首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
1961-2010年西藏季节性冻土对气候变化的响应   总被引:10,自引:8,他引:2  
利用西藏1961-2010年17个站点最大冻土深度、 土壤解冻日期等资料, 采用气候倾向率、 累积距平、 信噪比和R/S分析等方法, 分析了近50 a西藏季节性冻土的年际和年代际变化特征, 预估了未来50 a和100 a最大冻土深度变化. 结果表明: 近50 a林芝最大冻土深度以1.4 cm·(10a)-1的速度增大, 其他站点均呈减小趋势, 为-0.7~-21.3 cm·(10a)-1, 以那曲减幅最大. 近30 a来大部分站点最大冻土深度减幅更大, 为-0.92~-37.2 cm·(10a)-1, 并随着海拔升高, 最大冻土深度减幅在加大. 近40 a来当雄、 江孜和林芝土壤解冻日期表现为推迟趋势, 为2.1~5.2 d·(10a)-1, 其他站点呈提早趋势, 平均每10 a提早1.8~12.7 d. 在10 a际尺度变化上, 近40 a大部分站点年最大冻土深度呈逐年代变浅趋势, 土壤解冻日趋于提早. 那曲、 安多和泽当年最大冻土深度分别在1984、 1987年和1979年发生了突变, 从一个相对偏深期跃变为一个相对偏浅期. 近40 a来各站点年最大冻土深度的Hurst值均大于0.5, 说明未来大部分站点年最大冻土深度仍将变薄. 如果未来气候按升温率0.044 ℃·a-1变化, 50 a后西藏最大冻土深度减小1.1~77.3 cm, 未来100 a可能减小1.2~91.4 cm; 气候按升温率0.052 ℃·a-1变化, 50 a后最大冻土深度减小2.1~155 cm, 未来100 a可能减小2.5~183 cm. 最大冻土深度变浅显然与气温、 地温的显著升高直接有关.  相似文献   

2.
青藏高原地气温度之间的关系   总被引:20,自引:10,他引:10  
李述训  吴通华 《冰川冻土》2005,27(5):627-632
应用多元线性回归分析方法,对位于40°~25°N,75°~102°E范围内的119个气象观测台站的1991—2000年平均气温和地面温度观测资料进行分析,获得了研究区域的月平均气温、地面温度与纬度、经度和海拔高度间关系的线性统计系数.统计结果和实测资料的比较以及统计分析的相关系数结果表明,高原地区的气温、地面温度和它的年较差与经度、纬度及海拔高度具有很好的相关性.应用曲线拟合方法将所得统计分析系数拟合成时间函数,就可将高原地区的气温和地面温度表示成统一的空间坐标和时间的函数.如果将已验证的1991—2000年平均地面温度与气温差统计结果作为气温与地面温度间关系的实验结果,那么,就可以解决长期困扰多年冻土预报研究中在任意已知时间和空间点上气温条件下,难以确定影响多年冻土温度状况变化上边界条件的变化这一难题.这一结果对于目前正在进行的青藏铁路冻土工程和环境预报研究具有重要意义.  相似文献   

3.
龚强  晁华  朱玲  蔺娜  于秀晶  刘春生  汪宏宇 《冰川冻土》2021,43(6):1782-1793
根据东北地区144个国家气象站1951—2016年的地温和土壤冻结深度资料,采用实测资料统计及统计建模推算的方法,对东北地区地温和冻结深度时空特征进行了细化分析。结果表明:东北地区地温整体由南到北逐渐降低,冻结深度逐渐增大。各层年平均地温呈向北2个纬度降低1 ℃左右,年平均最大冻结深度为向北2~3个纬度加深30 cm左右,极端最大冻结深度为向北2个纬度加深30 cm左右。地温和冻结深度与纬度关系显著,与经度和海拔也有一定相关性,但在东北北部的多年冻土区基本不受后两者影响。不同深度的地温季节特征不同,地表温度季节特征与气温一致,160 cm以下深度四季温度从高到低为秋、夏、冬、春。地表夏季与冬季温差达到33.5 ℃,而320 cm深处最热季与最冷季的温差仅为7 ℃。气候变暖使得东北地区各层地温升高、冻结深度减小、冻结期缩短,尤其在多年冻土区及其临近的高纬度季节冻土区更为显著。相对于下层土壤,地表升温最大。伊春地表升温趋势达到1.16 ℃?(10a)-1,40~320 cm土层升温趋势为0.60 ℃?(10a)-1左右,冻结深度减小、冻结期缩短趋势分别达到 23 cm?(10a)-1、8 d?(10a)-1,大幅升温不利于多年冻土的存在。  相似文献   

