首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Slaufrudalur Pluton is a granitic pluton in the Tertiary lava pile of Southeast Iceland. Excellent exposures of its roof and walls made it possible to map the shape of the pluton with high-resolution GPS. Based on the GPS mapping and field observations, we reconstructed the three-dimensional shape of the Slaufrudalur Pluton with the aim to test which implications on the mechanisms of emplacement can be derived from this approach. The reconstructed pluton shape is characterised by steep walls and a flat roof at map-scale. This shape and the internal compositional layering indicate that the pluton was probably emplaced by cauldron subsidence along subvertical faults that are parallel with the strike of the regional fissure swarms. At the roof contact, the pluton exploited the original layering of the flood basalts. At outcrop-scale, however, the roof was modified by magmatic stoping, which resulted in a step-like pattern on a scale that cannot be resolved in the three-dimensional model. Hence, the reconstruction of the three-dimensional shape of the Slaufrudalur Pluton, combined with structural field studies, provided valuable information about the mechanism of its emplacement on pluton-scale. For a comprehensive understanding of all mechanisms involved in the emplacement of the Slaufrudalur Pluton, detailed structural field studies remain essential.  相似文献   

2.
The EW-striking Variscan Mérens shear zone (MSZ), located on the southern border of the Aston dome (Pyrenees), corresponds to variously mylonitized gneisses and plutonic rocks that are studied using the Anisotropy of Magnetic Susceptibility (AMS) technique. The plutonic rocks form EW-striking bands with, from south to north, gabbro-diorites, quartz diorites and granodiorites. The MSZ underwent a mylonitic deformation with an intensity progressively increasing from the mafic to the more differentiated rocks. The foliations are EW to NW–SE striking and subvertical. A first set of lineations shows a moderate WNW plunge, with a dextral reverse kinematics. More recent subvertical lineations correspond to an uplift of the northern compartment. To the east, the MSZ was cut by a N120°E-striking late shear band, separating the MSZ from the Quérigut pluton. The different stages of mylonitization relate to Late Variscan dextral transpression. This regime allowed the ascent of magmas along tension gashes in the middle crust. We interpret the MSZ as a zone of magma transfer, which fed a pluton now eroded that was similar to the Quérigut and Millas plutons located to the east. We propose a model of emplacement of these plutons by successive pulses of magmas along en-échelon transfer zones similar to the MSZ.  相似文献   

3.
商城岩体位于大别造山带北淮阳火山岩带中段,被早白垩世金刚台组火山岩不整合覆盖,厘定其侵位时间和成因对于揭示大别造山带晚中生代构造演化具有重要意义.对岩体进行SHRIMP锆石U-Pb测年和岩石地球化学研究,岩体中心相肆顾墩单元巨斑状二长花岗岩15个锆石测点中有13个测点的206Pb/238U年龄加权平均值为130.2±1.7 Ma,代表商城岩体最终就位的时间.商城岩体具有高含量的Al2O3、Sr,高Sr/Y值和低含量的Y、Yb,轻重稀土分馏显著,无Eu异常(δEu=0.90~1.05),发育Nb、Ta负异常,具有埃达克质岩石的地球化学特征.商城岩体3个岩相单元从早到晚长英质矿物结晶压力降低,侵位深度显著变浅,为挤压作用下主动侵位的结果.商城岩体是大别造山带早白垩世岩浆爆发的产物,岩浆起源于加厚下地壳的部分熔融,从商城岩体开始侵位至金刚台组火山岩喷发,该区地壳经历快速的隆升和剥蚀,而这一过程正是两者地球化学属性所反映的加厚下地壳减薄的浅表响应,130 Ma是大别造山带晚中生代构造体制转换的时间.   相似文献   

4.
The Main Hill Arkasani Granophyre Pluton (MAG), a product of Proterozoic intraplate acid magmatic activity, represents an anatectic melt of the enveloping rocks of dominantly pelitic composition with subordinate trondhjemitic gneiss and basic rocks. Petrography, chemistry, correlation between compositional attributes, areal variation of volume percent granophyric intergrowth, and varimax rotated factor analysis of compositional attributes of these rocks suggest that in the MAG pluton, plagioclase phenocrysts and biotite crystallized first, followed by change of level of emplacement of the magma when the groundmass started crystallizing at a rapid rate. The rapid growth of quartz and alkali feldspar crystallizing from the residual melt gave rise to the ubiquitous granophyric intergrowth in the late stage of crystallization. The alkali-rich residual liquid tended to concentrate toward the margin of the pluton where there is a profusion of granophyric intergrowths.  相似文献   

