首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamics of dissolved and particulate N, P and organic C were examined for field drains, through a headwater (4 km2), into a mesoscale stream (51 km2) and river (1844 km2) catchment. Distributions of N and P forms were similar in the agricultural headwater and field drains; annual P fluxes of particulate and dissolved forms were of equal magnitude, whilst N was dominated by NO3–N. Across all scales organic P was an important, often dominant, component of the dissolved P. Temporal variation in nutrient concentrations and proportions was greatest in the headwater, where storms resulted in the generation of large concentrations of suspended particulate matter, particulate and dissolved P, particularly following dry periods. The data suggest that groundwater and minor point source inputs to the mesoscale catchment buffered the temporal variability in hydrochemistry relative to the headwater. Summer low flows were associated with large PO4–P concentrations in the mesoscale catchment at a critical time of biological sensitivity. At the largest river catchment scale, organic forms of C, N and P dominated. Inorganic nutrient concentrations were kept small through dilution by runoff from upland areas and biological processes converted dissolved N and P to particulate forms. The different processes operating between the drain/headwater to the large river scale have implications for river basin management. Given the prevalence of organic and particulate P forms in our catchment transect, the bioavailability of these fractions needs to be better understood.  相似文献   

2.
Riparian vegetation can trap sediment and nutrients sourced from hillslopes and reduce stream bank erosion. This study presents results from a 10-year stream monitoring program (1991–2000), in a 6 km2 agricultural catchment near Albany, Western Australia. After 6 years, a 1.7 km stream reach was fenced, planted with eucalyptus species and managed independently from the adjacent paddocks. Streamflow, nutrient and sediment concentration data were collected at the downstream end of the fenced riparian area, so there are data for before and after improved riparian management. Suspended sediment (SS) concentrations fell dramatically following improved riparian management; the median event mean concentration (EMC) dropped from 147 to 9.9 mg l−1. Maximum SS concentrations dropped by an order of magnitude. As a result, sediment exports from the catchment decreased following improved riparian management, from over 100 to less than 10 kg ha−1 yr−1. Observations suggest that this was the result of reduced bank erosion and increased channel stability. Riparian management had limited impact on total phosphorus (TP) concentrations or loads, but contributed to a change in phosphorus (P) form. Before improved riparian management, around half of the P was transported attached to sediment, but after, the median filterable reactive P (FRP) to TP ratio increased to 0.75. In addition, the median FRP EMC increased by 60% and the raw median FRP concentration increased from 0.18 to 0.35 mg l−1. These results suggest that there was a change in the dominant P form, from TP to FRP. Changes in total nitrogen (TN) following improved riparian management were less clear. There were reductions in TN concentrations at high flows, but little change in the loads or EMC. This study demonstrates the benefits of riparian management in reducing stream bank erosion, but suggests that in catchments with sandy, low P sorption soils, there may be limitations on the effectiveness of riparian buffers for reducing P and N exports.  相似文献   

3.
This study examined stream water quality across a range of catchments which are representative of the key environments and land uses of rural south-west England. These catchments included: (a) an acidic upland headwater catchment, rising on the moorlands of Dartmoor, with low-intensity sheep rearing; (b) a headwater catchment rising on the weathered granite lower slopes of Dartmoor, with cattle farming; (c) a lowland headwater clay catchment with sub-surface drainage and high intensity livestock farming, fodder crop cultivation, and hard-standing/slurry storage; and (d) the main River Taw, a lowland river system receiving drainage from a range of tributaries, exemplified by the above catchment types. Variations in water chemistry and quality were observed along an upland–lowland transition, from headwater streams to the main river channel. Within the livestock-dominated headwater streams, total phosphorus (TP) was dominated by particulate phosphorus (PP). These PP concentrations appeared to be mainly linked to two sets of processes: (1) in-stream sediment precipitation with sorption/co-precipitation of phosphate and/or localised in-channel mobilisation of sediment (by cattle or channel-clearing operations) under low flow conditions, and (2) sediment erosion and transportation associated with near-surface runoff during storm events. Under baseflow conditions, in-stream and/or riparian processes played a significant role in controlling general nutrient chemistry, particularly in the headwater streams which were heavily impacted by livestock.  相似文献   

