首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The range of conditions of formation of lode-gold deposits from the sub-greenschist to the lower-granulite facies in Archean greenstone belts, and the generally steeply plunging, vertically continuous pipe-like or tabular geometries of individual deposits, indicate long-distance hydrothermal fluid advection along well-defined channelways in the upper and middle crust. From presently available gold solubility data, destabilisation of gold-bisulphide complexes through H2S loss from the fluid to the wallrock was the dominant gold precipitation mechanism within these hydrothermal systems as a whole. This inference is supported by the S:Au ratios of ores. Sulphur and Au precipitation in the hydrothermal system is estimated to be relatively inefficient, with only 10–50% of S or Au contained in the fluid precipitated over any kilometre length of fluid channelway. The relative inefficiency of gold precipitation allowed mineralisation over a significant depth range in a crustal profile.  相似文献   

2.
Southern Cross was one of the earliest gold mining centres in Western Australia. Over 142 tonnes of gold have been produced from the district, and, on a gold per hectare basis, the Southern Cross greenstone belt in the southwestern Yilgarn Craton is the most productive of Western Australia's Archaean greenstone belts. The SW Yilgarn Craton is characterised by high-grade (amphibolite- to granulite-facies) metamorphism, extensive granitoid magmatism and older greenstone volcanism ages, compared to the well-known greenschist-facies metamorphism and younger (2.7 Ga) eruption ages which dominate in the Eastern Goldfields Province. The Pb-isotope compositions of deep-seated granitoids in the SW Archaean Yilgarn Craton, which were emplaced coeval with a craton-wide major orogenic lode-gold mineralization event at about 2.64–2.63 Ga, have been determined for 96 whole-rock and 24 K-feldspar samples. The Pb isotope data of the granitoids are consistent with a crustal origin for their genesis, probably by reworking (partial melting) of older continental crust. The Pb isotope composition of greenstones, which are the main host rocks for gold mineralisation, and pyrites from the komatiite-hosted syngenetic Ni deposits in the amphibolite-facies Forrestania greenstone belt, have also been determined, with initial Pb-isotope ratios higher than that for the Eastern Goldfields Province. The Pb isotopic character of the orogenic lode-gold deposits in the region is intermediate between coeval granitoid and greenstone Pb, indicating that the ore fluids contained metals from both reservoirs. The Pb in the ore fluid of the most deeply formed deposit, Griffin's Find, overlaps the isotopic composition of coeval granitoids, indicating the deep-seated granitoid magmatism was the primary source for Pb in the ore fluids. Received: 8 October 1998 / Accepted 22 December 1998  相似文献   

3.
Gold deposits occur in greenstone belts world wide, and contribute to anomalously high gold production from Archaean terranes. As in other cratons, Archaean gold mineralization of Western Australia represents a complex array of deposit styles. Despite this, most deposits are clearly epigenetic, and large deposits have a number of features in common, including their strong structural controls, distinctive wallrock alteration (Fe-sulphide, K-mica±albite, Ca---Mg---Fe carbonates), consistent metal associations (Au---Ag---As---Sb---W---B; low base metals), commonly Fe-rich host rocks, great depth extension and lack of appreciable vertical zonation. These shared characteristics, combined with their ubiquitous occurrence, indicate that Archaean gold deposits had a common origin related to the tectonic evolution of greenstone belts.Auriferous hydrothermal systems were broadly synchronous with regional metamorphism and emplacement of synkinematic granitoids and felsic (porphyry) intrusions. Although these gold systems involved low-salinity, lowdensity, reduced, near-neutral H2O---CO2 fluids carrying gold as reduced sulphur complexes, the origin of the fluids is equivocal. Most timing evidence and stable isotope data cannot distinguish metamorphic from magmatic (granitoid or felsic porphyry) orggins, but the lack of consistent spatial relationships between specific, volumetrically significant intrusive phases and large gold deposits in a number of cratons strongly favours metamorphic derivation of fluids.The metamorphic-replacement model for gold mineralization involves devolatilization of the lower portions of the greenstone pile, with high geothermal gradients inhibiting significant melting. CO2 possibly formed by the decarbonation of early alteration, related to mantle degassing along crustal-scale, synbasinal fault zones. Auriferous fluids were channelled along greenstone-scale faults, in part developed during reactivation of crustal-scale faults in a strike-slip regime. Gold deposition occurred largely under greenschist facies conditions (about 300–400°C, 1–2 kb) in response to decreasing gold solubility with declining temperature. However, a major control on gold deposition was fluid/wallrock interaction. Many large deposits formed by sulphidation of Fe-rich host rocks, with synchronous deposition of Fe-sulphides and gold. However, the variable nature of gold-depositing reactions, including lowering of fO2 and pH, allowed a multitude of small, and some large, deposits to form wherever that fluid circulation occurred. In consequence, several of the relatively small deposits currently worked from open pit are hosted by ultramafic and felsic rocks. There are few constraints on the source of components (Au, S, K, CO2) added to gold deposits, but even giant deposits such as the Golden Mile, Kalgoorlie could have formed from a realistic greenstone source volume (ca. 8×8×5 km). Convective circulation of fluids could have contributed to the generation of high fluid-rock ratios.On the regional scale, the markedly heterogeneous distribution of large gold deposits, gold productivity and host rocks to deposits can be accommodated by the metamorphic-replacement model. The most favourable conditions for development of auriferous hydrothermal systems operated in younger (ca. 2.7±0.1 Ga) rift-phase greenstones where greatest extension and crustal thinning produced high geothermal gradients, crustal-scale synbasinal faults, and rapid extrusion and burial of volcanics, including abundant komatiites. Iron-rich tholeiitic basalts and dolerites were preferred host rocks for large gold deposits. The least favourable conditions existed in older (ca. 3.5-3.4 Ga) platformphase greenstones, where gentle sagging on submerged continental crust produced eruption of mainly mafic volcanics with few komatiites, commonly in very shallow-water environments. This allowed intense synvolcanic alteration of both gold source rocks and potential host rocks. The generally smaller gold deposits formed mainly in ultramafic or greywacke hosts. Younger (ca. 3.0 Ga) platform-phase greenstones appear intermediate in nature but, unlike other greenstones, have significant epigenetic gold deposits in originally oxide-facies BIF, which were deposited on relatively deep-water platforms. Similar controls appear to exist on a world scale, with gold mineralization peaking at ca. 2.7±0.1 Ga in response to development of major rift zones in thickened, relatively mature continental crust. Interestingly, the giant Witwatersrand goldfield formed at about the same time.  相似文献   