5.
F.W. Breaks  D.M. Shaw 《Lithos》1973,6(2):103-121
The Precambrian Silent Lake pluton, Cardiff township, Ontario, consists of granitic rocks containing, in many localities, abundant quartz-sillimanite nodules.The intrusive form of the Pluton and massive character of most rocks suggests a magmatic origin. Lack of (a) sharp contacts, (b) apophyses, (c) contact metamorphism, (d) evidence of systematic magma evolution in the haplogranite system, (e) country-rock xenoliths, suggest non-magmatic origin. Polyhedral textures indicate annealing after emplacement. Bulk chemical composition, including very low Ca, low Mg, low Sr, high Sr/Ca indicate sedimentary (arkosic) origin. The rocks appear to be Hermon formation leptites mobilized and emplaced by ductile flow, followed by annealing.Structural, mineralogical, chemical and oxygen isotopic evidence indicate the nodules to have formed by deformation and de-alkalization of quartz-feldspar veins within the mobilized leptites.  相似文献   

6.
The emplacement of the Mesoproterozoic G?temar Pluton into Paleoproterozoic granitoid host rocks of the Transscandinavian Igneous Belt is re-examined by microfabric analysis, including cathodoluminescence microscopy. Field data on the pluton-host rock system are used to strengthen the model. The G?temar Pluton, situated on the Baltic Shield of SE Sweden, is a horizontally zoned tabular structure that was constructed by the intrusion of successive pulses of magma with different crystal/melt ratios, at an estimated crustal depth of 4–8?km. Initial pluton formation involved magma ascent along a vertical dike, which was arrested at a mechanical discontinuity within the granitoid host rocks; this led to the formation of an initial sill. Subsequent sill stacking and their constant inflation resulted in deformation and reheating of existing magma bodies, which also raised the pluton roof. This multi-stage emplacement scenario is indicated by complex dike relationships and the occurrence of several generations of quartz (Si-metasomatism). The sills were charged by different domains of a heterogeneous magma chamber with varying crystal/melt ratios. Ascent or emplacement of magma with a high crystal/melt ratio is indicated by syn-magmatic deformation of phenocrysts. Complex crystallization fabrics (e.g. oscillatory growth zoning caused by high crystal defect density, overgrowth and replacement features, resorbed and corroded crystal cores, rapakivi structure) are mostly related to processes within the main chamber, that is repeated magma mixing or water influx.  相似文献   

7.
The Manning Group is characterised by rapidly filled strike-slip basins that developed during the early Permian along the Peel--Manning Fault System in the southern New England Orogen. Typically, the Manning Group has been difficult to date owing to the lack of fossiliferous units or igneous rocks. Thus, the timing of transition from an accretionary convergent margin in the late Carboniferous to dominantly strike-slip tectonic regimes that involved development and emplacement of the Great Serpentinite Belt (Weraerai terrane) is not well constrained. One exception are rhyolites of the Ramleh Volcanics that were erupted into the Echo Hills Formation. These developed along the dextral Monkey Creek Fault splay east of the Peel--Manning Fault System. Zircons extracted from the Ramleh Volcanics yield a U–Pb (SHRIMP) age of 295.6?±?4.6?Ma that constrains the minimum age of deposition in this basin to earliest Permian. Whole-rock geochemistry indicates these are peraluminous felsic melts enriched in LREE and incompatible elements with strong depletions in U, Nb, Sr and Ti. These are similar in age and composition to the nearby S-type Bundarra and Hillgrove plutonic supersuites. We suggest that extensive movement along the east-dipping Peel--Manning Fault System was responsible, not only for strike-slip basin development at the surface (Manning Group), but was also the locus for crustal melting that was responsible for generating S-type felsic melts that utilised hanging-wall fault splays as conduits to the surface or to coalesce in the crust as batholiths exclusively to the east of the Peel--Manning Fault System.  相似文献   