4.
This paper describes the preliminary evaluation of the PSYCHIC catchment scale (Tier 1) model for predicting the mobilisation and delivery of phosphorus (P) and suspended sediment (SS) in the Hampshire Avon (1715 km2) and Herefordshire Wye (4017 km2) drainage basins, in the UK, using empirical data. Phosphorus and SS transfers to watercourses in the Wye were predicted to be greater than corresponding delivery in the Avon; SS, 249 vs 33 kg ha−1 yr−1; DP, 2.57 vs 1.26 kg ha−1 yr−1; PP, 2.20 vs 0.56 kg ha−1 yr−1. The spatial pattern of the predicted transfers was relatively uniform across the Wye drainage basin, whilst in the Avon, delivery to watercourses was largely confined to the river corridors and small areas of drained land. Statistical performance in relation to predicted exports of P and SS, using criteria for relative error (RE) and root mean square error (RMSE), reflected the potential shortcomings associated with using longer-term climate data for predicting shorter-term (2002–2004) catchment response and the need to refine calculations of point source contributions and to incorporate additional river basin processes such as channel bank erosion and in-stream geochemical processing. PSYCHIC is therefore best suited to characterising longer-term catchment response.  相似文献   

5.
Tracing suspended sediment and particulate phosphorus sources in catchments   总被引:4,自引:0,他引:4  
Information on suspended sediment and particulate P (PP) sources is an important requirement in many catchment-based diffuse source pollution studies, in order to assist with model validation and to provide information to support the development of effective sediment and phosphorus control strategies. Such information is, however, frequently unavailable or difficult to assemble. In the study reported, source fingerprinting procedures were successfully used to assemble this information for seven sub-catchments in the Hampshire Avon catchment and five sub-catchments in the Middle Herefordshire Wye catchment. The results provide important new information on the relative importance of the contributions from surface and channel/subsurface sources to the suspended sediment and PP fluxes from the catchments. In the Wye sub-catchments channel/subsurface sources contributed 40–55% of the overall suspended sediment flux and 21–43% of the PP flux from the catchments. Equivalent values for the Avon were 1–41% and 1–54%, respectively. Combination of the information on the relative importance of surface and channel/subsurface sources with measured suspended sediment fluxes has provided the first estimates of the specific fluxes of sediment and PP attributable to channel/subsurface sources for UK catchments. The former are as high as 15–20 t km−2 year−1 in some of the Wye sub-catchments, whereas the latter exceeded 0.1 kgP ha−1 year−1 in the same sub-catchments. The results emphasize the need to take account of potential contributions from channel/subsurface sources when using measured suspended sediment and PP flux data to validate predictions derived from models incorporating only surface contributions.  相似文献   

6.
Eight small steep south-west facing catchments (1-63-8-26 ha) have been monitored in Westland, New Zealand since 1974. Two catchments were retained in native mixed evergreen forest and the rest were subjected to various harvesting and land preparation techniques before being planted with Pinus radiata between 1977 and 1980. Stream temperatures were measured in all catchments for 11 years, including up to four years before harvesting. The streamwater temperature regime under the native forest cover has a seasonal cycle, with an annual mean of about 9°C and mean daily temperatures ranging between a winter minimum of about 5.8°C and a summer maximum of 12.S°C. After harvesting, the winter minimum stream temperatures in all trials were unchanged as topography exerts the major control over incoming solar radiation. The largest rises in mean summer stream temperatures, up to 5.5°C, were in the catchments that had been clearcut and burnt before planting. The maximum stream temperature recorded was 22.8°C in a clearcut catchment with no riparian reserve. Summer stream temperatures in this catchment were up to 11°C higher than in an adjacent control catchment. Summer stream temperature rises in catchments with riparian reserves were less than 1.5°C. Seven years after harvesting, stream temperatures were dropping towards pre-treatments levels in only two of the six treated catchments as revegetation of the riparian areas occurred and the plantations became established. As these small headwater streams discharge into streams with flows one or two orders of magnitude larger, the increases in summer stream temperatures will be rapidly dissipated. However, the cumulative impact of harvesting many small headwater catchments that discharge into a larger stream could have a noticeable effect on stream temperature if intact riparian reserves were not retained in both headwater and main streams.  相似文献   

