首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以IPCC SRES A2、A1B、B1三种气候变化模式为基础,利用数值方法研究了青藏直流联网工程冻土区装配式基础的冻融过程以及活动层、融化深度、地温的变化规律.结果表明:工程扰动和气候变暖改变了冻土的热状态,促进了冻土退化,均为影响基础长期稳定性的重要因素,其中混凝土桩基的强化导热作用加剧了冻融过程,气候升温导致活动层厚度增加,土层温度升高;随着深度的增加,冻土响应减弱,冻土温度变化幅度越小;在三种升温模式下50年后融化深度分别达到3.12m、5.07m和6.02m,而同期天然场地活动层厚度为2.07m、4.37 m、5.62 m,说明冻土对不同升温模式的响应程度不同,且中心冻土在气候变暖和工程扰动双重影响下退化更快;从第10年到第50年,这三种模式下桩基中心融化速率分别为1.5 cm·α-1,6.2 cm·α-1,8.6 cm·α-1,即随着升温速率的增加,土层融化深度增加,冻土退化速度加快;低升温率时冻土变化主要受工程作用,而在较高升温模式下冻土退化则主要受气候变暖的影响.  相似文献   

2.
选择高寒生态系统植被覆盖度、生物生产力和土壤养分与组成结构等要素和冻土环境的冻土上限深度、冻土厚度和冻土地温等指标, 分析了冻土环境与高寒生态系统之间的相互关系, 并基于气温与冻土温度间的统计模型, 建立了高寒生态系统对冻土环境变化的响应分析模型. 通过对青藏高原昆仑山-唐古拉山区域冻土环境要素在人类工程活动与气候变化双重作用下的变化及其对高寒生态系统的影响研究, 表明青藏高原冻土环境变化对高寒草甸和高寒沼泽草甸生态系统影响强烈, 随冻土上限深度增加, 高寒草甸植被覆盖度和生物生产量均呈现较为显著递减趋势, 并导致高寒草甸草地土壤有机质含量呈指数形式下降, 土壤表层砂砾石含量增加而显著粗砺化; 高寒草原生态系统与冻土环境的关系相对微弱; 全球气候变化及其作用下的冻土环境变化导致该区域近15年间高寒沼泽草甸生态系统分布面积锐减28.11%, 高寒草甸生态分布面积减少了7.98%. 在不同气温升高的情景下, 未来50年, 不同地貌单元的高寒草甸生态系统对冻土环境变化的响应程度不同, 其中位于低山和平原区的高寒草甸生态系统将产生较显著的退化, 从植被覆盖度和生物生产量两方面, 定量给出了不同气候变化情境下不同典型地区和地貌单元的高寒生态系统变化特征. 未来在工程活动中采取有效的冻土环境保护措施, 对高原冻土工程稳定性和维护高寒生态系统都具有重要意义.  相似文献   

3.
冻土物理力学特性与温度密切相关,气候变暖背景下冻土路基地温场的分布和演化规律不仅会影响到路基的静力稳定性,还会影响到其在地震、车辆等动力荷载作用下的响应特征与稳定性。为此,基于现场实测路基坡面温度,系统开展气候变暖背景下青藏高原典型(东西、南北、45°)走向条件下冻土路基地温场分布及演化规律的模拟研究。结果表明,阴阳坡侧浅层土体冻结指数差异较融化指数差异更为显著,东西走向下阴坡冻结指数约为阳坡的2倍,而融化指数约为阳坡的0.83。阴阳坡侧路基本体及活动层季节冻融过程存在明显不同步,东西走向条件下阴坡冻结期(融化期)可较阳坡侧长(短)约1个月。路基修筑后,阴坡一侧路基下部人为上限均有一定的抬升,而阳坡仅南北走向有抬升。此后,在气候变暖及沥青路面吸热效应下,路基人为上限不断下降,最大速率可达20cm/a,且逐步出现融化夹层,其中阳坡融化夹层厚度普遍大于阴坡,差值最大可达2.5m。路基本体季节冻融过程的不同步、人为上限埋深及冻土地温分布的不对称性应在未来青藏高原冻土路基静力、动力稳定性设计和研究中予以考虑。  相似文献   