8.
The Banská?tiavnica ore district is in the central zone of the largest stratovolcano in the Central Slovakia Neogene Volcanic Field, which is situated at the inner side of the Carpathian arc over the Hercynian basement with the Late Paleozoic and Mesozoic sedimentary cover. Volcanic rocks of the High-K orogenic suite are of the Badenian through Pannonian age (16.5–8.5?Ma). Their petrogenesis is closely related to subduction of flysch belt oceanic basement underneath the advancing Carpathian arc and to back-arc extension processes. The stratovolcano includes a large caldera 20?km in diameter and a late-stage resurgent horst in its centre, exposing a basement and extensive subvolcanic intrusive complex. The following stages have been recognized in the evolution of the stratovolcano: (1)?formation of a large pyroxene/hornblende-pyroxene andesite stratovolcano; (2)?denudation, emplacement of a diorite intrusion; (3) emplacement of a large granodiorite bell-jar pluton within the basement; (4) emplacement of granodiorite/quartz-diorite porphyry stocks and dyke clusters around the pluton; (5) caldera subsidence and its filling by biotite-hornblende andesite volcanics, emplacement of quartz-diorite porphyry sills and dykes at the subvolcanic level; (6)?renewed activity of andesites from dispersed centres on slopes of the volcano; (7) uplift of a resurgent horst accompanied by rhyolite volcanics and granite porphyry dykes. The following types of ore deposits (mineralizations) have been identified in the Banská?tiavnica ore district: 1. Quartz-pyrophyllite-pyrite high-sulphidation system at ?obov, related to the diorite intrusion. 2. Magnetite skarn deposits and occurrences?at contacts of the granodiorite pluton with Mesozoic carbonate rocks. Magnetite ores occur as lenses in the calcic skarns. 3.?Stockwork/disseminated base metal deposit along an irregular network of fractures in apical parts of the granodiorite pluton and in remnants of basement rocks. Mineral paragenesis is simple, with leading sphalerite and galena and minor chalcopyrite and pyrite. In overlying andesites the mineralization is accompanied by metasomatic quartzites and argillites with pyrophyllite, kaolinite, illite and pyrite. 4. Porphyry/skarn copper deposits and occurrences related to granodiorite/quartz-diorite porphyry dyke clusters and stocks around the granodiorite intrusion. The mineralized zone is represented by accumulations of chalcopyrite in exo- and endo-skarns, usually of the magnesian type affected by serpentinization. Besides chalcopyrite, pyrhotite, minor bornite, chalcosite, tennantite and magnetite, rare molybdenite and gold are present. The alteration pattern around productive intrusions includes an external zone of propylitization, a zone of argillitic alteration (kaolinite – illite – pyrite) and an internal zone of phyllic alteration (quartz – sericite – pyrite). Biotitization is rare and limited to porphyry intrusions. 5. Intrusion related “mesothermal” gold deposit in an andesitic environment just above the granodiorite intrusion. Gold of high fineness with base metal mineralization is contained in brecciated and/or banded quartz veins of subhorizontal orientation, parallel to the surface of granodiorite pluton. At least the first phase of mineralization is older than quartz-diorite porphyry sills, which separate granodiorite and blocks of mineralized andesite. 6. Hot spring type advanced argillic systems in the caldera filling. Silicites and opalites accompanied by kaolinite, alunite and pyrite grade downward into smectite dominated argillites. 7. Vein type epithermal precious/base metal deposits and occurrences as a result of the long lasting interaction among structural evolution of the resurgent horst and evolving hydrothermal system, extensive intrusive complex and deep seated siliceous magma chamber serving as heat and magmatic fluid source. Three types of epithermal veins occur in a zonal arrangement: (a) base metal veins ± Au with transition to Cu?±?Bi mineralization at depth in the east/central part of the horst, (b)?Ag – Au veins with minor base metal mineralization and (c) Au – Ag veins located at marginal faults of the horst. Isotopic composition of oxygen and hydrogen in hydrothermal fluids indicate mixing of magmatic and meteoric component (with generally increasing proportion of meteoric component towards younger mineralization periods?). Veins are accompanied by zones of silicification, adularization and sericitization, indicating a low sulphidation environment. 8.?Replacement base metal mineralization of a limited extent in the Mesozoic carbonate rocks next to sulphide rich epithermal base metal veins.  相似文献   