7.
We examined how and why dominant peak-flow runoff-generation mechanisms differ among neighbouring headwater catchments. We monitored runoff and groundwater levels and performed terrain analyses in a granitic second-order catchment and its four neighbouring subcatchments in the Kiryu Experimental Watershed in Japan. Our analysis of lag times from peak rainfall to peak runoff suggests differences in the dominant peak-flow runoff-generation mechanisms among the five catchments. For two of the three zero-order catchments, with few perennial groundwater bodies, subsurface flow from hillslopes was the dominant mechanism at some events. However, the dominant mechanisms were channel precipitation and riparian runoff at almost all events in first- and second-order catchments and in the third zero-order catchment, which has a large perennial groundwater body over a bedrock depression in the riparian zone. In this zero-order catchment, the quick-flow ratio was the smallest of the five catchments because subsurface flow from the hillslope was buffered at the riparian zone. These facts suggest that the channel length, riparian buffering, and hillslope connectivity were the factors governing the different dominant peak-flow runoff-generation mechanisms among the catchments. Riparian buffering was affected, not only by surface topography, but also by bedrock topography and bedrock groundwater (BGW) dynamics. Our findings indicate that both of BGW dynamics and topography are important for catchment classification, and the relative importance of topography increases with the change from baseflow to stormflow. Furthermore, mismatching between a geographic source and a flow path resulted in different catchment classifications depending on the approach. Therefore, multiple approaches during both baseflow and stormflow periods are necessary for catchment classification to apply information obtained from one headwater catchment to other headwater catchments within the same region.  相似文献   

8.
The biogeochemistry of riparian alder wetlands was studied from 1995 to 1997. Nutrient and DOC chemistry was related to water level changes. The spatial and temporal patterns of nutrients (P and N) and dissolved organic carbon (DOC) were measured in the surface water flowing through a riparian alder fen and in the adjacent creek. Nutrient and DOC concentrations were extremely variable temporally but not spatially within the wetland. In the wetland and the adjacent creek concentrations of NO3-N, PO4-P and DOC were homogenous during high-flow periods and frozen conditions. After low-flow conditions water bodies were isolated from the creek. The concentration of NH4-N, PO4-P and DOC in these isolated water bodies was significantly higher than in the adjacent creeks due to low oxygen levels.

Enclosures of different sizes were installed in the wetland to study possible release rates. A large enclosure experiment in the flooded alder fen showed the same concentrations as after high-flood conditions except for DOC. The DOC concentrations were enriched in the large enclosure after decomposition from leaf litter during fall season. Small enclosures with low oxygen levels confirmed data obtained from low-flow conditions. The release rates were calculated for low-flow conditions from small enclosure experiments for 2 months a year when the alder fen is not flooded. The rates for July and August were 11.6 kg/ha NH4-N, 8.6 kg/ha PO4-P and 57.6 kg/ha DOC. The DOC concentrations for fall estimated from the large enclosure-experiments were 168.2 kg/ha for the months September and October.

This means possible output rates of N, P and DOC during the summer and DOC during fall in the adjacent river system. This can cause eutrophication and organic pollution depending on the length of the low-flow conditions and the size of the alder fen. Water level changes must be regarded as important for the management of riparian wetlands such as alder fens. The riparian alder system may vary from a nutrient sink to a nutrient source at different times of a year depending on high or low water levels.  相似文献   


9.
Distributed erosion models, which simulate the physical processes of water flow and soil erosion, are effective for predicting soil erosion in forested catchments. Although subsurface flow through multiple pathways is dominant for runoff generation in forested headwater catchments, the process-based erosion model, Geo-spatial interface for Water Erosion Prediction Project(Geo WEPP), does not have an adequate subsurface component for the simulation of hillslope water flow. In the current study, t...  相似文献   

