faults from their shallow part to deep part using the combined seismic exploration method.Some application examples are presented in the article.  相似文献   

7.
At present, there is less theoretical research and practical experience in the aspect of ultra-shallow seismic exploration to the target layers at depths of only tens of meters both at home and abroad. Seismic exploration plays an important role in the location of faults and active structures, but the depth dozens of meters below the ground surface is the blind area of any kind of deep and shallow seismic exploration. Starting from the point of view of detecting urban active faults, and using related theories and methods of geology, geophysics and mathematics, the paper discusses the preconditions for acquiring efficient ultra-shallow seismic survey results in complicated geological backgrounds in Qingdao. Taking the Qingdao area as an example in this paper, we study the depth condition of Quaternary deposits, and apply 4-8 stacking folds to satisfy the requirement to get the exploration results with high-resolution and high-SNR. Preliminary results reveal that selecting a proper surveillance layout is one of the keys to acquire authentic exploration results in ultra-shallow P-wave reflection exploration. Our results also show that ultra-shallow seismic reflection method in detecting faults in the Qingdao area has good application prospects.  相似文献   

8.
The Binchuan region of Yunnan is a structurally complex region with mountains, basins, and active faults. In this situation,seismic wave propagation exhibits complex characteristics due to strong heterogeneity of underground media instead of following the great-circle path. In order to obtain a high-resolution shallow crustal structure, a dense seismic array was deployed during March 21 to May 30, 2017 in this area. To better understand the complexities of seismic wave propagation in this region, we perform array-based frequency-domain beamforming analysis and single-station based polarization analysis to investigate the characteristics of seismic wave propagation, using airgun-generated P-wave signals recorded by dense array stations in this experiment. The results from these two methods both reveal similar but complex characteristics of seismic wave propagation in the Binchuan basin. The azimuth anomalies off the great-circle path are quite large with values up to 30°, which is caused by strong structural heterogeneity in the very shallow crust. Our research provide a better understanding of the complex geologic structures in this area and provide guidance for detecting concealed faults and distribution of velocity anomalies.  相似文献   

9.
Shallow seismic profiling in meizoseismal area of Xingtai earthquakes,phase division of Cenozoic movement of deep and shallow structures,analysis of characteristics of crustal and upper mantle structure,and comparative study on parameters of seismic sources indicate that the listric faults controlling the development of early Tertiary basin-range structure and eastward gently-dipping detachment below it in the Xingtai epicentral area are not related to the occurrence of Xingtai earthquakes.The Xingtai earthquake swarm is a product of threedimensional fracutre process in which the discontinuous “deep faults“,separated by NWtrending faults or by transverse barriers,successively tore,fractured,and propagated upward and ,hence,caused the stress between the adjacent deep faults to migrate and load under the action of latest tectonic stress field.The Xingtai seismogenic fault represents a “newly generated fault“ resulted from the upward tearing and propagation of the preexisting crustal“deep fault“.  相似文献   

10.
Deep and shallow tectonic data in Shenyang and its relationship with seismic activity shows that the NE trending faults developed on the surface control the formation and development of the fault-uplift and fault-depression.The uplift and depression of the bedrock at a depth of 7km underground are consistent with the surface structure.12 planar listric normal faults have developed above a depth of 18km ~ 20km and two deep faults have developed in the lower crust.Because of the deep incision and new activities,the surface Wanggangpu-Xinchengzi fault and Yongle-Qingshuitai fault,which correspond to the deep F3 fault and F6 fault,might be related to seismic activity in Shenyang.  相似文献   

11.
Study on fault activity is a fundamental part of earthquake prediction and earthquake relief in big cities.In the active fault exploration in Zhengzhou,the spatial distribution,geological features and activity of the Huayuankou fault,the Shangjie fault and the Xushui fault were determined using the seismic prospecting method.New understanding about the characteristics of the faults was gained.This provides reliable basic data for future earthquake forecast and earthquake relief work in Zhengzhou.In addition,we proposed some ways to identify fault activity through analyzing the characteristics of the activity of a fault and raised an effective method for exploring active faults in big cities and exploring concealed faults in regions covered with thick overburdens.  相似文献   