4.
Whole-rock Sm–Nd isotope systematics of 79 Archean granitoids from the eastern Kaapvaal craton, southern Africa, are used to delineate lithospheric boundaries and to constrain the timescale of crustal growth, assembly and geochemical differentiation c. 3.66–2.70 Ga. Offsets in εNd values for 3.2–3.3 Ga granitoids across the Barberton greenstone belt (BGB) are consistent with existing models for c. 3.23 Ga accretion of newly formed lithosphere north of the BGB onto pre-existing c. 3.66 Ga lithosphere south of the BGB along a doubly verging subduction margin. The Nd isotopic signature of c. 3.3–3.2 Ga magmatic rocks show that significant crustal growth occurred during subduction–accretion. After c. 3.2 Ga, however, the Nd signature of intrusive rocks c. 3.1 and 2.7 Ga is dominated by intracrustal recycling rather than by new additions from the mantle, signalling cratonic stability.  相似文献   

5.
The Archaean greenstone terrane between Menzies and Kambalda exhibits a coherent, although deformed, stratigraphic sequence intruded by granitoids and bounded by major NNW-trending shear and/or fault zones. The greenstone terrane hosts a large number of lode gold prospects and deposits, including the giant Kalgoorlie deposits. The initial Pb isotope compositions of lode gold deposits, as determined from ore related galena and pyrite, vary systematically in a linear trend on a207Pb/204Pb versus206Pb/204Pb diagram which reflects crustal heterogeneity at the time of mineralisation. Deposits hosted within a 90 km section of the Menzies-Boorara Shear Zone have a uniform, radiogenic initial Pb isotope composition irrespective of temperature of mineralisation and proximity to granitoid-gneiss in plan view. The Pb in these deposits is considered to be derived largely from older felsic crust underlying the greenstone belt and was accessed via this major shear-zone system. Deposits in a transect unrelated to a major shear zone show a systematic correlation between initial Pb isotope compositions and proximity to granitoid-gneiss and/or to mineralisation temperature. These compositions are less radiogenic than those within the Menzies-Boorara Shear Zone, but trend on a207Pb/204Pb versus606Pb/204Pb diagram between this isotope signature and the uniform Pb isotope signature which characterises the >100 km greenstone transect from the Mt Pleasant area through Kalgoorlie to Kambalda. These data are interpreted to reflect Pb derivation from discrete crustal segments within and below the greenstones, and require that mineralisation was related to crustal-scale hydrothermal systems that accessed both sialic mid- to lower-crust and the greenstone succession.  相似文献   