9.
The Dadeldhura thrust sheet inm western Nepal consists of Proterozoic–Lower Paleozoic sedimentary and plutonic rocks, and their metamorphic equivalents, that rest structurally on Proterozoic strata of the Lesser Himalayan sequence. Although regional metamorphism and ductile deformation were widespread during Tertiary thrust emplacement, relicts of early Paleozoic tectonism are preserved locally. New field and geochronologic studies, together with the findings of previous workers, indicate that this early Paleozoic tectonism included: (1) regional metamorphism to at least garnet grade, (2) regional folding of a thick metamorphic sequence into a broad east–west trending syncline, (3) outcrop-scale folding of metasedimentary rocks, (4) emplacement of Cambro–Ordovician granitic bodies during and after the metamorphism and deformation, (5) uplift and erosion of the metamorphic sequence, with garnet-grade rocks locally exposed at the surface, and (6) derivation of Ordovician conglomeratic sandstones from the early Paleozoic orogen. Similar records of metamorphism, deformation, and uplift/erosion have been found in other regions of the Himalaya, indicating that rocks of the Dadeldhura thrust sheet were originally involved in a regionally extensive orogenic system. Future tectonic models of Himalayan orogenesis must accommodate this early Paleozoic event.  相似文献   

10.
The island of St Martin lies inthe inactive part of the northernLesser Antilles island arc. The island consists of volcaniclasticsediments overlain and intruded by volcanic and plutonic rocks,which are in turn overlain by Miocene limestones. The extrusiveand intrusive rock suites are closely spaced in time (around27 Ma) although field relations suggest that the volcanic rockswere intruded by the plutons. Pluton emplacement gave rise tothermal metamorphism of the volcanic and volcaniclastic carapace,and to widespread hydrothermal alteration throughout the island. Geochemically, the igneous rocks of St Martin form a mildlytholeiitic to calc-alkaline typical subduction-related suite.The extrusive rocks are basalts to andesites, and the magmasappear to have differentiated largely through fractional crystallizationof plagioclase, clinopyroxene, and olivine. The REE displayflat chondrite-normalized patterns, with no significant Eu anomalydespite convincing evidence for plagioclase fractionation. Theplutonic rocks are more silica-rich diorites to granites, containingplagioclase, amphibole, and, less commonly, K-feldspar, sphene,zircon, and pyroxene. REE patterns are slightly LREE enrichedbut display distinct negative Eu anomalies. The fractionationof amphibole and accessory phases may have been important inthe evolution of the plutonic suite, as REE contents do notincrease overall with differentiation. Sr and Nd isotopic ratios of the St Martin suite form restrictedranges which vary little with differentiation, or between theextrusive and intrusive suiteSi 87Sr/86Sr ratios are slightlyhigher and 143Nd/l44Nd slightly lower than for volcanic rocksuites from the currently active northern Lesser Antilles volcanicarc. Some of the high 87Sr/86Sr ratios are explained in termsof hydrothermal alteration involving a high 87Sr/86Sr fluid,associated with pluton emplacement. Pb isotope ratios are similarto those of the currently active northern Lesser Antilles arc,and correlate with SiO2. Such correlations, together with largeranges of incompatible (and immobile) trace element ratios suggestthat open-system differentiation occurred during the evolutionof the St Martin suite. The composition of magma sources in the northern Lesser Antillesarc apparently has not changed significantly over the last 30Ma, despite a westward shift in the locus of arc magmatism.Addition of a slab-derived fluid to the mantle wedge is responsiblefor the high relative abundances of large ion lithophile elements(LILE) and enrichment in radiogenic Pb and Sr relative to mid-oceanridge basalt (MORB). Subsequent differentiation may involveassimilation of the arc basement in St Martin, which is believedto consist of Cretaceous to early Tertiary arc material, similarto that encountered in the Greater Antilles. *Present address: Department of Geosciences, University of Arizona, Tucson, Arizona 85721  相似文献   

11.
The Las Matras Block in Central Argentina constitutes the southernmost part of the Cuyania terrane, which was accreted to the southwestern margin of Gondwana during the Early to Mid Ordovician Famatinian orogeny. The Grenville-aged rocks of the Las Matras Block are represented by the tonalitic to trondhjemitic Las Matras pluton. A new U-Pb conventional zircon age of 1244±42 Ma confirms previous Sm-Nd and Rb-Sr isochron ages of this pluton. Mineral composition data are consistent with the tonalitic-trondhjemitic character of the pluton, and constrain its emplacement level to 1.9 to 2.6 kb. This shallow level of emplacement and the undeformed character of the pluton are distinctive features of this southernmost basement. A regional comparison indicates that the igneous-metamorphic evolution of the Grenville-aged basement rocks of the Cuyania terrane occurred over a period of more than 200 million years, with ages older than 1200 Ma up to those close to 1000 Ma. The shallowest crustal level is found in Las Matras, suggesting a southward shallowing of the exposed level of basement. The deformation and metamorphism associated with the collisional Famatinian orogeny affect both the Cuyania terrane and the adjacent western margin of Gondwana, and the Gondwana margin was also the locus of the related arc magmatism, but the compressive effects of the collision decrease in intensity toward the south. The Famatinian metamorphism and magmatism continue even further south into the Patagonia region, but the southern continuity of the Cuyania terrane into this region remains uncertain.  相似文献   

