首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary. A fluid-saturated packing of like elastic spheres is used as a model of an oceanic sediment and a method is presented for calculating the effective velocities of elastic waves in such a medium. In particular the method is applied to low-frequency waves travelling vertically down a cubic packing, saturated with an inviscid fluid and initially at rest under a uniform compressive force. It is found that two waves propagate and moreover, that their velocities are not related through the usual equations of classical elasticity to the effective elastic moduli for static deformation of the packing. For a dry packing, there is found to exist a 'cut-off' frequency above which the wave decays with depth. An extension of the method to slightly viscous fluids is also given.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Summary. Lg -wave observations at NORSAR from a sequence of explosions straddling the Central Graben in the North Sea, show that the phase is almost extinguished by passing through this structure. For models of the graben structure, based on seismic refraction experiments, with crustal thinning beneath a zone of thickened sediments, numerical modelling of Lg propagation shows very poor transmission. The inclusion of attenuation simulating the effects of scattering from faults and other complex structures further diminishes the transmittivity. The theoretical effect of a crustal pinch is to redistribute S energy over a wide range of groups velocities, a pattern that fits well with the observations.
Three components recordings at NORSAR of explosive charges fired in water covering a wide range of azimuths, show significant transverse components to the seismograms. The transverse energy builds up with travel time and for Lg is of the same order as the vertical component. These results are consistent with the theoretical prediction of progressive net transfer of energy from Rayleigh to Love modes as the wavetrain propagates through a three-dimensionally heterogeneous medium.  相似文献   

12.
13.
14.
15.
16.
17.
Summary. Kelvin-Christoffel equations describing plane wave propagation in anisotropic media are generalized to account for the effects of nonlinear elasticity. The polarization and waveform of nonlinear distortions of a transient plane wave are investigated by means of perturbation theory. Detailed analysis for an anisotropic medium with hexagonal symmetry shows that for "pure" shear-waves the polarization vector of the nonlinear component is always perpendicular to that of the linear wave. In the case of a high-amplitude excitation (for instance, in the vicinity of large earthquakes) the influence of nonlinearity may cause distortions of shear-wave polarization, which contains the most reliable information on the presence and characteristics of anisotropy. The solutions presented in this paper make it possible to solve reflection-transmission problems in nonlinear-elastic anisotropic media.  相似文献   

18.
19.
Summary. General expressions are derived for the kernels of the set of integral equations that relates the spectral matrix of the six components of a random electromagnetic wave field in a magnetoplasma to the wave distribution function for the field. The dependence of the kernels on wave-normal direction is examined, with particular reference to the propagation of very low-frequency waves in the whistler mode.  相似文献   

20.
We determine the 3-D shear wave speed variations in the crust and upper mantle in the southeastern borderland of the Tibetan Plateau, SW China, with data from 25 temporary broad-band stations and one permanent station. Interstation Rayleigh wave (phase velocity) dispersion curves were obtained at periods from 10 to 50 s from empirical Green's function (EGF) derived from (ambient noise) interferometry and from 20 to 150 s from traditional two-station (TS) analysis. Here, we use these measurements to construct phase velocity maps (from 10 to 150 s, using the average interstation dispersion from the EGF and TS methods between 20 and 50 s) and estimate from them (with the Neighbourhood Algorithm) the 3-D wave speed variations and their uncertainty. The crust structure, parametrized in three layers, can be well resolved with a horizontal resolution about of 100 km or less. Because of the possible effect of mechanically weak layers on regional deformation, of particular interest is the existence and geometry of low (shear) velocity layers (LVLs). In some regions prominent LVLs occur in the middle crust, in others they may appear in the lower crust. In some cases the lateral transition of shear wave speed coincides with major fault zones. The spatial variation in strength and depth of crustal LVLs suggests that the 3-D geometry of weak layers is complex and that unhindered crustal flow over large regions may not occur. Consideration of such complexity may be the key to a better understanding of relative block motion and patterns of seismicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号