6.
The Archaean lode gold deposits in the Mt. York District, Pilbara Block, Western Australia are hosted in banded iron formation (Main Hill/Breccia Hill prospect) of the ca. 3.33 Ga Gorge Creek Group and in amphibolites (Zakanaka prospect) of the ca. 3.46 Ga Warrawoona Group. Gold mineralisation at the Main Hill/Breccia Hill prospect is associated with breccias comprising quartz clasts in a quartz-pyrrhotite matrix, and quartz-amphibole veins, with löllingite being the major host for gold. Minimum temperatures for gold mineralisation at the prospect are constrained as 455°C to 550°C by arsenopyrite thermometry. Gold mineralisation at the Zakanaka prospect is spatially associated with quartzclinopyroxene-calcite-microcline-calcic-amphibole veins and biotite altered wallrock adjacent to the veins. Temperatures for vein emplacement are estimated as 480°C to 570°C using both plagioclase-amphibole thermometry and mineral equilibria with respect to T and XCO2. The timing of gold mineralisation relative to the peak of metamorphism is constrained by mineral textures and the relative temperatures of hydrothermal alteration and metamorphism. Gold mineralisation at both deposits was broadly synchronous with the peak of regional amphibolite facies metamorphism, which reached temperatures of 520°C to 640°C based on amphibole-plagioclase and garnet-biotite thermometry. In this respect, the deposits are similar to other well documented syn-amphibolite facies lode gold deposits from the Archaean Southern Cross greenstone belt in the Yilgarn Block, and represent the deeper section of a crustal continuum of lode gold deposits that includes mesothermal deposits such as those at Kalgoorlie at higher crustal levels.  相似文献   

7.
Many Archaean mesothermal gold deposits are spatially associated with felsic to lamprophyric minor intrusions and it has been suggested that magmatic processes related to such intrusions may be important in the genesis of these deposits. A comparison of the Pb-isotopic signature of gold-related galenas from Kambalda and Norseman with that of spatially associated minor intrusions (at the time of mineralization) indicates that the ore-fluid Pb cannot have been derived solely from the intrusions or their source regions. For both study areas, the galena Pb-isotopic compositions are bracketed by those of local volcanic (mafic) and intrusive (largely felsic) rock types. This is consistent with the ore fluid having derived metallic components from the crust (or crustally derived granitic rocks) and the mantle (or mantle-derived rocks of the greenstone succession) via metamorphic dewatering or mantle/crustal degassing. Interaction of granite-derived magmatic fluids with greenstone lithologies could plausibly produce a similar array of Pb-isotopic signatures. The Norseman data, as a whole, are more radiogenic than the Kambalda data for broadly synchronous mineralization, reflecting the greater abundance of older granitic rocks with respect to mafic/ultramafic rocks in the Norseman district. The provinciality exhibited by the Pb-isotopic composition of the ore fluid indicates that the gold-mineralizing process formed galena whose Pb-isotopic composition was very sensitive to local variations in crustal Pb-isotopic composition, either within the source region of the fluid or along fluid conduits.  相似文献   

8.
An inescapable consequence of the metamorphism of greenstone belt sequences is the release of a large volume of metamorphic fluid of low salinity with chemical characteristics controlled by the mineral assemblages involved in the devolatilization reactions. For mafic and ultramafic sequences, the composition of fluids released at upper greenschist to lower amphibolite facies conditions for the necessary relatively hot geotherm corresponds to those inferred for greenstone gold deposits (XCO2= 0.2–0.3). This result follows from the calculation of mineral equilibria in the model system CaO–MgO–FeO–Al2O3–SiO2–H2O–CO2, using a new, expanded, internally consistent dataset. Greenstone metamorphism cannot have involved much crustal over-thickening, because very shallow levels of greenstone belts are preserved. Such orogeny can be accounted for if compressive deformation of the crust is accompanied by thinning of the mantle lithosphere. In this case, the observed metamorphism, which was contemporaneous with deformation, is of the low-P high-T type. For this type of metamorphism, the metamorphic peak should have occurred earlier at deeper levels in the crust; i.e. the piezothermal array should be of the ‘deeper-earlier’type. However, at shallow crustal levels, the piezothermal array is likely to have been of ‘deeper-later’type, as a consequence of erosion. Thus, while the lower crust reached maximum temperatures, and partially melted to produce the observed granites, mid-crustal levels were releasing fluids prograde into shallow crustal levels that were already retrograde. We propose that these fluids are responsible for the gold mineralization. Thus, the contemporaneity of igneous activity and gold mineralization is a natural consequence of the thermal evolution, and does not mean that the mineralization has to be a consequence of igneous processes. Upward migration of metamorphic fluid, via appropriate structurally controlled pathways, will bring the fluid into contact with mineral assemblages that have equilibrated with a fluid with significantly lower XCO2. These assemblages are therefore grossly out of equilibrium with the fluid. In the case of infiltrated metabasic rocks, intense carbonation and sulphidation is predicted. If, as seems reasonable, gold is mobilized by the fluid generated by devolatilization, then the combination of processes proposed, most of which are an inevitable consequence of the metamorphism, leads to the formation of greenstone gold deposits predominantly from metamorphic fluids.  相似文献   