12.
The Cordilleran orogen in south-eastern Alaska includes 14 distinct metamorphic belts that make up three major metamorphic complexes, from east to west: the Coast plutonic–metamorphic complex in the Coast Mountains; the Glacier Bay–Chichagof plutonic–metamorphic complex in the central part of the Alexander Archipelago; and the Chugach plutonic–metamorphic complex in the northern outer islands. Each of these complexes is related to a major subduction event. The metamorphic history of the Coast plutonic–metamorphic complex is lengthy and is related to the Late Cretaceous collision of the Alexander and Wrangellia terranes and the Gravina overlap assemblage to the west against the Stikine terrane to the east. The metamorphic history of the Glacier Bay–Chichagof plutonic–metamorphic complex is relatively simple and is related to the roots of a Late Jurassic to late Early Cretaceous island arc. The metamorphic history of the Chugach plutonic–metamorphic complex is complicated and developed during and after the Late Cretaceous collision of the Chugach terrane with the Wrangellia and Alexander terranes. The Coast plutonic–metamorphic complex records both dynamothermal and regional contact metamorphic events related to widespread plutonism within several juxtaposed terranes. Widespread moderate-P/T dynamothermal metamorphism affected most of this complex during the early Late Cretaceous, and local high-P/T metamorphism affected some parts during the middle Late Cretaceous. These events were contemporaneous with low- to moderate-P, high-T metamorphism elsewhere in the complex. Finally, widespread high-P–T conditions affected most of the western part of the complex in a culminating late Late Cretaceous event. The eastern part of the complex contains an older, pre-Late Triassic metamorphic belt that has been locally overprinted by a widespread middle Tertiary thermal event. The Glacier Bay–Chichagof plutonic–metamorphic complex records dominantly regional contact-metamorphic events that affected rocks of the Alexander and Wrangellia terranes. Widespread low-P, high-T assemblages occur adjacent to regionally extensive foliated granitic, dioritic and gabbroic rocks. Two closely related plutonic events are recognized, one of Late Jurassic age and another of late Early and early Late Cretaceous age; the associated metamorphic events are indistinguishable. A small Late Devonian or Early Mississippian dynamothermal belt occurs just north-east of the complex. Two older low-grade regional metamorphic belts on strike with the complex to the south are related to a Cambrian to Ordovician orogeny and to a widespread Middle Silurian to Early Devonian orogeny. The Chugach plutonic–metamorphic complex records a widespread late Late Cretaceous low- to medium/high-P, moderate- T metamorphic event and a local transitional or superposed early Tertiary low-P, high-T regional metamorphic event associated with mesozonal granitic intrusions that affected regionally deformed and metamorphosed rocks of the Chugach terrane. The Chugach complex also includes a post-Late Triassic to pre-Late Jurassic belt with uncertain relations to the younger belts.  相似文献   

13.
西秦岭印支早期美武岩体的岩石成因及其构造意义   总被引:13,自引:0,他引:13  
对西秦岭合作地区的美武岩体进行了锆石U-Pb 定年、地球化学和 Sr-Nd 同位素组成研究。结果表明,美武岩体的侵位年龄为245~242 Ma,属于印支早期。美武岩体为一个复式岩基,主要岩石类型为石英闪长岩、花岗闪长岩和黑云母花岗岩,其中,花岗闪长岩中含有丰富的暗色微粒包体。美武岩体不同岩性单元的化学组成表现出不同的演化趋势。美武花岗闪长岩和黑云母花岗岩的地球化学和Sr-Nd 同位素的组成指示美武岩体的岩浆源区主要以壳源物质为主,其中,花岗闪长岩具有较高的Mg#(50~58)、Cr((46~93)×10-6)和Ni((12~50)×10-6)含量,表明有少量幔源物质的加入。石英闪长岩和暗色微粒包体具有高的Mg# (63和62)、Cr (217×10-6和318×10-6)和Ni (61×10-6和110×10-6)的含量,表明其主要来自于幔源岩浆。结合区域地质背景, 认为西秦岭中部的美武岩体形成于后碰撞早期的构造背景之下,可能与俯冲的阿尼玛卿洋壳断离作用有关。板片断离模型能较好地解释西秦岭印支早期侵入岩线性分布的特征和西秦岭造山带内中三叠世地壳的快速抬升。  相似文献   

