首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Elaborate experiments were performed in a 30 m long, 0.5 m deep and 0.2 m wide laboratory flume to study the process of infiltration of fine sediment into the pores of coarse sediment forming the channel bed material. Different concentrations of suspended load of fine sediment of size 0.064 mm were passed over the channel bed made up of three different types of coarse sediments; two uniform and one nonuniform. The proportion of fine sediment infiltrated into the pores of bed material for each equilibrium concentration of suspended load of fine sediment in the flow was studied during several experimental runs. The proportion of fine sediment within the pores of bed material increased with an increase in the equilibrium concentration of suspended load of fine sediment in the flow. This process continued till the pores within the coarse sediment bed were filled up to the capacity with the fine sediment transported by the flow in suspension. The theoretical value was identified for limit for maximum proportion of fine sediment that can be present within the pores of bed material. On further increase in the concentration of suspended load of fine sediment in the flow, deposition of fine sediment occurs on the surface of the flume bed in the form of ripples of the fine sediment. This condition is defined as 'depositional condition'. Experimental observations on these and related aspects are presented herein.  相似文献   

3.
Suspended load transport can strongly impact ecosystems, dam filling and water resources. However, contrary to bedload, the use of physically based predicting equations is very challenging because of the complexity of interactions between suspended load and the river system. Through the analysis of extensive data sets, we investigated extent to which one or several river bed or flow parameters could be used as a proxy for quantifying suspended fluxes in gravel bed rivers. For this purpose, we gathered in the literature nearly 2400 instantaneous field measurements collected in 56 gravel bed rivers. Among all standard dimensionless parameters tested, the strongest correlation was observed between the suspended sediment concentration and the dimensionless bedload rate. An empirical relation between these two parameters was calibrated. Used with a reach average bedload transport formula, the approach allowed to successfully reproduce suspended fluxes measured during major flood events in seven gravel bed alpine rivers, morphodynamically active and distant from hillslope sources. These results are discussed in light of the complexity of the processes potentially influencing suspended load in a mountainous context. The approach proposed in this paper will never replace direct field measurements, which can be considered the only confident method to assess sediment fluxes in alpine streams; however, it can increment existing panel tools that help river managers to estimate even rough but not unrealistic suspended fluxes when measurements are totally absent. © 2019 John Wiley & Sons, Ltd.  相似文献   

4.
1 INTRODUCTION Debrisflowsoccurwhenrainstormsortheelevationofundergroundwaterlevelcauseloosedepositsorpetrifiedobjectssuchasp?..  相似文献   

5.
Aggregation processes of fine sediments have rarely been integrated in numerical simulations of cohesive sediment transport in riverine systems. These processes, however, can significantly alter the hydrodynamic characteristics of suspended particulate matter (SPM), modifying the particle settling velocity, which is one of the most important parameters in modelling suspended sediment dynamics. The present paper presents data from field measurements and an approach to integrate particle aggregation in a hydrodynamic sediment transport model. The aggregation term used represents the interaction of multiple sediment classes (fractions) with corresponding multiple deposition behaviour. The k–ε–turbulence model was used to calculate the coefficient of vertical turbulent mixing needed for the two‐dimensional vertical‐plane simulations. The model has been applied to transport and deposition of tracer particles and natural SPM in a lake‐outlet lowland river (Spree River, Germany). The results of simulations were evaluated by comparison with field data obtained for two levels of river discharge. Experimental data for both discharge levels showed that under the prevailing uniform hydraulic conditions along the river reach, the settling velocity distribution did not change significantly downstream, whereas the amount of SPM declined. It was also shown that higher flow velocities (higher fluid shear) resulted in higher proportions of fast settling SPM fractions. We conclude that in accordance with the respective prevailing turbulence structures, typical aggregation mechanisms occur that continuously generate similar distribution patterns, including particles that settle toward the river bed and thus mainly contribute to the observed decline in the total SPM concentration. In order to determine time‐scales of aggregation and related mass fluxes between the settling velocity fractions, results of model simulations were fitted to experimental data for total SPM concentration and of settling velocity frequency distributions. The comparison with simulations for the case of non‐interacting fractions clearly demonstrated the practical significance of particle interaction for a more realistic modelling of cohesive sediment and contaminant transport. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
We investigate the dynamics of suspended sediment transport in a hypertidal estuarine channel which displays a vertically sheared exchange flow. We apply a three-dimensional process-based model coupling hydrodynamics, turbulence and sediment transport to the Dee Estuary, in the north-west region of the UK. The numerical model is used to reproduce observations of suspended sediment and to assess physical processes responsible for the observed suspended sediment concentration patterns. The study period focuses on a calm period during which wave-current interactions can reasonably be neglected. Good agreement between model and observations has been obtained. A series of numerical experiments aim to isolate specific processes and confirm that the suspended sediment dynamics result primarily from advection of a longitudinal gradient in concentration during our study period, combined with resuspension and vertical exchange processes. Horizontal advection of sediment presents a strong semi-diurnal variability, while vertical exchange processes (including time-varying settling as a proxy for flocculation) exhibit a quarter-diurnal variability. Sediment input from the river is found to have very little importance, and spatial gradients in suspended concentration are generated by spatial heterogeneity in bed sediment characteristics and spatial variations in turbulence and bed shear stress.  相似文献   