4.
青藏公路沿线冻土的地温特征及退化方式   总被引:1,自引:0,他引:1  
金会军  赵林  王绍令  晋锐 《中国科学D辑》2006,36(11):1009-1019
青藏高原多年冻土(以下简称冻土)具有地域分布广、厚度薄及稳定性差等特征. 过去几十年的气候变暖背景下, 冻土广泛退化, 地温升高, 夏季最大融化深度加深, 冬季冻结深度减小. 冻土已经产生下引式、上引式和侧引式退化. 冻土层厚度减薄, 或者在某些地区彻底消失. 冻土退化模式研究在冻土学、寒区工程和寒区环境管理方面具有重要意义. 由南至北穿越560 km冻土区的青藏公路沿线(简称青藏线)冻土在青藏高原腹地具有很好的代表性. 在水平方向上, 冻土退化在多年冻土下界附近的零星冻土分布区、融区边缘和岛状冻土区表现得更为明显. 当最大季节融化深度超过最大季节冻结深度时, 冻土开始下引式退化; 通常形成融化夹层, 造成多年冻土和季节冻结层不衔接. 当多年冻土层中地温梯度减小到小于下伏或周边融土层时, 则产生上引式或侧引式退化. 下引式退化进程可分为4个阶段: (1) 初始退化阶段, (2) 加速退化阶段, (3) 融化夹层阶段, (4) 最终多年冻土彻底融化为季节冻土阶段. 当多年冻土中地温梯度降至下伏融土层地温梯度以下时, 则产生上引式退化. 3种类型冻土温度曲线(稳定型、退化型和相变过渡型)展现了这些退化模式. 虽然存在不同地段和类型的地温特征, 三种退化模式的各种组合最终将使多年冻土消融, 转变成季节冻土. 过去25年来, 青藏线冻土年平均下引式退化速率变化在6~25 cm, 年平均上引式退化速率在12~30 cm, 零星多年冻土区年平均侧引式退化速率为62~94 cm. 这些观测结果超过所报道的过去20年来阿拉斯加亚北极不连续冻土区4 cm的年平均退化速率, 蒙古国不连续冻土区的4~7 cm的年平均退化速率, 以及雅库悌共和国亚北极和阿拉斯加北极稳定性冻土区退化速率.  相似文献   

5.
青藏公路沿线多年冻土与公路相互作用研究   总被引:26,自引:1,他引:26  
为了研究多年冻土与公路相互作用和特征, 青藏公路沿线建立了8个监测场地, 监测内容包括天然状态下活动层厚度、沥青路面下季节冻融深度、多年冻土顶板温度和路基稳定性. 研究结果表明, 由于沥青路面具有强烈的吸热作用和较弱的蒸发过程, 从而改变了地表能量平衡状态, 使沥青路面下的季节冻融深度和多年冻土顶板温度变化均大于天然状态, 并引起了融化下沉和冻胀等工程地质问题频繁发生, 对路基稳定性产生严重影响.  相似文献   

6.
胡晓莹  盛煜  吴吉春  李静  曹伟 《湖泊科学》2018,30(3):825-835
以青藏高原查拉坪地区一处热融湖塘(40 m×50 m,最大深度为1 m)为研究对象,由实测数据对比分析了热融湖塘与天然地表相同深度的温度变化特征.结果表明:与天然地表相比,热融湖塘融化时间长,冻结时间短,且存在接近4℃的水温变化;受太阳辐射及热对流的影响,垂向水温梯度仅在水表从4℃降温及冻结阶段较大,其余时段接近0;湖底年均温度比相同深度的天然地表高约6.4℃,湖底下部存在约14 m深随时间发展的融区,土体吸热增大,放热减小;热融湖塘2.5~3.0 m土体的年内热交换为19592.0 k J/m2,约是天然地表的230倍,其中吸热量及放热量分别为后者的1.4倍及8.7%.湖塘下部的融化夹层是深层冻土的主要热源,湖塘对下部土体放热的抑制作用是湖塘对土体产生热影响的主要原因.  相似文献   