14.
The role of regional extension on the rise and emplacement of granites in the crust is still debated. Pluton ascent and emplacement widely occurred in Tuscany (Italy) since late Miocene during the post-orogenic collapse of the inner Apennines, and are presently occurring in the geothermal areas of Amiata and Larderello. Tuscany offers a preferred test site to study the role of regional extension on pluton ascent and emplacement at different crustal levels. Ductile extension enhanced the segregation and ascent of granitic melts in the lower crust, controlling pluton emplacement in correspondence with the brittle–ductile transition. In the brittle crust, magma ascent occurred through subvertical faults and fractures compatible with the regional extension direction; pluton emplacement mainly occurred by means of roof lifting. The case of Tuscany suggests that the extensional structures enhance melt segregation and ascent in the ductile crust, but are not efficient alone to provide a pathway for the ascent of granitic magmas in the brittle-extending crust. The estimated magmatic strain rates due to pluton emplacement in the geothermal areas are much larger than the regional tectonic strain rates. This suggests that regional tectonics did not control magma emplacement in the brittle crust and explains why nontectonic processes (roof lifting) accommodated the space required for pluton emplacement.  相似文献   

15.
Anisotropy of magnetic susceptibility and structural geology of the ca. 1.45 Ga Karlshamn pluton (southern Sweden) are used to study its emplacement and structural evolution. The Karlshamn pluton is one of the largest metaluminous A-type granitoid intrusions in southern Sweden. It is a multiphase body made up of two suites that differ in composition but which have similar crystallization ages. The magmatic foliation, ductile shear zones and granite–pegmatite filled fractures were mapped as well as the metamorphic foliation and extension lineation in the metamorphic host rocks. The anisotropy of magnetic susceptibility was used to map the magnetite petrofabric of the pluton, providing a larger data set for both the magmatic foliations and lineations, which could not be mapped in the field. The fabrics within the pluton are continuous with the metamorphic fabrics in the country rocks. Both the pluton and the country rock fabrics were folded during ENE–WSW compression, while the pluton was still a magma mush. The stress field orientation during cooling of the pluton is determined on the basis of magmatic, ductile and brittle structures in the Karlshamn pluton that formed successively as the pluton cooled. The compressional event is referred to as the Danopolonian orogeny and therefore the Karlshamn granitoids, and other plutons of similar composition and age in central and southern Sweden, on the Danish Island of Bornholm, and in Lithuania, may be considered as syntectonic intrusions and not as anorogenic, as was previously thought.  相似文献   

16.
The Bear Mountain igneous complex, Klamath Mountains, California,can be divided into distinct lithologic suites (order accordingto apparent relative age): (1) satellitic masses of clinopyroxene-richultramafic and gabbroic rocks with subordinate dunite and hornblende-plagioclasepegmatoid; (2) two-pyroxene-biotite diorite and monzodiorite;(3) heterogeneous hornblende-rich rocks varying from gabbroto diorite; (4) leucocratic rocks, chiefly consisting of biotitetonalite and granodiorite; and (5) late dikes (mafic to felsic).Elongate masses of unit (1) flank a composite pluton consistingof units (2–4), while the late dikes (unit 5) intrudethe adjacent country rocks. The rocks of the complex invadedan ophiolite allochthon during the Late Jurassic Nevadan orogeny,and well-defined contact aureoles surround the complex. Lowergreenschist facies rocks, chiefly metabasalt, impure siliceousmetasedimentary rocks, and serpentinized peridotite, have beendynamothermally metamorphosed to mineral assemblages indicativeof hornblende-hornfels facies and locally pyroxene-hornfelsfacies. The emplacement of the igneous complex was chiefly byforcible shouldering aside, although local tectonic featuressuch as faults in the ophiolite allochthon were instrumentalin the emplacement history. The ultramafic and gabbroic rocks are interpreted as crystalcumulates of a fractionated basaltic magma. Mineral compositionsand whole-rock chemical characteristics of the proposed cumulatessuggest that the Mg/Fe ratio of the parental basaltic liquidwas high. The activity of silica was low, while water vaporpressure apparently increased through time until it was moderatelyhigh during the late magmatic stage. These cumulates were subsequentlyremobilized during lateral tectonic compression and emplacedhigher in the crust as hot, semisolid aggregates. A diverse array of data, including pyroxene compositions, major-,minor-, and rare-earth-element abundances and field relations,suggest that the two-pyroxene-biotite diorite/monzodiorite unitwas consanguineous with the clinopyroxene-rich ultramafic andgabbroic rocks. The diorite/monzodiorite unit, therefore, isan intermediate differentiate of an early primitive basalt.Furthermore, major-, trace, and rare-earth-element data characteristicof the diorite/monzodionte unit indicate strong similaritiesto low-Si andesite and clearly suggest a calc-alkaline affinity. Age relations indicate that the hornblende-rich and leucocraticunits are younger and represent the intrusion of other magmasinto the same igneous locus. Petrographic and geochemical datafrom the hornblende-rich unit suggest recrystallization fromhydrous magmas similar in composition to high-Al basalt andbasaltic andesite. The leucocratic suite, consisting chieflyof calc-alkaline tonalitic rocks, is similar to other quartz-richfelsic rocks widespread throughout the Klamath Mountains-westernSierra Nevada. The available petrographic and geochemical dataare consistent with formation of these rocks by either fractionalcrystallization of a wet basaltic magma or partial melting ofamphibolite or eclogite. The Bear Mountain igneous complex is an example of a diversebut distinctive association of ultrabasic to silicic rocks whichcharacterize numerous plutonic complexes in the Klamath Mountains-westernSierra Nevada. These intrusive complexes invade older ensimaticrocks and appear to define the roots of a complex, Middle toLate Jurassic calc-alkaline magmatic arc. The ultramafic andgabbroic rocks characteristic of this plutonic association aresimilar to Alaskan-type complexes but differ in detail. Moresignificantly, these rocks are important clues to the compositionof early magmas as well as the complex processes operative inreservoirs that form the core of calc-alkaline magmatic centers.  相似文献   