7.
A 2D depth‐averaged hydrodynamic, sediment transport and bed morphology model named STREMR HySeD is presented. The depth‐averaged sediment transport equations are derived from the 3D dilute, multiphase, flow equations and are incorporated into the hydrodynamic model STREMR. The hydrodynamic model includes a two‐equation turbulence model and a correction for the mean flow due to secondary flows. The suspended sediment load can be subdivided into different size classes using the continuum (two‐fluid) approach; however, only one bed sediment size is used herein. The validation of the model is presented by comparing the suspended sediment transport module against experimental measurements and analytical solutions for the case of equilibrium sediment‐laden in a transition from a rigid bed to a porous bed where re‐suspension of sediment is prevented. On the other hand, the bed‐load sediment transport and bed evolution numerical results are compared against bed equilibrium experimental results for the case of a meander bend. A sensitivity analysis based on the correction for secondary flow on the mean flow including the effect of secondary flow on bed shear stresses direction as well as the downward acceleration effect due to gravity on transverse bed slopes is performed and discussed. In general, acceptable agreement is found when comparing the numerical results obtained with STREMR HySeD against experimental measurements and analytical solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
A three-dimensional stochastic Lagrangian particle tracking sediment transport model is developed to solve the discrete advection-dispersion equation using a combination of empirical dispersion equations.The performance of three widely-used longitudinal dispersion coefficient equations was examined to select one of them as the primary dispersion equation term in the developed model. Also, a conditional empirical equation was used to consider the effect of vertical dispersion term in top layers n...  相似文献   

9.
Yangshan near-shore sea area is the multi-island and multi-channel area with strong flow velocity and high suspended sediment concentration. Based on the characteristics of tidal currents, waves, and sediment in the Yangshan area, a two-dimensional numerical model of tidal currents, sediment transport, and sea bed deformation is developed. In the model, the effects of tidal currents and wind waves on sediment transport are considered. According to characteristics of the study area, unstructured grids are applied to fit the boundaries of the near-shore sea area. The results show that the calculated values are in good agreement with the measured data. The field of tidal currents, suspended sediment concentrations, and the deformation of the seabed can be successfully simulated.  相似文献   

10.
1 INTRODUCTION The study of sediment transport in alluvial river is one of the most important fields in hydraulic engineering. Sediment transport has direct influence on the evolution of riverbeds, estuaries and coastlines, and, in turn, affects decision-making of flood control, operating rule of reservoir, design of hydraulic structure and many other aspects. Models with different orders of dimensions were presented in the literature, and most of them had common basis that they were formu…  相似文献   

11.
In this study,annular flume experiments were carried out,using the sediment samples collected from the lower part of the inter-tidal zone at Xiaoyangkou,Jiangsu coast,China.The Ariathurai-Partheniades equation was used to determine the bed shear stress,by evaluating variations in the suspended sediment concentration within the water column.The derived relation between the bed shear stress and suspended sediment concentration shows that,at various stages of seabed erosion, suspended sediment concentration increases rapidly when the flow velocity is increased,but the pattern of change in the bed shear stress does not follow suit.At low concentrations,bed shear stress initially increases markedly with increasing flow velocity.However,when the concentration reaches an apparently critical level around 0.55 kg m"3,the rate of change in the bed shear stress abruptly slows down,or becomes almost constant,in response to further increases in the flow velocity.Results of experiments indicate that,from a critical level onward,suspended sediment concentration has a strong influence on the bed shear stress.  相似文献   