7.
气候变化条件下东北地区多年冻土变化预测   总被引:3,自引:0,他引:3       下载免费PDF全文
东北多年冻土(除非指明是季节冻土,以下将多年冻土简称冻土)是中国第二大冻土分布区,主要发育"兴安-贝加尔型"冻土.由于处在欧亚大陆冻土区南缘,冻土的热稳定性差,寒区生态的敏感性强.在气候变暖条件下,冻土已经和正在发生着"三向"退化.为预测冻土南界和地温变化,根据47个气象站资料并在SHAW模型对植被影响地表温度修正的基础上,建立了冻土地表温度分布的等效纬度模型.结合非稳态热传导模型的有限元数值计算,以多模型结合的方法,进一步计算和分析了目前、50年和100年后冻土地温分区变化.结果表明,在目前地表温度为1.5℃范围,仍可残留冻土.以0.048℃a-1气温递增速率,在目前地表温度为0.5℃和-0.5℃的区域,50年和100年后各自仍有可能存在冻土;冻土面积将由现在的2.57×105 km2各自减至1.84×105和1.29×105 km2,分别减少28.4%和49.8%,且东部退化幅度大于西部.同时,区域地温升高,冻土厚度减薄;稳定型(年平均地温Tcp≤-1.0℃)冻土面积逐渐减小,将由现在的1.07×105 km2分别减少至8.8×104 km2(50年后)和5.6×104 km2(100年后).相应地,不稳定型(Tcp〉-1.0℃)多年冻土和季节冻土的面积增加,冻土南界将显著北移.冻土环境的变化,将给东北寒区工程设施和生态环境带来重要影响.减少或避免人为地改变冻土赋存条件,是保护冻土环境较可行的途径.  相似文献   

8.
青藏高原季节冻融过程与东亚大气环流关系的研究   总被引:34,自引:1,他引:34       下载免费PDF全文
利用青藏高原46个气象站的最大冻土深度观测资料、中国160个气象站降水资料和NCAR/NCEP资料,对青藏高原冻土的季节性冻融过程进行合成分析,发现青藏高原土壤的季节冻融过程对青藏高原上空及东亚大气环流有显著的影响,在高原最大冻土深度较小的年份中,7月份,南亚高压强且偏西,500hPa印度低压强,西太平洋副热带高压弱且偏东,高原南部的东风较强;最大冻土深度较大的年份,南亚高压弱且偏东,印度低压弱,西太平洋副热带高压强且偏西. 在不同的冻融年份,850hPa上纬向风的差异显著区反映了西南季风的活动. 最大冻土深度与中国夏季(7月份)降水有3条显著相关带,雨带的分布与中国夏季平均雨带相吻合. 由此,青藏高原季节冻融过程引起的水热变化是影响东亚气候的一个重要外源.  相似文献   

9.

多年冻土活动层变化导致冻土区大范围地面变形,严重破坏区域内基础设施和水文地质条件,亟需加强活动层季节冻融过程的观测研究.本文提出一种基于分布式目标的小基线集时序InSAR(DSs-SBAS)的冻土形变监测方法.该方法采用分布式目标提取和特征值分解算法,并结合基于地温-形变约束关系的参考点选取新策略,提高了冻土形变监测结果的时空分辨率和可靠性.以祁连山黑河西支源头的野牛沟为研究区域,通过对27景Sentinel-1 SAR影像进行时序InSAR分析,获取了2014-2016年该区多年冻土的形变时间序列和年均形变速率,并利用Stefan模型联合地温数据估算其季节性形变幅度.实地踏勘和结果分析表明:(1)研究区大部分多年冻土处于稳定状态(-1.0~+1.0 cm·a-1),在地形陡峭的南坡边缘及含冰量丰富的野牛沟河上游两侧沟底部分区域存在较大形变;(2)区域内冻土形变时间序列呈现年周期变化,冻土冻融形变存在季节性周期形变和季节性波动下沉两种形变特征,形变幅度和速率最大可达6.0 cm和-3.0 cm·a-1;(3)不同区域的活动层冻结/融化始日和冻土形变存在明显差异,主要和冻土地貌、土壤类型以及活动层厚度有关.本文提出的方法在青藏高原多年冻土区大范围冻融监测和活动层厚度反演研究方面具有很大的应用潜力.