12.
to the practice of urban active fault exploration and associated fault activity assessment conducted in recent years, this paper summarizes the problems encountered in geological, geomorphological, geochemical and geophysical surveys, and proposes the following means and suggestions to solve these problems. To determine the most recent faults or fault zones, emphasis should be placed on identifying the youngest active faults and offset geomorphology. To understand the history of faulting and to discover the latest offset event, it is suggested that geophysical prospecting, drilling and trenching be conducted on one pro/de. Because of significant uncertainties in late Quaternary dating, we advise systematic sampling and the use of multiple dating methods. Shallow seismic reflection has been proven to be the most useful method in urban active fault exploration. However, there is a pressing need to increase the quality of data acquisition and processing to obtain high resolution images so as to enhance our ability to identify active faults. The combination of seismic P-wave reflection and S-wave reflection methods is proved to be a powerful means to investigate the tectonic environments of the deep crust.  相似文献   

13.
Liu Jie 《中国地震研究》2004,18(4):406-416
Study of seismic activity in the Kuqa area enables us to infer some possible active faults in basement from the epicentral distribution on different profiles. The relations between active faults in the basement and surface structures are analyzed and the difference between sedimentary cover and basement in their deformation characteristics and the genesis are discussed. The following conclusions have been drawn : ( 1 ) the epicentral distribution indicates that, the east Qiulitag and south and north Qiulitag deep faults in the basement correspond to the east and west Qiulitag anticlines, respectively. Moreover, deep faults also exist beneath the Yiqiklik and Yaken anticlines. It indicates that the formation of surface structures is controlled by deep structures; (2) A NE-trending strike-slip fault develops along the line from the western termination of Yiqiklik structure to Dongqiu Well 5 and a NW-trending active fault on the western side of Baicbeng. The two active faults across the tectonic strike are the main causes for tectonic segmentation of the Kuqa depression and possibly the cause for the middle segment (Kuqa-Baicheng) of the depression to be more shortened than both its eastern and western terminations; (3) The difference between the sedimentary cover and basement in their deformation characteristics depends mainly on the different properties of media between them.The lithospheric strength of the basement in the basin is fairly high, which determines the basement deformation to be mainly of brittle fracture seismic activity. While the strength of sedimentary cover is low, where there exist weak thin layers, such as coal and gyps. Under the effect of strong tectonic compression, the sedimentary rocks may undergo strong viscous or plastic flow deformation; meanwhile, an aseismic detachment may take place along the weak layers.  相似文献   

14.
For earthquake-prone countries of the world, it is crucial to develop countermeasures and to share experiences in seismic hazard mitigation. The measures for seismic hazard mitigation are related to many factors, e.g., social, economic, and political. Research focused on modern science and technology paves the way for a better understanding of the earthquake phenomenon and helps to plan against its effects in seismically active areas.In this paper, we consider some of the events that occurred in earthquake-prone countries, both developing and developed, which caused devastation to the society and economy. These are mainly major events that have affected a considerable portion of the gross domestic product of these economies.Measures to mitigate seismic hazard are stressed and suggested. In addition, experiences in seismic hazard mitigation in Uganda and the rest of the world are discussed in general terms. Attention is given to geotectonic settings as well as the work of seismic hazard and disaster mana  相似文献   

15.
Two kinds of methods for determining seismic parameters are presented,that is,the potential seismic source zoning method and grid-spatially smoothing method. The Gaussian smoothing method and the modified Gaussian smoothing method are described in detail, and a comprehensive analysis of the advantages and disadvantages of these methods is made. Then,we take central China as the study region,and use the Gaussian smoothing method and potential seismic source zoning method to build seismic models to calculate the mean annual seismic rate. Seismic hazard is calculated using the probabilistic seismic hazard analysis method to construct the ground motion acceleration zoning maps. The differences between the maps and these models are discussed and the causes are investigated. The results show that the spatial smoothing method is suitable for estimating the seismic hazard over the moderate and low seismicity regions or the hazard caused by background seismicity; while the potential seismic source zoning method is suitable for estimating the seismic hazard in well-defined seismotectonics. Combining the spatial smoothing method and the potential seismic source zoning method with an integrated account of the seismicity and known seismotectonics is a feasible approach to estimate the seismic hazard in moderate and low seismicity regions.  相似文献   