9.
In the Archaean Murchison Province of Western Australia, granitoid batholiths and plutons that intruded into the ca. 2.7–2.8 Ga and ca. 3.0 Ga greenstone belts can be divided into three major suites. Suite I is a ca. 2.69 Ga monzogranite-granodiorite suite, which was derived from anatexis of old continental crust and occurs as syn-tectonic composite batholiths over the entire province. Suite II is a trondhjemite-tonalite suite (termed I-type) derived from partial melting of subducted basaltic crust, which intruded as syn- to late-tectonic plutons into the greenstone belts in the northeastern part of the province where most of the major gold deposits are situated. One of the Suite II trondhjemite plutons has a Pb−Pb isochron age of 2641±36 Ma, and one of the structurally youngest tonalite plutons has a minimum Pb−Pb isochron age of 2630.1±4.3 Ma. Suite III is a ca. 2.65–2.62 Ga A-type monzogranite-syenogranite suite which is most abundant in the largely unmineralised southwestern part of the province. Gold deposits in the province are mostly hosted in brittle-ductile shear zones, and were formed at a late stage in the history of metamorphism, deformation and granitoid emplacement. At one locality, mineralisation has been dated at 2636.8±4.2 Ma through a pyritetitanite Pb−Pb isochron. Lead and Sr isotope studies of granitoids and gold deposits indicate that, although most gold deposits have initial Pb isotope compositions most closely similar to those of Suite II intrusions, both Suite I and Suite II intrusions or their source regions could have contributed solutes to the ore fluids. These preliminary data suggest that gold mineralisation in the Murchison Province was temporally and spatially associated with Suite II I-type granitoids in the northeastern part of the province. This association is consistent with the concept that Archaean gold mineralisation was related to convergent-style tectonic settings, as generation of both Suite II I-type granitoids and hydrothermal ore fluids could have been linked to the dehydration and partial fusion of subducted oceanic crust, and old sialic crust or its anatectic products may also contribute solutes to the ore fluids. Integration of data from this study with other geological and radiogenic isotope constraints in the Yilgarn Block argue against direct derivation of gold ore fluids from specific I-type granitoid plutons, but favour a broad association with convergent tectonics and granitoid magmatism in the late Archaean.  相似文献   

10.
Many large Archaean epigenetic gold deposits show a broad spatial relationship to regional lineaments in greenstone belts, although in detail they are sited in subsidiary brittle-ductile fault structures. Fluids, originating from a deep source, follow a complex path and re-equilibrate with different lithologies and with metamorphic fluid during migration to higher crustal levels. Temperature and pressure conditions at or below the amphibolite/greenschist metamorphic boundary, where most gold deposits are located, favour the establishment of brittle-ductile and brittle subsidiary structures, the preferred structural setting of gold deposits. Physical gradients between the regional ductile structures and more brittle subsidiary structures ensure transient, strongly localized, fluid flow into the latter, where lower temperatures and suitable host rocks with high Fe/(Fe + Mg) ratios favour gold-deposition. The multi-source origin and continuous re-equilibration of the fluid with crustal rock, which includes granitoid and greenstone-belt lithologies of different ages, is reflected in the diverse isotopic and geochemical signature of the gold deposits.  相似文献   

11.
Available petrological, structural and geochronological data suggest that metamorphism and deformation of greenstone sequences and the evolution of intrusive granitoids in the Eastern Goldfields Province, Yilgarn Block, were related to a widespread and integrated tectonic event in the time interval 2700-2600 m.y.Polyphase deformation of the greenstone sequences involved the superimposition of a series of upright folds and related subvertical foliations on earlier macroscopic recumbent folds. Metamorphism was imposed rapidly on these previously deformed but relatively unaltered greenstone sequences, synchronously with a third phase of deformation. Static-style metamorphic recrystallization at very low to medium grades occurred over most of the province, but contemporaneous high grade recrystallization of dynamic style was restricted to elongate narrow zones which were also the sites of synkinematic granitoid diapirism. These zones commonly mark the present margins of greenstone belts.The extensive areas between greenstone belts are dominated by outcrops of post-kinematic granitoids whose abundance may be overestimated because of the limited exposure. Their emplacement caused only minor contact metamorphic overprinting on the pre-existing metamorphic patterns. Also present are banded gneisses interpreted as modified basement to the greenstone sequences. These gneisses are enclosed in post-kinematic granitoid batholiths or occur as remnants in synkinematic diapirs within the dynamic domains. All major granitoid groups, including gneisses, are geochemically similar and show parallel but limited variations. Both field and chemical evidence points to the gneisses being parental to intrusive granitoids derived by both anatectic and solid-state processes.The data provide important constraints on any model for greenstone belt evolution. Our preferred model involves a widespread disturbance resembling the kind currently referred to as a “mantle plume”, which initially led to extrusion of mafic and ultramafic magmas via tensional fractures in a sialic crust, then subsequently caused their deformation and metamorphism and generated the intrusive granitoids by widespread reactivation of the basement. The dynamic metamorphic domains may reflect pre-greenstone crustal lineaments that controlled the initial vulcanism. The evolution of Archean greenstone terrains proposed here appears distinct from that of subsequent Proterozoic and Phanerozoic tectonic belts.  相似文献   