4.
管道作为油气资源的最为常用的运输方式之一,穿越不同地质情况的区域,所面临的工程问题各有不同。本文对青海省某冻土区输气管道进行调研,针对出现的管沟融陷、工程构筑物冻胀变形等病害问题,选取典型断面,钻孔埋设温度传感器和沉降磁环测试元器件,对暖季和寒季管道周围土体温度和位移进行监测,研究输气管道周围地温变化及冻胀融沉规律,为冻土区输油气管道的设计、施工、运营、病害治理提供借鉴。研究表明:该冻土区寒暖季地表地温随气温波动较大,越靠近管道,地温年振幅越大;该区域冻土地温范围为-2~-1℃,地温带类型属基本稳定带,正温输气的热扰动,导致周围土体融沉;管道正上方受管道放热影响,地温均为正温,影响范围约1.5m;在近管道处,深度1~4m,地温受多重因素影响,深度4m以下,地温年较差较小,均为负温;冻胀由深处向上发生,时间上有滞后性;10月和11月为冻融剧烈时间段,应及时监测预警。  相似文献   

5.
以辽宁省为例,采用统计分析方法,根据辽宁省61个气象站1951-2013年0~320 cm地温资料,分析了季节性冻土区地温场结构和变化特征。结果表明:地温最冷月出现时间随着深度增加而推后,辽宁各地浅层地温最冷月基本均为1月,深层地温最冷月为1-5月,深度越深温度越高。地温最热月出现时间也随深度增加而推后,浅层地温最热月为7、8月,深层地温最热月为8-10月,深度越深温度越低。越深层地温受地表影响越小,320 cm深度与地表的月平均最大温差达到19℃左右,40 cm深度与地表的月平均最大温差仅在8℃左右。随着深度增加,地温的季节变化减小,沈阳320 cm深度地温年内温差不足8℃。5~80 cm深度3-8月为储能期,160 cm深度5-9月为储能期,320 cm深度6-10月为储能期。越接近地表,地温日变化越显著,40 cm以下深度基本可以忽略日变化。沈阳地温升高程度大于气温,以向大气输送热量为主。地表最冷月变暖率明显大于最热月,但随着土层加深各土层最冷月、最热月变暖的程度无明显规律。深层地温的年际变化有时会受到更深层热源的非气候扰动。地温变化对气候、冻土区域工程等的影响不容忽视。  相似文献   

6.
1961-2002年新疆季节冻土多年变化及突变分析   总被引:11,自引:2,他引:11  
对新疆41 a(1961/1962-2001/2002年)冬季平均冻土深度、最大冻土深度、土壤10 cm深度封冻时段资料分析表明,随着全疆气候的变暖,各地的平均冻土深度、最大冻土深度趋向变浅,土壤封冻时间缩短.尤其是1986年以后,暖湿化特征十分明显,冻土深度和封冻时间变化更为显著.最大冻土深度南、北疆分别在1982/1983年和1986/1987年冬季发生了明显的突变.  相似文献   

7.
基于新疆96个气象站1961-2010年的逐日平均气温和冻土深度资料,使用线性趋势分析、Mann-Kendall检测以及基于ArcGIS的混合插值法,对新疆冬季负积温和季节性最大冻土深度的时空变化及其相互关系进行了分析. 结果表明:50 a来,新疆冬季负积温绝对值总体以51.5 ℃·d·(10a)-1的倾向率减少,并于1985年发生了突变. 受其影响,最大冻土深度以-3.5 cm·(10a)-1的倾向率减小,也于1988年发生了突变. 就全疆平均而言,1961-2010年,负积温每减少100 ℃·d,最大冻土深度将减小4.6 cm.但这种影响区域性差异显著,最大冻土深度减小量呈现"南疆小,北疆和天山山区大"的格局.南疆大部最大冻土深度对负积温变化的响应相对较敏感,一般为-3.0~-12.7 cm·(100℃·d)-1;北疆和天山山区响应的敏感性较小,多为0.0~-4.9 cm·(100℃·d)-1,其成因很可能是北疆和天山山区冬季积雪较南疆厚,较厚的积雪所具有的低导热性和较大的容积热容减小了气候变暖对冻土热状况的影响.负积温减少、最大冻土深度变浅将改变土壤的水热物理性状,加剧土壤干化、草场退化以及土地的荒漠化,对新疆脆弱的生态环境产生更加不利的影响.因此,应根据最大冻土深度对负积温变化响应的实际,采取趋利避害的技术措施积极应对.  相似文献   