12.
Field data from the Rio Paraná, Argentina, are used to examine patterns of suspended sediment transport over a sand dune. Measurements of three‐dimensional velocity are made with an acoustic Doppler current profiler whilst suspended sediment concentration and particle size have been quantified using a laser in situ sediment scattering transmissometer. Suspended sediment concentration and streamwise and vertical sediment flux are highest close to the bed, with an upward vertical flux over the stoss side of the dune and downward flux over the lee side. Suspended sediment concentrations are higher over the crest compared with the trough and suspended sediment is coarsest near the bed. About 17% of the suspended‐load transported over the crest is deposited in the lee side before it reaches the trough. Most of this deposited sand is coarser sediment that originates close to the bed over the crest, a result consistent with simulations based on the model of Mohrig and Smith (Water Resources Research 1996; 32: 3207–3217) for the excursion lengths of sediment dispersed in the lee side of a dune. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Flume experiments were conducted in order to monitor changes in flow turbulence intensity and suspended sediment concentration at seven stages across the ripple–dune transition and at three different positions above the bed surface. Three‐dimensional velocity measurements were obtained using an acoustic Doppler velocimeter (ADV). Suspended sediment concentration (SSC) was monitored indirectly using ADV signal amplitude. Although limited to time‐averaged parameters, the analysis reveals that SSC varies significantly with stage across the transition and with sampling height. The statistical analysis also reveals an apparent uniformity of suspended sediment concentration with height above the bed in the lower half of the flow depth at the critical stage in the transition from ripples to dunes. This is also the stage at which turbulence intensity is maximized. Statistically significant correlations were also observed between suspended sediment concentrations and root‐mean‐square values of vertical velocity fluctuations. These correlations reflect the various levels of shear‐layer activity and the distinct turbulent flow regions across the transition. Conversely, time‐averaged values of Reynolds shear stress exhibit a very weak relationship with suspended sediment concentrations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
A MATHEMATICAL MODEL FOR RESERVOIR SEDIMENTATION AND FLUVIAL PROCESSES   总被引:3,自引:1,他引:3  
I. INTRODUCTIONAt present moot sediment transport models applied in engineering practice are based on equilibriumsediment transport approach, i. e. sediment--carrying Capacity is used to replace the actual sediment concentration (ref. 1 -- 9). However, the sediment--carrying capacity, in general, is not equal to sedimentconcentration, they may differ a lot especially for the case of reservoir sedimentation process and/orthe scouring process of river channel in the downstream of a reservoi…  相似文献   

15.
A combination of two indirect methods to measure sediment flux is presented in this study to evaluate suspended sediment transport in a hydropower reservoir. The acoustic backscatter signal (ABS) from an Acoustic Doppler Current Profiler (ADCP) is therefore applied in pre-defined transects within the reservoir in combination with a Laser In-Situ Scattering Transmissometry – stream lined device (LISST-SL). The stationary LISST-SL derived suspended sediment concentration (SSC) measurements are used to calibrate the ABS. From the LISST-SL measurements a time series of SSC is obtained. This enables, in addition, a comprehensive data analysis to evaluate the influence of natural fluctuations of the SSC on the calculated sediment flux, which should be taken into account when assessing sediment transport. Furthermore SSC measurements are done with the LISST-SL close to the reservoir bed. In areas close to the bed no information regarding the ABS is available from the ADCP measurements due to the side-lobe interference. In various studies the information from the last three valid cells is used for extrapolation. However, as result of a comparison of the LISST-SL measurements with extrapolated SSC values from the ADCP measurements it can be seen that, especially in deep reservoirs, this method has to be adapted to the in-situ conditions.  相似文献   