10.
Predicting the future DOC flux from upland peat catchments   总被引:6,自引:0,他引:6  
  相似文献   

11.
Hugh G. Smith 《水文研究》2008,22(16):3135-3148
Historically upland headwater catchments in south‐eastern Australia have undergone extensive gully erosion that has removed large amounts of sediment to lowlands. Recent research suggests these upland areas may continue to dominate fine sediment loads in lowland rivers. Improved understanding of sediment transfer through upland headwater catchments may have implications for interpreting downstream sediment supply. In this study a nested catchment design was utilized to examine suspended sediment yields and delivery from a small tributary sub‐catchment (1·64 km2) to the study catchment outlet (53·5 km2). Monitoring of suspended sediment concentration and discharge was undertaken for a period of nearly two years and used to estimate suspended sediment loads. Estimated total suspended sediment exports over the period of monitoring were 24·16 t from the sub‐catchment and 550·3 t from the catchment, which are generally less than previous reported small catchment yields in south‐eastern Australia. The extent of sediment delivery was examined using between‐site ratios of specific sediment yield per unit area and incised channel length. Sediment delivery was high under average rainfall conditions, but seasonally dependent. Both suspended sediment yields and the extent of delivery peaked over spring months, supplemented by remobilization of sediment stored during summer months in the main catchment channel. The findings of this study suggest much of the suspended sediment exported from small incised upland sub‐catchments (1–2 km2) may be delivered to downstream reaches under average rainfall conditions, which, in conjunction with the findings of previous research supports the potential importance of contributions from these areas to suspended sediment loads in lowland rivers during high flow periods. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Increased erosion associated with land use change often alters the flux of sediments and nutrients, but few studies have looked at the interaction between these disrupted cycles. We studied the effects of gully erosion on carbon and nitrogen storage in surface soil/sediment and herbaceous vegetation and on C and N mineralization in a headwater catchment used for cattle grazing. We found significantly lower C and N stored in an incising gully compared with an intact valley. This storage was significantly higher in an adjacent stabilizing gully, although not to the levels found in the intact valley. The intact valley had two to four times higher soil/sediment concentrations of total organic C, total N and Colwell extractable P than the incising gully. Lower storage was not explained by differences in vegetation biomass density or silt and clay content. Vegetation accounted for only 8% of C and 2% of N storage. Although not a significant store in itself, vegetation has an important indirect role in restoring and maintaining soil/sediment C and N stocks in eroding areas. We found significant linear relationships between C and N mineralization rates and soil/sediment C and N content, with lower rates occurring in the eroded sediment. These findings support our initial hypothesis that gully erosion reduces C and N storage and mineralization rates in eroding catchments. The implications of this study include a change to the quality of eroded sediments in headwater catchments, causing C‐poorer and N‐poorer sediments to be exported but overall loads to increase. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Clearing of native vegetation and replacement with cropping and grazing systems has increased nutrient exports to the Great Barrier Reef (GBR) to a level many times the natural rate. We present a technique for modelling nutrient transport, based on material budgets of river systems, and use it to identify the patterns and sources of nutrients exported. The outputs of the model can then be used to help prioritise catchment areas and land uses for management and assess various management options. Hillslope erosion is the largest source of particulate nutrients because of its dominance as a sediment source and the higher nutrient concentrations on surface soils. Dissolved nutrient fractions contribute 30% of total nitrogen and 15% of total phosphorus inputs. Spatial patterns show the elevated dissolved inorganic nitrogen export in the wetter catchments, and the dominance of particulate N and P from soil erosion in coastal areas. This study has identified catchments with high levels of contribution to exports and targeting these should be a priority.  相似文献   