12.
Archaean lode gold deposits in the Coolgardie Goldfield, Western Australia, occur in mafic and ultramafic rocks which have been metamorphosed to the amphibolite facies. Mineralisation was broadly synchronous with peak metamorphism, the main phase of granitoid emplacement, and regional deformation. Several different structural styles are represented by the deposits of the Coolgardie Goldfield. Mineralisation occurs along sheared felsic porphyry-ultramafic rock contacts, in gabbro-hosted quartz-vein sets, in fault-bounded quartzvein sets, and in laminated quartz reefs sited in brittleductile shear zones. The structures hosting mineralisation formed in response to a progressive deformation event, related to granitoid emplacement in an east-west compressional far-field stress régime, but with local heterogeneous stress orientations. This occurred after an earlier period of thrust-stacking, with probable north-south directed tectonic transport. Two contrasting styles of goldrelated wallrock alteration are associated with the auriferous lodes of the Coolgardie Goldfield. A high-temperature assemblage (formation temperature >500°C), characterised by the proximal alteration assemblage garnet+ hornblende + plagioclase + pyrrhotite, contrasts with a medium-temperature assemblage (formation temperature <500°C), consisting of calcic amphibole + biotite + plagioclase + calcite + arsenopyrite + pyrrhotite. The distribution of the two styles of gold-related alteration is controlled by distance from voluminous syntectonic granitoids located to the west of the Coolgardie Goldfield, with the high-temperature style of alteration more proximal to the granitoid-greenstone contact than the medium-temperature style. The occurrence of gold deposits that formed under amphibolite facies conditions throughout the Coolgardie Goldfield supports a crustal continuum model for Archaean lode-gold deposits, which proposes that gold is deposited in metamorphic environments that range from the sub-greenschist to granulite facies. In addition, the data from Coolgardie suggest that syntectonic, synmineralisation granitic plutons may play a significant role in controlling the style of gold associated wallrock-alteration at deep crustal levels.  相似文献   

13.
 The U-Pb ages of zircons from seven felsic volcanic and plutonic rocks from northern Zimbabwe combined with field data and Pb-Pb and Sm-Nd whole-rock isotope data, constrain the timespan of development of the Harare-Shamva granite-greenstone terrain and establish the relative involvement of juvenile mantle-derived and reworked crustal material. Basement-cover field relationships and isotope and geochemical data demonstrate that the greenstones were deposited onto 3.2–2.8 Ga basement gneisses, in ensialic, continental basins. Geodynamic models for the generation of the areally extensive bimodal magmatic products and growth of the pre-existing crustal nucleus consistent with our interpretations are rift-related: (1) intracontinental rifting related to mantle plume activity or; (2) rifting in a back-arc environment related to a marginal volcanic arc. The data, in conjunction with field evidence, do not indicate the presence and accretion of an older (ca. 2.70 Ga) and a younger (ca. 2.65 Ga) greenstone sequence in the Harare part of the greenstone belt, as was recently postulated on the basis of SHRIMP zircon ages. Zircon ages for basal felsic volcanics (2715±15 Ma) and a subvolcanic porphyry (2672±12 Ma) constrain the initiation and termination of deposition of the greenstone sequence. The timespan of deposition of the Upper Bulawayan part of the greenstone sequence corresponds well with radiometric ages for Upper Bulawayan greenstones in the central and southern part of the craton and supports the concept of craton-wide lithostratigraphic correlations for the late Archaean in Zimbabwe. Zircon ages for a syn-tectonic gneiss (2667±4 Ma) and a late syn-tectonic intrusive granodiorite (2664±15 Ma) pinpoint the age of deformation of the greenstone sequence and compare well with a Pb-Pb age of shear zone related gold mineralization (2659±13 Ma) associated with the latter intrusive phase. The intimate timing relation of greenstone deformation and granitoid emplacement, but also the metamorphic evidence for a thermal effect of the batholiths on the surrounding greenstone belts, and the structural and strain patterns in the greenstone sequence around and adjacent to the batholiths, imply that the intrusion of the granitoids had a significant influence on the tectono-thermal evolution of the greenstone belt. Prolonged magmatic activity is indicated by the zircon ages of small, post-tectonic plutons intrusive into the greenstone belt, with a mineralized granodiorite dated at 2649±6 Ma and an unmineralized tonalite at 2618± 6 Ma. The 2601±14 Ma crystallization age of an “external” Chilimanzi-type granite agrees well with existing radiometric ages for similar granites within the southern part of the craton, demonstrating a craton-wide event and heralding cratonization. The similarity between U-Pb zircon ages and TDM model ages (2.65–2.62 Ga) and the positive ɛNdT values (+3 to +2) for the late syn-tectonic and post-tectonic intrusive plutons within the greenstone belt indicate magmatism was derived directly from the mantle or by anatexis of lower crustal sources, with very short crustal residence times, and minor contamination with older crust. The rather high model μ1 values (8.2–8.6) are unlikely to indicate the involvement of significant amounts of older crust and may be inherited from a high U/Pb mantle source, as was suggested by previous workers for the Archaean mantle beneath Southern Africa. The older TDM ages for the felsic volcanics (3.0–2.8 Ga) and the porphyries (2.8–2.7 Ga) suggest that these felsic magmas were derived by partial melting of a source that was extracted from the mantle ca. 200 Ma prior to volcanism or may indicate interaction between depleted mantle-derived melts and older crustal material. Received: 15 August 1995 / Accepted: 12 January 1996  相似文献   