  相似文献   

10.
SBAS-InSAR技术监测青藏高原季节性冻土形变   总被引:21,自引:0,他引:21       下载免费PDF全文
冻土的冻结和融化的反复交替会造成地质环境与结构的破坏,从而导致房屋和道路等地面工程建筑物的地基破裂或者塌陷,还会引起山体滑坡、洪水暴发以及冰川移动等.因此,监测冻土形变对确保冻土区工程建筑的稳定性和安全性,同时保证冻土区社会经济可持续发展具有重要的意义.目前,在冻土监测方面并没有能大面积监测冻土形变时间演化情况的有效方法,本文提出将InSAR技术中的小基线集方法(SBAS-InSAR)应用于监测冻土来获取其形变时间序列中.考虑到冻土形变呈现明显的季节性特征,本文提出利用周期形变模型来代替传统SBAS方法中的线性形变模型,从而更好地分离出高程残差和大气误差.利用ENVISAT卫星获取的21景ASAR影像图作为实验数据,采用改进的SBAS技术成功获取了青藏高原从羊八井站至当雄站铁路段冻土区的地表形变时间序列图,揭示了该冻土区从2007年到2010年的季节性形变演化情况.通过与研究地区温度变化的联合分析,发现所得到的地表形变结果与冻土的物理变化规律非常吻合,证明了SBAS-InSAR技术在冻土形变监测中具有良好的发展应用前景.  相似文献   

11.
陆面过程的研究对于更好地认识气候和天气系统的演变规律、陆地-大气水热交换过程、人类活动对气候和环境的影响等具有重要意义. 建立了综合考虑土壤冻融、土壤水汽通量、植被覆盖和陆面-大气近地层水热交换的一维冻土-植被-大气连续体模型, 模拟了固液相变、汽态水迁移、土壤水、汽、热耦合迁移等过程, 反映了液态水从未冻区向冻结区迁移、冻结及其引起的潜热迁移的冻土物理本质, 也反映了汽态水分从高温区向低温区迁移所引起的温度及水分场的变化, 并对模型进行了检验. 水分运动方程采用混合Richards方程, 可适应各种边界条件. 土壤水热传输模型求解引入了修正的Picard迭代法, 不仅使计算迭代收敛更快, 而且能更好地保证数值计算过程中的水量平衡. 结合GAME/Tibet实验1998年5月份、7月份的观测数据, 应用该模型对青藏高原安多观测点的水热交换过程进行了模拟分析. 模拟结果表明: 土壤的冻融过程对地温变化会产生负反馈作用; 若净辐射相同, 土壤表层含水量较高的情况下考虑冻结时其地热通量在冰融化时明显增加, 显热通量减少, 而潜热通量变化不大, 但是冻结时各通量的变化不明显; 而土壤发生融化时, 尽管地热通量增加, 但是地表温度仍然减小; 土壤发生冻结时, 尽管土壤负温要比不考虑冻结时高, 但整体上热通量变化不大.  相似文献   

12.
过对NOAA卫星热红外亮温与野外安装气象观测站接收的气温、地下不同深度地温(0.2, 0.5, 1.5,2 m)进行不同方式的对比研究,分析了卫星热红外亮温、气温、地下不同深度地温的变化特征,探讨了亮温与气温及不同深度地温之间的关系.结果表明:① 卫星热红外亮温观测,由于受天气、云层短周期因素变化影响,曲线呈现高频突跳特征,但按最大值拟合出的亮温曲线有较好的年变变化规律;② 浅层地温受气温及太阳辐射的影响较大,能够体现出日变化,表现出很好的季节变化规律;③ 深层地温年变平稳, 年变变化与季节相关.但与气温相比,表现出滞后效应,且深度越深,滞后时间越长;④ 亮温、气温及深度0.2 m地温三者之间呈现很好的相关性.亮温、气温、0.2 m地温的极值几乎同时段出现,都符合季节变化.分析表明,亮温能够真实地反映地表温度的变化情况,能够为利用卫星热红外亮温提取地震异常信息提供可靠准确证据.本研究结果为理解不同观测属性及其相互关系,以及更好地为地震监测应用提供了基础.   相似文献   

13.
土壤的冻结和融化是土壤内部的重要物理过程,其冻融界面位置的移动影响土壤水热特性以及陆面和大气之间的水分能量交换,从而对陆面水热过程产生重要影响.本研究将土壤冻结和融化问题归结为考虑水热耦合的多运动边界问题,利用局部自适应变网格法进行数值离散,发展了考虑冻结和融化界面位置的移动对水热过程影响的土壤水热耦合模型.该模型基于陆面模式分层结构的敏感性试验表明:它能同时连续地追踪多个冻融界面,克服了等温线法在同一土壤层不能同时模拟多个冻融界面的困难,比高分辨率情形下的计算效率提高数倍且计算稳定.利用站点观测对土壤冻融界面的位置、土壤温度和未冻水含量所进行的模拟验证,进一步表明了该模型的合理性以及应用于陆面过程模式的模拟潜力.  相似文献   