14.
Most of the streams in the Mediterranean region are temporary, following predictable seasonal of flooding and drying, with a transition from lotic conditions to shallow lentic conditions. The goal of our study was to assess the nitrogen and phosphorus dynamics in channel-bed processes of temporary streams between floods. Results show that, during winter, temperatures ranged between 9.5 and 11.2 °C and oxygen concentration ranged from 8.0 to 9.5 mg L−1, whereas, during summer, temperatures varied between 21.2 and 26.8 °C and oxygen between 1.2 and 5.3 mg L−1, with oxygen depletion in the pools during the night. The nitrate concentrations were far more abundant during winter (February), while ammonium concentration increased after stream fragmentation into pools (especially in July when oxygen depletion conditions favoured ammonification). Results on sediment profiles showed that the most active sediment layers for NH4-N are the top 2–3 cm, corresponding to the sediment depositional sites of the stream. Phosphate concentrations had larger variability, yet concentrations decreased from winter to spring and increased again in summer, when the shallow water pools were formed. Sediment profiles at the sediment depositional sites showed that PO4-P was more dynamic in the first 6 cm.

In Mediterranean temporary streams, nutrient dynamics vary seasonally, as the system transits from lotic conditions to shallow lentic conditions, evidencing the regeneration of nutrients from organic and inorganic matter during the flow cessation period.  相似文献   


15.
Reducing soil erosion and sediment delivery into rivers is a major aim for land management in New Zealand. Therefore, it is important to identify areas of sediment generation and their relationship to in-stream suspended sediment concentrations and water quality attributes. It is possible to infer and assess sediment sources and dynamics using storm event suspended sediment concentration-discharge hysteresis shape and loop direction. Research in small catchments has achieved some success; however, research in larger (>103 km2) catchments has shown the inherent difficulty of interpreting hysteresis patterns at larger scales. In this paper, we use a nested, long-term suspended sediment monitoring program across a large catchment (3,903 km2: Manawatū in New Zealand) to address these challenges. We evaluate the hysteresis patterns of five major tributaries (subcatchment areas 329–1,298 km2) of the Manawatū River together with the hysteresis patterns at the gauged catchment outlet. Hysteresis patterns of the Manawatū subcatchments can be characterized as predominantly clockwise, that is, high hysteresis index (HI) value. Larger storms (discharge >2 × 107 m3) increase the likelihood of clockwise hysteresis directions, whereas smaller storms (discharge <2 × 107 m3) are more likely to be anticlockwise. The link between suspended sediment concentration-discharge hysteresis and subcatchment sediment sources becomes increasingly attenuated within the larger subcatchments. High antecedent discharge negatively correlates to HI values, suggesting conditions immediately before the storm have an influence on whether the catchment is “primed” or “exhausted” with available sediment. The different storm categories indicate that within this catchment, whereas hysteresis patterns vary due to the spatial origin of discharge and sediment to some extent, storm magnitude has a stronger impact on hysteresis dynamics than spatial origin.  相似文献   

16.
Hydrobiogeochemical processes controlling stream water chemistry were examined in four small (<5 km2) catchments having contrasting bedrock lithologies in the western Sierra Nevada foothills of California. The Mediterranean climate with its cool/wet and hot/dry cycle produces strong seasonal patterns in hydrological, biological and geochemical processes. Stream water solutes fall into three general groups according to seasonal fluctuation in concentration: strong, rainy season minimum–dry season maximum (Cl, SO42−, base cations); weak, rainy season minimum–dry season maximum (Si); and rainy season maximum–dry season minimum (NO3 and K+). Solute dynamics in soil solutions and stream water suggest that mixing of drainage waters from bedrock and soil sources regulate stream water solute concentrations. Patterns are further altered by the leaching of solutes accumulated in the soil over the summer period of desiccation and the temporal discoupling of nutrient cycles that occurs due to differences in the timing between vegetation growth (late spring) and leaching (early winter). Solute concentrations are remarkably similar between watersheds with varying bedrock types, with the exception of nitrate, sulfate and bicarbonate. Three watersheds have nitrogen-bearing metasedimentary bedrock that contributes to elevated nitrate concentrations in stream waters. Watersheds whose bedrock includes mineralized veins of sulfide and carbonate minerals similarly have greater sulfate and bicarbonate concentrations in stream water. Hydrobiogeochemical processes are highly dynamic at the seasonal and storm-event temporal scales and spatially complex at the watershed scale making management of stream water chemical composition, such as nitrate concentrations, very challenging.  相似文献   