14.
Major Cu–Au deposits of iron oxide–copper–gold (IOCG) style are temporally associated with oxidized, potassic granitoids similar to those linked to major porphyry Cu–Au deposits. Stable and radiogenic isotope evidence indicates fluids and ore components were likely sourced from the intrusions. IOCG deposits form over a range of crustal levels because CO2-rich fluids separate from the magmas at higher pressures than in CO2-poor systems, thereby, promoting partitioning of H2O, Cl and metals to the fluid phase. At deep levels, the magma–fluid system cannot generate sufficient mechanical energy to fracture the host rocks as in porphyry systems and the IOCG deposits therefore form in a variety of fault-related structural traps where the magmatic fluids may mix with other fluids to promote ore formation. At shallow levels, the IOCG deposits form breccia and fracture-hosted mineralization styles similar to the hydrothermal intrusive breccias and sulphide vein systems that characterize many porphyry Cu–Au deposits. The fluids associated with IOCG deposits are typically H2O–CO2–salt fluids that evolve by unmixing of the carbonic phase and by mixing with fluids from other sources. In contrast, fluids in porphyry systems typically evolve by boiling of moderate salinity fluid to produce high salinity brine and a vapor phase commonly with input of externally derived fluids. These different fluid compositions and mechanisms of evolution lead to different alteration types and parageneses in porphyry and IOCG deposits. Porphyry Cu–Au deposits typically evolve through potassic, sericitic and (intermediate and/or advanced) argillic stages, while IOCG deposits typically evolve through sodic(–calcic), potassic and carbonate-rich stages, and at deeper levels, generally lack sericitic and argillic alteration. The common association of porphyry and IOCG Cu–Au deposits with potassic, oxidized intermediate to felsic granitoids, together with their contrasting fluid compositions, alteration styles and parageneses suggest that they should be considered as part of the broad family of intrusion-related systems but that they are typically not directly related to each other.  相似文献   

15.
Ages of giant gold systems (>500 t gold) cluster within well-defined periods of lithospheric growth at continental margins, and it is the orogen-scale processes during these mainly Late Archaean, Palaeoproterozoic and Phanerozoic times that ultimately determine gold endowment of a province in an orogen. A critical factor for giant orogenic gold provinces appears to be thickness of the subcontinental lithospheric mantle (SCLM) beneath a province at the time of gold mineralisation, as giant gold deposits are much more likely to develop in orogens with subducted oceanic or thin continental lithosphere. A proxy for the latter is a short pre-mineralisation crustal history such that thick SCLM was not developed before gold deposition. In constrast, orogens with protracted pre-mineralisation crustal histories are more likely to be characterised by a thick SCLM that is difficult to delaminate, and hence, such provinces will normally be poorly endowed. The nature of the lithosphere also influences the intrinsic gold concentrations of potential source rocks, with back-arc basalts, transitional basalts and basanites enriched in gold relative to other rock sequences. Thus, segments of orogens with thin lithosphere may enjoy the conjunction of giant-scale fluid flux through gold-enriched sequences. Although the nature of the lithosphere plays the crucial role in dictating which orogenic gold provinces will contain one or more giant deposits, the precise siting of those giants depends on the critical conjunction of a number of province-scale factors. Such features control plumbing systems, traps and seals in tectonically and lithospherically suitable terranes within orogens.  相似文献   