14.
我国众多铁路干线分布于深季节冻土地区。铁路路基土层的冻融状态随着季节的交替变化而改变,相应的列车行驶时引起的路基动应力分布也有所不同。考虑路基土体的参振效应,通过改进车辆-轨道-路基垂向耦合动力学模型获取不同季节列车行驶振动荷载时程,进而通过动力有限元数值模拟方法,研究季节变化对列车行驶引起的路基动应力分布规律的影响。研究表明:路基土中的动应力幅值及其沿路基深度的分布规律与该时期路基土的冻融状态密切相关,基于此结论,提出深季节冻土地区不同季节铁路冻土下限范围内路基动应力的简化计算方法。该研究对于优化季节性冻土地区铁路路基设计方法,完善路基长期动力稳定性能评价方法等具有重要意义。  相似文献   

15.
多年冻土地区的地下水系统中的冻结层上水不仅是寒区能水循环中的一个关键组成部分,而且与寒区生态环境变化关系密切,在寒区水文学和寒区陆面过程研究中具有十分重要的作用,但因其动态过程的复杂性和观测研究的诸多困难,尚缺乏对其运动规律、驱动因素与机制的系统认知.在青藏高原连续多年冻土区风火山左冒西孔曲,选择典型高寒草甸坡面,通过2年坡上和坡下不同观测孔地下水动态连续观测,分析了冻结层上水的季节动态变化及其在坡面上的空间分异规律以及活动层的冻融作用对冻结层上水动态变化的影响作用.结果表明,冻结层上水位的季节动态变化具有与活动层土壤温度和水分相似的冻融过程,活动层土壤温度控制了冻结层上水季节动态格局,深层(60 cm以下)土壤水分和不同地带地下水补给来源决定了冻结层上水水位动态变化的位相和幅度.地温与水位动态之间具有显著的Boltzmann函数关系,但在不同活动层深度与不同坡面位置,土壤温度对地下水位动态影响的阈值范围不同,坡面上冻结层上水位动态具有显著的空间变异性.地表覆盖变化和气候变暖将必然引起冻结层上水动态、地下水与河水间水力关系的变化,从而引起流域整体水文过程的改变.  相似文献   

16.
地表土壤热通量是地表能量平衡的重要组成部分,对地表蒸散发的估算至关重要.利用土壤温湿度廓线观测资料基于热扩散方程计算地表土壤热通量,并通过冻土融化前后土壤液态水含量变化估算土壤含冰量,分析了土壤含冰量对土壤热通量的影响,旨在分析黑河流域典型下垫面(高山草地、农田和森林)地表土壤热通量的时空变化特征.研究结果表明:(1)黑河流域不同下垫面的地表土壤热通量有明显的日变化差异,日最大值时刻提前净辐射通量几分钟至几小时不等,这与土壤质地、湿度、热属性和植被覆盖度有关;(2)净辐射通量有显著的季节变化,一般夏季达最大值,冬季最小,地表土壤热通量也有明显的季节变化,但并不总是与净辐射通量变化保持一致,春季达最大值,夏季由于植被覆盖的原因反而降低;(3)地表土壤热通量占净辐射通量的比例因季节及下垫面不同而有差异,1月份月平均比值分别为:阿柔25.6%、盈科22.9%和关滩4.3%,7月份月平均比值分别为:阿柔2.3%、盈科1.6%和关滩0.3%;(4)冬季考虑了冰的热容量使得土壤热容量增加,土壤热存储增加,从而由热扩散方程计算的地表土壤热通量增加,使得能量平衡闭合率提高了4.3%.  相似文献   