17.
Laurie Boithias  Yves Auda  Stéphane Audry  Jean-Pierre Bricquet  Alounsavath Chanhphengxay  Vincent Chaplot  Anneke de Rouw  Thierry Henry des Tureaux  Sylvain Huon  Jean-Louis Janeau  Keooudone Latsachack  Yann Le Troquer  Guillaume Lestrelin  Jean-Luc Maeght  Pierre Marchand  Pierre Moreau  Andrew Noble  Anne Pando-Bahuon  Kongkeo Phachomphon  Khambai Phanthavong  Alain Pierret  Olivier Ribolzi  Jean Riotte  Henri Robain  Emma Rochelle-Newall  Saysongkham Sayavong  Oloth Sengtaheuanghoung  Norbert Silvera  Nivong Sipaseuth  Bounsamay Soulileuth  Xaysatith Souliyavongsa  Phapvilay Sounyaphong  Sengkeo Tasaketh  Chanthamousone Thammahacksa  Jean-Pierre Thiebaux  Christian Valentin  Olga Vigiak  Marion Viguier  Khampaseuth Xayyathip 《水文研究》2021,35(5):e14126
Mountain regions of the humid tropics are characterized by steep slopes and heavy rains. These regions are thus prone to both high surface runoff and soil erosion. In Southeast Asia, uplands are also subject to rapid land-use change, predominantly as a result of increased population pressure and market forces. Since 1998, the Houay Pano site, located in northern Lao PDR (19.85°N 102.17°E) within the Mekong basin, aims at assessing the long-term impact of the conversion of traditional slash-and-burn cultivation systems to commercial perennial monocultures such as teak tree plantations, on the catchment hydrological response and sediment yield. The instrumented site monitors hydro-meteorological and soil loss parameters at both microplot (1 m2) and small catchment (0.6 km2) scales. The monitored catchment is part of the network of critical zone observatories named Multiscale TROPIcal CatchmentS (M-TROPICS). The data shared by M-TROPICS in Houay Pano are (1) rainfall, (2) air temperature, air relative humidity, wind speed, and global radiation, (3) catchment land use, (4) stream water level, suspended particulate matter, bed particulate matter and stones, (5) soil surface features, and (6) soil surface runoff and soil detachment. The dataset has already been used to interpret suspended particulate matter and bed particulate matter sources and dynamics, to assess the impact of land-use change on catchment hydrology, soil erosion, and sediment yields, to understand bacteria fate and weed seed transport across the catchment, and to build catchment-scale models focused on hydrology and water quality issues. The dataset may be further used to, for example, assess the role of headwater catchments in large tropical river basin hydrology, support the interpretation of new variables measured in the catchment (e.g., contaminants other than faecal bacteria), and assess the relative impacts of both climate and land-use change on the catchment.  相似文献   