16.
冀东、冀西广泛分布着以深变质绿岩带为主的变质基底 ,同时也是中生代岩浆活动十分发育的地区。剧烈的岩浆隐爆作用 ,对区内早期的绿岩带和其中的金及金矿床进行了强烈的活化改造 ,形成一批与岩浆隐爆作用有关的绿岩带再生型金矿床。该类金矿床由于赋存在不同的隐爆构造 ,具有多样性的矿化特征 ,可再细分为隐爆震碎角砾岩型金矿床、隐爆角砾岩筒型金矿床和隐爆侵入角砾岩墙型金矿床。文中较详细地阐述了各类金矿床的地质 -地球化学特征 ,它们相互间的空间分布关系及与成矿有关的浅成侵入岩的特征。指出隐爆角砾岩型金矿床常与重熔岩浆有关的脉状 -细脉浸染状金矿床、斑岩型金矿床共同产出 ,组成矿床组合 ,并具有垂直分带的分布特征 ,这对认识矿床的成矿机制和指导找矿有重大意义。最后 ,还讨论了成矿模式。  相似文献   

17.
The Lady Bountiful granitoid-hosted lode gold deposit, located in the mid-greenschist facies metamorphosed Ora Banda greenstone sequence, is hosted predominantly by the late-tectonic Liberty Granodiorite. Gold mineralisation is localised along quartz-veined, sinistral, brittle fault-zone(s) that transect the boundary between the Liberty Granodiorite and Mt Pleasant sill. Quartz vein textures indicate two stages of a single gold-related vein-development event, with high-grade gold mineralisation restricted to the second stage. Ore minerals include pyrite, chalcopyrite, pyrrhotite, galena, sphalerite, Au−Ag−Bi−Pb-tellurides, and native gold. Fluid infitration has resulted in narrow (<1 m) bleached wallrock alteration envelopes to the fault zones comprising albite-K-mica ±chlorite±calcite±rutile assemblages. Temperature-pressure conditions varied from Stage I (300°±50°C, ≈2 kbar) to Stage II (250°±50°C, ≈0.5 to 2 kbar), with the hydrothermal fluid in both stages characterised by X(CO2)≤0.15 and moderate salinity (≈1.28 m NaCl). Intermittent phase separation of Stage II mineralising fluids, initiated by pressure fluctuations in dilational sites, and/or fluid-dominated fluid: wallrock interaction, are invoked as the dominant depositional mechanisms. The granitoid-hosted Lady Bountiful lode gold deposit shares many features with other granitoid-hosted lode gold deposits in the Yilgarn Craton and the Superior Province. Granitoid-hosted lode gold deposits, such as the Lady Bountiful deposit, provide additional evidence that the dominant control on the localisation of gold mineralisation within a granitoid host is structure, with competency contrasts playing a significant role. Furthermore, the hydrothermal wallrock alteraction and orefluid chemistry characteristics of the granitoid-hosted lode gold deposits are comparable to those established for greenstone-hosted lode gold mineralisation.  相似文献   

18.
We have examined the fluid inclusion data and fluid chemistry of Australian orogenic and intrusion-related gold deposits to determine if similar mineralization processes apply to both styles of deposits.The fluid inclusion data from the Yilgarn craton,the western subprovince of the Lachlan orogen,the Tanami,Tennant Creek and Pine Creek regions,and the Telfer gold mine show that mineralization involved fluids with broadly similar major chemical components(i.e.H_2O NaCl CO_2±CH_4±N_2).These deposits formed over a wide range of temperature-pressure conditions(<200 to>500℃,<100~400MPa).Low salinity, CO_2-bearing inclusions and low salinity aqueous inclusions occur in both systems but the main difference between these two types of deposits is that most intrusion-related gold deposits also contain at least one population of high-salinity aqueous brine.Oxygen and hydrogen isotope data for both styles of deposit usually cannot distinguish between a magmatic or metamorphic source for the ore-bearing fluids.However,sulfur and lead isotope data for the intrusion-related gold deposits generally indicate either a magmatic source or mixing between magmatic and sedimentary sources of fluid.The metamorphic geothermal gradients associated with intrusion-related gold deposits are characterized by low pressure,high temperature metamorphism and high crustal geothermal gradients of>30/km.Where amphibole breakdown occurs in a granite source region,the spatially related deposits are more commonly associated with Cu-Au deposits rather than Au-only deposits that are associated with lower temperature granites.The dominant processes thought to cause gold precipitation in both types of deposits are fluid-rock interaction(e.g.desulfidation)or phase separation.Consideration of the physical and chemical properties of the H_2O-NaCl-CO_2 system on the nature of gold precipitation mechanisms at different crustal levels infers different roles of chemical(fluid-rock interaction)versus rheological(phase separation and/or fluid mixing)host-rock controls on gold deposition.This also implies that at the site of deposition,similar precipitation mechanisms operate at similar crustal levels for both orogenic and intrusion-related gold deposits.  相似文献   