16.
The fine-scale structures of lithosphere discontinuities contain important information on the dynamics of lithosphere formation, development, transformation, and destruction. In this paper, a new seismic daylight imaging method is developed to explore the small-scale structures of lithosphere discontinuities. This method makes use of the P-wave first arrival and coda in the 0.5–4 Hz high frequency band of teleseismic events, and reaches a resolution of 2 km for lithosphere discontinuities. This method rests on the basic principle that the autocorrelation of the vertically incident transmission response below the seismic station is equivalent to the reflection response with the source and station both on the free surface. The transmission responses include the first-arrival P-waves below the station traversing the discontinuities to reach the free surface, and the multiple reflections between the free surface and the discontinuities. In this study, the normal incidence requirement of the method is further extended to include dip incidence illumination, which expands its applicability. The accuracy and feasibility of the seismic daylight imaging (SDI) theory are verified by synthesized theoretical seismograms, and the factors affecting the imaging results are discussed. The data processing steps and the interpretation criteria for the method are also given. The fine-scale lithosphere structure of two permanent stations at the eastern North China Craton is determined by the method described here, as well as instantaneous frequency. Clear discontinuities are found in the lithospheric mantle at 52 and 75 km below the two stations, respectively. Seismic daylight imaging and the receiver function reveal a more consistent lithosphere structure beneath the MBWA permanent station of the West Australia Craton, with the unmistakable presence of the lithosphere discontinuities.High-frequency SDI can be used to detect the fine-scale lithospheric structures. As its waveform is more complex, and hence appropriate reference to existing seismological information, such as from tomographic velocity inversion and the receiver function, is recommended.  相似文献   

17.
Based on the analysis of the three current seismic intensity scales,the authors maintain that there are still some shortcomings in the present seismic intensity evaluation and propose a method which takes the damage rate of structures such as houses to determine the seismic intensity.Also,it is pointed out that the proposed method is favorable to the combination of seismic investigation,seismic damage forecast and hazard reduction counter-measures.  相似文献   

18.
The "field" and "source" are two important branches in seismology and earthquake research.In this paper,we use a computer model to study the relation between the field and the source in earthquake activity.In our modeling,a network of nonlinear elements is used to simulate seismic activity of seismic zones in a seismotectonic block.Constant strain rate is enforced on the boundary of the model,cyclic seismic activity,quasi-periodic variation of stress field intensity,and strain energy are observed with high and low fluctuations.There is a main seismicity area in seismic cycles,and the main seismicity area shows the spatial migration during different seismic cycles.If the precursory area is related to high element stress,it is found that the development of precursors in our model is quite complicated.No certain relation between the precursors and earthquakes has been discovered.Anomalies show different characteristics in the seismic quiet period and active period.All of the seismic zones in the system hav  相似文献   

19.
3-D seismic modeling can be used to study the propagation of seismic wave exactly and it is also a tool of 3-D seismic data processing and interpretation. In this paper the arbitrary difference and precise integration are used to solve seismic wave equation, which means difference scheme for space domain and analytic integration for time domain. Both the principle and algorithm of this method are introduced in the paper. Based on the theory, the numerical examples prove that this hybrid method can lead to higher accuracy than the traditional finite difference method and the solution is very close to the exact one. Also the seismic modeling examples show the good performance of this method even in the case of complex surface conditions and complicated structures.  相似文献   

20.
The great M_S8.0 Wenchuan earthquake on May 12,2008 was generated by abrupt faulting in the Yingxiu-Beichuan fault along the Longmenshan fault zone. The earthquake not only produced surface ruptures along the Yingxiu-Beichuan and Guanxian-Jiangyou faults,but also surface ruptures,arching of highway pavement,sand-boils and waterspouts in various degrees in areas such as Shifang and Mianzhu on the Chengdu Plain. To understand the shallow geological structures under the surface rupture zone,a 6350m long high-resolution shallow seismic reflection profile in near-EW direction was performed. This profile is located at Shigu town,Shifang city,where a suspected earthquake surface rupture zone was discovered. In this study,a group interval of 3m,shotpoint interval of 18m,and a 300-channel 25-fold observation system were used. In consideration of both near-surface reflections and dipping interface imaging,we adopted the split-spread geometry and asymmetrical zero-offset receiving technique. To better suppress random-noise and raise the signal-to-noise ratio of seismic data,30 times vertical stacking of vibrator signals was made for each common-shot gather after correlation of individual records. By using the above work method and spread geometry,we obtained high-resolution images of structures in the depth range of 15m~800m after data processing. The result shows the existence of buried thrust faults thrusting to the plain area and back-thrust faults under the surface rupture zone. It also shows that the activity of the buried thrust faults may be the main cause for folding and deformation in near-surface strata and coseismic surface rupturing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号