16.
The sediment saturation recovery process (i.e. the adaptation of suspended sediment concentration [SSC] to local forcing) is the main feature of the non‐equilibrium suspended sediment transport (SST) frequently occurring in fluvial, estuarine and coastal waters. In order to quantitatively describe this phenomenon, a series solution is analytically derived, including the evolution of both vertical SSC profile and near‐bed sediment flux (NBSF), and is verified by net erosion and net deposition experiments, respectively. The results suggest that the sediment saturation recovery process involves vertically varying fluxes that are not represented correctly by depth‐averaging. Consequently, a vertical two‐dimensional (2D) combined scheme is established and applied respectively in to a dredged trench and to a sand wave feature to demonstrate this argument. By analyzing the variations of the calculated depth‐averaged SSC and NBSF we reveal that the equilibrium state presented by the sediment carrying capacity (SCC) form of the NBSF, which is usually applied in depth‐integrated SST models, lags behind the actual dynamic bed equilibrium state. Moreover, the key factor α, the so‐called saturation recovery coefficient within this form, is not only a function of local Rouse number but also is influenced by the local SSC profile. Finally, a three‐dimensional (3D) non‐orthogonal curvilinear body‐fitted SST model is developed and validated in the Yangtze estuary, China, combined with the in situ hourly hydrographic data from August 14–15, 2007 during spring tide in the wet season. Model results confirm that the vertically varying sediment saturation recovery process, the discrepancies between the actual and SCC form of NBSF and non‐constant value of α are significant in actual real geomorphic cases. The quantitative morphological change resulting from variations in environmental conditions may not be correctly represented by uncorrected depth‐integrated SST models if they do not treat the effects of vertical motion on the sediment saturation recovery process. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
This paper illustrates how the acoustic Doppler current profiler (ADCP) and single-beam echo-sounder (SBES) recordings can be used for the calibration of existing software to assist in generalizing the morphodynamic processes in large rivers at key sites such as bifi.trcations and confluences. Calibration of the MIKE21C numerical model by the Danish Hydraulic Institute at the 25-km-long reach of Lower Paran~ near Rosario (Argentina) is presented. This reach includes two downstream confluences and two bifurcations. The model simulates a 2-D depth-averaged flow velocity and the related sediment fluxes to predict the bifurcation morphodynamics that affects the Paranh waterway. To investigate the river channel bathymetry, roughness, flow discharge allocation at bifurcations, suspended sediment concentration and grain size distributions, several instruments were used. These instruments included two ADCPs by Teledyne RDI working at frequencies of 600 and 1,200 kHz, a Sontek ADCP working at a frequency of 1,000 kHz and a SBES. The method to assess suspended sediment concentration and grain size distributions has been previously described. This paper focuses primarily on investigating dune morphology (by means of SBES depth measurements) and friction velocity (by means of ADCP profiling) to determine the river channel bed-roughness. The 2-D model results agree with observed values of bed-roughness, flow velocity and suspended sediment concentration distributions at the investigated sections, known data of water slope and total load of bed sediment are in good agreement with model results.  相似文献   

18.
This paper describes the details of a quasi-three-dimensional model (3DBANK), which has been developed to investigate medium and long-term morphological evolution and development of offshore sandbanks. The model is based on a three-dimensional tidal module using the Galerkin-eigenfunction method, but also includes four sub-modules to compute: the instantaneous bedform characteristics from which the temporal and spatial variations of the shear stresses at the sea bed can be derived; the suspended sediment concentration through the water column; the bed-load and suspended sediment fluxes at a point-in-plan; and the resulting morphological changes, respectively. The model also includes the effects of the wind and waves at the sea surface, as well as the wave–current interaction (WCI), and operates with full hydrodynamic and morphodynamic interaction. The components of the model were tested against laboratory and field data, and the complete model was then applied to Middlekerke Bank off the Flemish coast where extensive field measurements were taken during the European Community (EC) funded Circulation and Sediment Transport Around Banks (CSTAB) Project using various advanced instrumentation including STABLE and HF OSCR. Comparisons of the model results with the field measurements and observations show that the model is capable of reproducing the current and wave-induced bedforms, bed roughness, tidal currents and tidal residuals around the sandbank satisfactorily, and can be used to study the long-term sandbank evolution under various offshore conditions. This paper, however, focuses on the hydrodynamic aspects of the model, while the details of the morphological components will be given in a companion paper.  相似文献   

19.
20.
One-dimensional numerical models are popularly used in sediment transport research because they can be easily programmed and cost less time compared with two- and three-dimensional numerical models. In particular, they possess greater capacity to be applied in large river basins with many tributaries. This paper presents a one-dimensional numerical model capable of calculating total-load sediment transport. The cross-section-averaged sediment transport capacity and recovery coefficient are addressed in the suspended load model. This one-dimensional model, therefore, can be applied to fine suspended loads and to hyperconcentrated flows in the Yellow River. Moreover, a new discretization scheme for the equation of unsteady non-uniform suspended sediment transport is proposed. The model is calibrated using data measured from the Yantan Reservoir on the Hongshui River and the Sanmenxia Reservoir on the Yellow River. A comparison of the calculated water level and river bed deformation with field measurements Shows that the improved numerical model is capable of predicting flow, sediment transport, bed changes, and bed-material sorting in various situations, with reasonable accuracy and reliability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号