18.
The sediment budget of the small research catchment of Cal Parisa (Vallcebre, Eastern Pyrenees) was studied by hydrological monitoring and assessment of the erosion rates in the major sediment sources. This area is characterized by clayey mudrock prone to landsliding and badland erosion, but the catchment was selected in an area free of major badland features, as a representative of middle mountain regions where a system of terraces and drainage ditches had been built for agricultural use but is now abandoned. Streamwater chemistry is dominated by Ca2+ and HCO3 at concentrations close to calcite saturation. Total dissolved solids show dilution during runoff peaks and positive hysteresis loops that support a slow contribution of subsurface water. Relative dissolved ion concentrations are different for each event analysed. Particulate sediment yield is very low and represents only about 1 per cent of gross erosion in the catchment. Mineralogical analysis of suspended sediments shows an enrichment in calcite because of precipitation. Chemical analysis of suspended sediments, using common one-litre water samples, shows higher contents of Ca, P and Mn in transported sediment than in sediment source areas, attributed to the precipitation of calcite, and enrichment in organic particulate matter during events respectively for the two first elements, whereas enrichment in Mn remains uncertain. Solid matter yield is therefore clearly dominated by dissolved transport as a result of both high calcium bicarbonate concentrations in runoff waters and strong suspended sediment conveyance discontinuities. Land conservation structures are very effective because they are in good condition whereas the soil is covered by dense permanent vegetation. Nevertheless, this state is unstable because the network of drainage ditches needs maintenance; its spontaneous breakdown after abandonment may result in the rearrangement of the elementary stream network and gullying of old fields in hollows. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
Erosion and the associated loss of carbon is a major environmental concern in many peatlands and remains difficult to accurately quantify beyond the plot scale. Erosion was measured in an upland blanket peatland catchment (0.017 km2) in northern England using structure-from-motion (SfM) photogrammetry, sediment traps and stream sediment sampling at different spatial scales. A net median topographic change of –27 mm yr–1 was recorded by SfM over the 12-month monitoring period for the entire surveyed area (598 m2). Within the entire surveyed area there were six nested catchments where both SfM and sediment traps were used to measure erosion. Substantial amounts of peat were captured in sediment traps during summer storm events after two months of dry weather where desiccation of the peat surface occurred. The magnitude of topographic change for the six nested catchments determined by SfM (mean value: 5.3 mm, standard deviation: 5.2 mm) was very different to the areal average derived from sediment traps (mean value: –0.3 mm, standard deviation: 0.1 mm). Thus, direct interpolation of peat erosion from local net topographic change into sediment yield at the catchment outlet appears problematic. Peat loss measured at the hillslope scale was not representative of that at the catchment scale. Stream sediment sampling at the outlet of the research catchment (0.017 km2) suggested that the yields of suspended sediment and particulate organic carbon were 926.3 t km–2 yr–1 and 340.9 t km–2 yr–1, respectively, with highest losses occurring during the autumn. Both freeze–thaw during winter and desiccation during long periods of dry weather in spring and summer were identified as important peat weathering processes during the study. Such weathering was a key enabler of subsequent fluvial peat loss from the catchment. © 2019 John Wiley & Sons, Ltd.  相似文献   

20.
Concentration–discharge (C‐Q) relationships reflect material sources, storage, reaction, proximity, and transport in catchments. Differences in hydrologic pathways and connectivity influence observed C‐Q patterns at the catchment outlet. We examined solute and sediment C‐Q relationships at event and interannual timescales in a small mid‐Atlantic (USA) catchment. We found systematic differences in the C‐Q behaviour of geogenic/exogenous solutes (e.g., calcium and nitrate), biologically associated solutes (e.g., dissolved organic carbon), and particulate materials (e.g., total suspended solids). Negative log(C)–log(Q) regression slopes, indicating dilution, were common for geogenic solutes whereas positive slopes, indicating concentration increase, were common for biologically associated solutes. Biologically associated solutes often exhibited counterclockwise hysteresis during events whereas geogenic solutes exhibited clockwise hysteresis. Across event and interannual timescales, solute C‐Q patterns are linked to the spatial distribution of hydrologic sources and the timing and sequence of hydro‐biogeochemical source contributions to the stream. Groundwater is the primary source of stormflow during the earliest and latest stages of events, whereas precipitation and soil water become increasingly connected to the stream near peakflow. This sequence and timing of flowpath connectivity results in dilution and clockwise hysteresis for geogenic/exogenous solutes and concentration increase and counterclockwise hysteresis for biologically associated solutes. Particulate materials demonstrated positive C‐Q slopes over the long‐term and clockwise hysteresis during individual events. Drivers of particulate and solute C‐Q relationships differ, based on longitudinal and lateral expansion of active channels and changing shear stresses with increasing flows. Although important distinctions exist between the drivers of solute and sediment C‐Q relationships, overall solute and sediment C‐Q patterns at event and interannual timescales reflect consistent catchment hydro‐biogeochemical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号