17.
The Sahara–Umm Adawi pluton is a Late Neoproterozoic postcollisional A-type granitoid pluton in Sinai segment of the Arabian–Nubian Shield that was emplaced within voluminous calc-alkaline I-type granite host rocks during the waning stages of the Pan-African orogeny and termination of a tectonomagmatic compressive cycle. The western part of the pluton is downthrown by clysmic faults and buried beneath the Suez rift valley sedimentary fill, while the exposed part is dissected by later Tertiary basaltic dykes and crosscut along with its host rocks by a series of NNE-trending faults. This A-type granite pluton is made up wholly of hypersolvus alkali feldspar granite and is composed of perthite, quartz, alkali amphibole, plagioclase, Fe-rich red biotite, accessory zircon, apatite, and allanite. The pluton rocks are highly evolved ferroan, alkaline, and peralkaline to mildly peraluminous A-type granites, displaying the typical geochemical characteristics of A-type granites with high SiO2, Na2O + K2O, FeO*/MgO, Ga/Al, Zr, Nb, Ga, Y, Ce, and rare earth elements (REE) and low CaO, MgO, Ba, and Sr. Their trace and REE characteristics along with the use of various discrimination schemes revealed their correspondence to magmas derived from crustal sources that has gone through a continent–continent collision (postorogenic or postcollisional), with minor contribution from mantle source similar to ocean island basalt. The assumption of crustal source derivation and postcollisional setting is substantiated by highly evolved nature of this pluton and the absence of any syenitic or more primitive coeval mafic rocks in association with it. The slight mantle signature in the source material of these A-type granites is owed to the juvenile Pan-African Arabian–Nubian Shield (ANS) crust (I-type calc-alkaline) which was acted as a source by partial melting of its rocks and which itself of presumably large mantle source. The extremely high Rb/Sr ratios combined with the obvious Sr, Ba, P, Ti, and Eu depletions clearly indicate that these A-type granites were highly evolved and require advanced fractional crystallization in upper crustal conditions. Crystallization temperature values inferred average around 929°C which is in consistency with the presumably high temperatures of A-type magmas, whereas the estimated depth of emplacement ranges between 20 and 30 km (upper-middle crustal levels within the 40 km relatively thick ANS crust). The geochronologically preceding Pan-African calc-alkaline I-type continental arc granitoids (the Egyptian old and younger granites) associated with these rocks are thought to be the crustal source of f this A-type granite pluton and others in the Arabian–Nubian Shield by partial melting caused by crustal thickening due to continental collision at termination of the compressive orogeny in the Arabian–Nubian Shield.  相似文献   