8.
符传博  丹利  吴涧  魏荣庆 《冰川冻土》2013,35(6):1410-1418
利用覆盖新疆大部分地区资料完整的93个站点资料,对1961-2005年新疆地区最大冻土深度进行了分析. 结果表明:新疆地区月最大冻土深度有明显的季节变化,低海拔区域(海拔<1 800 m)最大值出现在1月份,而高海拔区域(海拔≥1 800 m)的最大值出现在2月份,比低海拔区域要滞后. 新疆地区最大冻土深度的地理分布特征表现为北疆深于南疆,山区深于平原,且与气温的分布有很好的一致性. 全年和冬、春季最大冻土深度与气温场的空间相关系数分别为-0.795、-0.736和-0.848. 年际变化表明,近45 a来的最大冻土深度出现了较为明显的下降. 高海拔区域与低海拔区域年最大冻土深度的倾向率分别为-15.65 cm·(10a)-1和-9.48 cm·(10a)-1,且与气温的相关系数分别为-0.51和-0.69,均通过了0.001的信度检验. 同时发现,高海拔区域冬季下降多,而低海拔区域春季下降多. 新疆地区年最大冻土深度在近45 a有明显的突变现象,高海拔区域和低海拔区域突变发生年份分别为1996/1997年度和1978/1979年度,说明新疆地区高海拔区域的年最大冻土深度对气温变化的响应比低海拔区域要滞后. 突变年后高海拔区域与低海拔区域年最大冻土深度比突变年前的平均值分别降低了61.12 cm和26.67 cm.  相似文献   

9.
新疆冬春季积雪及温度对冻土深度的影响分析   总被引:5,自引:3,他引:2  
利用新疆64个气象台站1960-2010年的气象资料,分析了新疆50 a来冻土深度的变化趋势,并讨论了温度(平均地温、平均气温)、降水(冬春季年降水、平均积雪深度)与冻土深度(平均冻土深度、最大冻土深度)的相关关系. 结果表明:以10 a时段的年代际变化分析,新疆50 a来平均冻土深度和最大冻土深度均呈明显减小趋势. 50 a来平均冻土深度全疆、北疆、南疆分别减小了约7 cm、10 cm、4 cm,最大冻土深度则分别减小了约11 cm、16 cm、9 cm. 新疆50 a来平均气温和平均地温均呈波动上升趋势,且与冻土深度均有着良好的相关性,其与平均冻土深度的相关系数分别达到了-0.67、-0.77,与最大冻土深度的相关系数也分别达到了-0.51、-0.65,地温与气温的上升对应着冻土深度的减小. 新疆冬春季年降水与冻土深度有着较好的相关性,其与平均冻土深度、最大冻土深度的相关系数分别达到了-0.40、-0.37. 新疆的平均积雪深度与冻土深度也有着一定的弱相关,其原因与积雪对地面的保温作用有关.  相似文献   

10.
在多年冻土区进行煤矿井工开采,冻土稳定性是影响煤矿开采的制约性因素。采用数值模拟方法分析煤矿井工开采对冻土环境的影响。研究结果表明,最大融深随时间呈增大趋势;沿井壁深度,最大融深逐年增加,在多年冻土与季节冻土的交界附近,最大融深增加较快。由于开采巷道横截面较小,在有效的冻土保护措施下,井壁周围多年冻土温度升高幅度不会太大,因而井工开采会对井壁周围多年冻土造成一定影响,但不会造成大面积冻土的融化变形。   相似文献   

11.
测井方法在青海木里煤田冻土研究中的应用   总被引:1,自引:0,他引:1  
研究表明冻土的电阻率为非冻土的3倍,常规测井参数可用于冻土层的综合解释,而井温曲线的"U"字型与"L"字型不但可以划分不同性质的冻土层,而且能够准确的解释其冻土厚度。通过分析聚乎更、江仓、热水三个矿区的30个测温孔,发现其井田北部和南部区域,多年冻土层均有增厚的趋势,底界从北到南逐渐加深。对江仓矿区的长期观测及矿井开拓,验证了多年冻土层的总体变化范围与所获测井成果基本一致。根据对木里煤田冻土的研究,发现测井解释的多年冻土层厚度一般小于其真厚度,而季节性冻土层的解释厚度要大于其真实厚度。  相似文献   

12.
匡亮  仇文革 《岩土力学》2006,27(Z1):524-528
详细地介绍了曲墙式、直墙式和圆形断面隧道衬砌在约束条件、隔热保温层及含水状况等因素变化情况下的相似材料冻胀力室内模型试验,通过分析试验得出不同衬砌断面在各种因素影响下衬砌和围岩间冻胀压力的量值和分布特征,以及由冻胀压力引起的结构内力分布特征。研究表明,直墙式断面受冰胀力最大,曲墙式次之,圆形面最小;曲墙式、直墙式断面冻胀力均呈分布荷载形态,前者拱脚及仰拱脚处冻胀力最大,后者边墙、底板处冻胀力最大。  相似文献   

13.
青藏线冻土地球物理模型的建立   总被引:3,自引:1,他引:3  
通过对青藏线冻土勘探综合物探资料的分析 ,建立了 2种有代表性的冻土地球物理模型 ,此模型的建立不仅有助于野外冻土资料的判释 ,而且对今后冻土物探工作有一定的指导意义。  相似文献   