19.
With very few exceptions, orogenic gold deposits formed in subduction-related tectonic settings in accretionary to collisional orogenic belts from Archean to Tertiary times. Their genesis, including metal and fluid source, fluid pathways, depositional mechanisms, and timing relative to regional structural and metamorphic events, continues to be controversial. However, there is now general agreement that these deposits formed from metamorphic fluids, either from metamorphism of intra-basinal rock sequences or de-volatilization of a subducted sediment wedge, during a change from a compressional to transpressional, less commonly transtensional, stress regime, prior to orogenic collapse. In the case of Archean and Paleoproterozoic deposits, the formation of orogenic gold deposits was one of the last events prior to cratonization. The late timing of orogenic gold deposits within the structural evolution of the host orogen implies that any earlier structures may be mineralized and that the current structural geometry of the gold deposits is equivalent to that at the time of their formation provided that there has been no significant post-gold orogenic overprint. Within the host volcano-sedimentary sequences at the province scale, world-class orogenic gold deposits are most commonly located in second-order structures adjacent to crustal scale faults and shear zones, representing the first-order ore-forming fluid pathways, and whose deep lithospheric connection is marked by lamprophyre intrusions which, however, have no direct genetic association with gold deposition. More specifically, the gold deposits are located adjacent to ~10°-25° district-scale jogs in these crustal-scale faults. These jogs are commonly the site of arrays of ~70° cross faults that accommodate the bending of the more rigid components, for example volcanic rocks and intrusive sills, of the host belts. Rotation of blocks between these accommodation faults causes failure of more competent units and/or reactivation and dilation of pre-existing structures, leading to deposit-scale focussing of ore-fluid and gold deposition.Anticlinal or antiformal fold hinges, particularly those of 'locked-up' folds with ~30° apical angles and overturned back limbs, represent sites of brittle-ductile rock failure and provide one of the more robust parameters for location of orogenic gold deposits.In orogenic belts with abundant pre-gold granitic intrusions, particularly Precambrian granitegreenstone terranes, the boundaries between the rigid granitic bodies and more ductile greenstone sequences are commonly sites of heterogeneous stress and inhomogeneous strain. Thus, contacts between granitic intrusions and volcano-sedimentary sequences are common sites of ore-fluid infiltration and gold deposition. For orogenic gold deposits at deeper crustal levels, ore-forming fluids are commonly focused along strain gradients between more compressional zones where volcano-sedimentary sequences are thinned and relatively more extensional zones where they are thickened. World-class orogenic gold deposits are commonly located in the deformed volcano-sedimentary sequences in such strain gradients adjacent to triple-point junctions defined by the granitic intrusions, or along the zones of assembly of micro-blocks on a regional scale. These repetitive province to district-scale geometrical patterns of structures within the orogenic belts are clearly critical parameters in geology-based exploration targeting for orogenic gold deposits.  相似文献   

20.
Neoarchean orogenic gold deposits, associated with the greenstone-granite milieus in the Dharwar Craton include(1) the famous Kolar mine and the world class Hutti deposit;(2) small mines at HiraBuddini, Uti, Ajjanahalli, and Guddadarangavanahalli;(3) prospects at Jonnagiri; and(4) old mining camps in the Gadag and Ramagiri-Penakacherla belts. The existing diametric views on the source of ore fluid for formation of these deposits include fluids exsolved from granitic melts and extracted by metamorphic devolatilization of the greenstone sequences. Lode gold mineralization occurs in structurally controlled higher order splays in variety of host rocks such as mafic/felsic greenstones, banded iron formations, volcaniclastic rocks and granitoids. Estimated metamorphic conditions of the greenstones vary from lower greenschist facies to mid-amphibolite facies and mineralizations in all the camps are associated with distinct hydrothermal alterations. Fluid inclusion microthermometric and Raman spectroscopic studies document low salinity aqueous-gaseous(H_2O + CO_2 ± CH_4 + NaCl) ore fluids,which precipitated gold and altered the host rocks in a narrow P-T window of 0.7-2.5 kbar and 215-320℃. While the calculated fluid O-and C-isotopic values are ambiguous, S-isotopic compositions of pyrite-precipitating fluid show distinct craton-scale uniformity in terms of its reduced nature and a suggested crustal sulfur source.Available ages on greenstone metamorphism, granitoid plutonism and mineralization in the Hutti Belt are tantamount, making a geochronology-based resolution of the existing debate on the metamorphic vs.magmatic fluid source impossible. In contrast, tourmaline geochemistry suggests involvement of single fluid in formation of gold mineralization, primarily derived by metamorphic devolatilization of mafic greenstones and interlayered sedimentary rocks, with minor magmatic contributions. Similarly, compositions of scheelite, pyrite and arsenopyrite point toward operation of fault-valves that caused pressure fluctuation-induced fluid phase separation, which acted as the dominant process of gold precipitation,apart from fluid-rock sulfidation reactions. Therefore, results from geochemistry of hydrothermal minerals and those from fluid inclusion microthermometry corroborate in constraining source of ore fluid,nature of gold transport(by Au-bisulfide complex) and mechanism of gold ore formation in the Dharwar Craton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号