17.
多年冻土区道路工程病害类型及特征研究   总被引:10,自引:0,他引:10  
多年冻土及多年冻土区恶劣的环境给工程构筑物的建设及维护带来了极大的挑战。以青藏工程走廊内的青藏公路、青藏铁路两大道路工程为研究对象,系统论述了其路基工程、桥梁工程、涵洞工程的主要病害类型及分布特征。现场调查显示,青藏公路80%的路基病害由多年冻土融沉所引起,主要表现为严重的不均匀沉降变形和纵向裂缝,且主要发生在高填方路基上。这两种病害与多年冻土地温及含冰量密切相关,地温越高,含冰量越大,病害越为严重。青藏公路桥梁工程的病害主要集中在附属工程及上部结构上,而涵洞工程病害则主要由冻胀、融沉作用、泥石流淤积、冰塞以及施工原因导致。青藏铁路沿线现场监测及调查结果表明,目前铁路路基病害主要为高温冻土区普通路基的(不均匀)沉降变形、纵向裂缝、路桥过渡段沉降变形、风沙灾害及块碎石材料风化引起的冷却路基结构失效等。此外,青藏工程走廊内广泛分布着包括冻胀丘、冰椎、冰幔、热融湖塘等不良冻土地质现象,当上述不良地质现象与工程接近时,会对道路工程的稳定性造成威胁,严重时可导致一些工程病害的发生。  相似文献   

18.
分析了应用区域航磁资料研究区域地温场的方法,提出了在探井井温资料控制下采用指数形式的方法计算地温梯度,并建立起居里深度与近地表地温梯度、指数因子的关系,给出了求取近地表地温梯度、指数因子的方法及公式,推导了不同深度地温及平均地温梯度的计算公式.通过对松辽盆地北部区域地温场计算结果分析认为,应用区测航磁资料结合一定数量的井温资料可较好地预测区域地温场,为盆地评价提供较为可靠的地温场资料.  相似文献   

19.
多年冻土区铁路路基热状况对工程扰动及气候变化的响应   总被引:2,自引:0,他引:2  
基于青藏铁路沿线长期地温监测资料,对天然场地及铁路路基下部的浅层地温、多年冻土上限及下伏冻土地温动态变化过程进行对比分析,研究多年冻土区铁路路基热状况对于工程扰动及气候变化的响应过程.监测结果表明,路基修筑后边坡热效应显著,由此导致路基下部多年冻土热状况的不对称分布,必须引起足够的重视.块石路基修筑后,下部多年冻土上限抬升显著,其中阴坡路肩下抬升幅度普遍较阳坡路肩下显著.普通路基修筑后,在年平均地温低于?0.6~?0.7℃的地区下部多年冻土上限有不同程度的抬升,而在年平均地温高于?0.6℃的地区下部冻土上限则出现了一定程度的下降,其中阳坡路肩下降幅显著.受块石层冷却降温作用,低温冻土区块石路基下部浅层冻土地温有明显降温过程,而在高温冻土区这一降温趋势只存在于阴坡路肩下.对于普通路基,多年冻土上限抬升后,浅层冻土地温存在一定的升温过程.对于气候变暖,低温冻土区多年冻土的响应主要集中体现在冻土升温上,而高温冻土区多年冻土的响应则主要表现为冻土上限下降,冻土厚度减小.基于上述监测结果,可将目前青藏铁路路基热状况分为稳定型(低温冻土区块石路基)、亚稳定型(低温冻土区普通路基及高温冻土区块石路基)和不稳定型(高温冻土区普通路基).  相似文献   

20.
通用的土壤水热传输耦合模型的发展和改进研究   总被引:11,自引:0,他引:11  
李倩  孙菽芬 《中国科学D辑》2007,37(11):1522-1535
一个既真实又简化、且适用于湿润与干旱、冻土与非冻土和均质与非均质多种情景下的通用土壤水热传输耦合模式对于陆面过程的模型发展研究至关重要. 研究首先通过量级估计和模型数值模拟结果的分析, 发展了简化且精度较好的土壤水热传输耦合统一模型. 为了克服该模型计算过程中由于需预估冰水相变速率项产生的误差造成的不确定性, 进一步对该简化的统一土壤模式进行变量变换, 以土壤总焓和土壤水总质量替代温度和体积含水量作为方程预报量, 建立了新的通用土壤模型统一体系, 并设计了一套行之有效、省时的数值计算方案. 此模型既可用于一般情况下的裸土, 也可用于较为难处理的非均质土、冻融土壤和干旱土壤等. 与观测结果相比, 改进后的统一土壤模型能很好地模拟出在湿润与干旱、冻土与非冻土和均质与非均质土壤中的水热传输过程. 且由于它的简化, 也适应当今陆面过程模式发展的需要.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号