14.
深土地压及对冻结壁厚度的影响   总被引:1,自引:0,他引:1  
在对深厚表土中地压计算公式总结的基础上,根据冻结凿井的施工力学行为过程探讨了深厚表土中地压特点;通过深部重塑土的高压Ko固结水平加(卸)荷试验,获得了挤压(松弛)应力Ps与水平挤压(松弛)位移占之间的关系式,并进一步分析了忽略挤压(松弛)应力Ps造成的深土地压及冻结壁厚度的计算误差;对深厚表土的地压应根据冻结凿井施工过程确定,以避免重大工程事故。  相似文献   

15.
小回线瞬变电磁法在青海某些特殊地理景观区的应用   总被引:1,自引:0,他引:1  
小回线瞬变电磁法具有装置轻便、工作场地不受限制、效率高等优点。通过应用实例,介绍了该方法在高原冻土、碎石堆积坡等特殊地理景观区的应用,说明了这种方法的有效性。  相似文献   

16.
冻土-气候关系模型评述   总被引:32,自引:12,他引:20  
李新  程国栋 《冰川冻土》2002,24(3):315-321
冻土-气候关系模型是目前冻土学领域的研究热点,评述了冻土对气候系统的响应模型以及陆面过程模型中的各种冻土参数化方案.建立在传热学基础上的物理模型具有动态性、普适性的优点,适合于冻土工程计算,当把它们推广到面上时,需要对其进行简化.经验模型大都只使用有限的变量,与地理信息系统结合紧密,因此模型具有空间性,较为适合于冻土制图.陆面过程模型中的冻土参数化目前有3类方法:1)限定或修正水热参数;2)比较单位土层中耗热或放热量与可耗热或可放热量而计算产冰率;3)使用土壤基质势定义土壤冻结后的未冻水含量.现有的陆面过程模型中的冻土参数化方案需要进一步的改进.  相似文献   

17.
冻土抗拉强度与冻温及含水率关系的试验研究   总被引:5,自引:0,他引:5  
赵景峰 《地质与勘探》2011,47(6):1158-1161
通过用CBR-l型承载比试验仪实测不同冻结温度和不同含水率下冻土的强度,建立了抗拉强度与冻结温度和含水率关系的数学模型,并进行了科学的分析,找出之间变化的规律:含水率在14%-25%且一定时,温度在0℃— -20℃内抗拉强度随着冻结温度的降低而逐渐增加,在-20℃达到抗拉强度最大值;而冻结温度在-20℃以下,抗拉强度随...  相似文献   

18.
深部原状和扰动冻粘土力学性能差异性研究   总被引:4,自引:1,他引:4  
杨平 《冰川冻土》1996,18(3):256-261
根据原状冻土和扰动冻土的强度和蠕变试验结果,全面地讨论了原状,扰动冻粘土单轴抗压,抗拉,抗剪强度及蠕变变形特性的差异性。由试验得出,原状冻粘土强度及蠕变变形低于扰动冻粘土,而弹模高于扰动冻粘土。并说明了两种冻粘土力学指标出现差异的原因,其结果对冻结工程设计指标确定具有重要参考价值。  相似文献   

19.
人工冻土纵波波速与温度和含水率的关系   总被引:3,自引:0,他引:3  
用SYC-2型超声波测试仪和20 kHz超声换能器实测了不同温度和不同含水率下冻结粉质粘土的纵波波速,对实验数据进行了分析。结果表明,含水率一定时,总的趋势是,冻结粉质粘土纵波波速随冻结温度的增加而增加,但局部有变化,-7℃是冻结粉质粘土波速增长的拐点,-20℃ 是冻结粉质粘土波速快速增长的拐点;冻结温度一定时,其纵波波速和冻土强度随含水率的增加有下降的趋势,含水率20%是纵波波速变化的拐点, 含水率大于24%时,纵波波速增长趋于平缓。  相似文献   

20.
我国季节性冻土区公路路基冻害及其防治研究进展   总被引:8,自引:4,他引:4  
武立波  祁伟  牛富俊  牛永红 《冰川冻土》2015,37(5):1283-1293
近年来,季节性冻土区公路路基冻害研究已取得了长足的进步,但是,因受气候、环境、冻融循环等不同因素的影响,季节性冻土区公路路基冻害问题依然突出.随着国家公路规划网的逐步实施,将有更多的公路工程向季节性冻土区推进,为了将已有的研究成果更好地应用于工程实践,需对其进行综合评述.基于前期的研究基础,总结我国季节性冻土区公路路基冻害的主要破坏形式及分布区域,讨论影响路基冻害的几个主要因素,分析和总结已有公路路基冻害防治措施的研究现状,提出季节性冻土区公路工程面临的问题和研究建议,为深化季节性冻土区公路路基冻害及其防治研究提供新思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号