18.
The Jurassic Grayback pluton was emplaced in a back-arc settingbehind a contemporaneous oceanic arc. Th\alphae main stage ofthe pluton consists of an early, reversely zoned tonalite togabbro that was intruded by synplutonic noritic and gabbroicmagmas. Late-stage activity was characterized by intrusion oftonalitic and granitic dikes, many of which contain mafic enclavesand hybrid zones. Most mafic rocks in the pluton are calc-alkaline,with characteristic magnesian clinopyroxene, calcic cores inplagioclase, and elemental abundances similar to H2O-rich arcbasalts. However, some mafic rocks contain relatively Fe-richclinopyroxene, lack calcic cores in plagioclase, and are compositionallysimilar to evolved high-alumina tholeiite. Compositional variation in the main stage can be modeled inpart by fractional crystallization and crusted assimilationduring which parental calc-alkaline basalt evolved to graniticcompositions. Cumulates related to this process are representedby modally variable melagabbro and pyroxenite. Mixing of basalticand tonalitic magmas accounts for the compositions of most main-stageintermediate rocks, but mixing of basaltic and granitic magmaswas uncommon until late in the pluton's history. Oxygen, Sr and Nd isotopic data indicate that virtually allmain-stage magmas in the pluton contain a crustal component.Isotopic and trace element data further suggest that late-stagetonalitic dikes represent melts derived from older, metavolcanicarc crust Deep crustal contamination of main-stage rocks tookplace below the level of emplacement, probably in a magma-richzone where basalts ponded and mixed with crustal melts. The Grayback pluton illustrates the diversity of Jurassic back-arcmagmatism in the Klamath province and demonstrates that ancientmagmatism with arc-like features need not be situated in anarc setting. KEY WORDS: Grayback Pluton; Klamath Mountains; Oregon; back arc; crustal contamination *Corresponding author  相似文献   

19.
秦岭造山带印支期花岗岩的成因研究是当前秦岭造山带研究的热点问题。通过对出露于陕西勉县地区勉略缝合带中光头山岩体西端的关帝坪黑云母闪长岩锆石LA—ICPMSU-Pb年代学研究,探讨其地质意义。岩石主要由斜长石、角闪石和黑云母组成,蚀变较轻。LA—ICP—MS锆石U—Pb测年得到的加权平均年龄为220.5士3.1Ma(MSWD=0.66,2σ),代表该闪长岩体的结晶年龄。该年龄与附近的光头山黑云母斜长花岗岩的年龄216±2Ma很接近,由此推断两者应产出于相同的构造背景。结合前人研究结果,推断该黑云母闪长岩体可能为勉略洋闭合后的碰撞后期产物。  相似文献   

20.
A new study of Black Mesa pluton (Henry Mountains, Colorado Plateau, Utah, USA) indicates that it is a classic example of a small upper-crustal pluton assembled over a few years by incremental amalgamation of discrete magma pulses. The results of our petrostructural study of the pluton interior allow us to constrain the geometry, kinematics and timing of the processes. The symmetric internal fabric is interpreted as an evidence for a feeding by below and not laterally. The observed rotation of the lineation, from WNW–ESE on the very top to NNE–SSW below, lead us to propose that the fabric at the base of the pluton is a record of magma infilling process, and the fabric at the very top is a record of the strain due to the relative movement between magma and wallrocks. A consequence is that except at the contact between pluton and wallrocks (top and margins), the stretching direction, recorded by the lineation, is not parallel to the flow direction of the magma i.e. displacement. The Black Mesa pluton is a sheeted laccolith on its western edge and a bysmalith on its eastern edge. This E–W asymmetry in pluton geometry/construction and the symmetrical internal fabric indicates that the apparently different west and east growth histories could have occurred simultaneously. Our field data indicate pluton growth through an asymmetric vertical stacking of sill-like horizontal magma sheets.One-dimensional thermal models of the pluton provide maximum limits on the duration of its growth. We have constrained the number, the thickness, and the frequency of magma pulses with our structural observations, including: (1) the emplacement of the pluton by under-accretion of successive magma pulses, (2) the absence of solid-state deformation textures at internal contacts, and (3) the apparent absence of significant recrystallization in the wallrocks. Our results suggest that the emplacement of the Black Mesa pluton was an extremely rapid event, with a maximum duration on the order of 100 years, which requires a minimum vertical displacement rate of the wallrocks immediately above the pluton greater than 2 m/yr. Finally, our data show that the rates of plutonic and volcanic processes could be similar, a significant result for interpretation of magma transfer in arc systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号