首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We present new observations at three frequencies (326, 615 and 1281 MHz) of the radio lobe spiral galaxy, NGC 3079, using the Giant Metrewave Radio Telescope. These observations are consistent with previous data obtained at other telescopes and reveal the structure of the nuclear radio lobes in exquisite detail. In addition, new features are observed, some with H  i counterparts, showing broad-scale radio continuum emission and extensions. The galaxy is surrounded by a radio halo that is at least 4.8 kpc in height. Two giant radio extensions/loops are seen on either side of the galaxy out to ∼11 kpc from the major axis, only slightly offset from the direction of the smaller nuclear radio lobes. If these are associated with the nuclear outflow, then the galaxy has experienced episodic nuclear activity. Emission along the southern major axis suggests motion through a local intergalactic medium (not yet detected), and it may be that NGC 3079 is itself creating this local intergalactic gas via outflows. We also present maps of the minimum energy parameters for this galaxy, including cosmic ray energy density, electron diffusion length, magnetic field strength, particle lifetime and power.  相似文献   

2.
An interstellar medium consisting of regular and turbulent magnetic fields, thermal gas and cosmic rays is tested for stability in a stellar gravitational field. Cosmic rays are described by the diffusion-convection equation and the stability region of the system is determined. It is shown that the presence of cosmic rays is a stabilizing factor if the cosmic-ray diffusion coefficient is sufficiently small. The dependence of the maximum growth rate of instability on the cosmic-ray diffusion coefficient is qualitatively determined.  相似文献   

3.
4.
New measurements of the intensity and spectrum of cosmic ray nitrogen nuclei made by instruments flown on balloons and on the Pioneer-8 space probe are reported. The nitrogen spectrum is found to be identical with that of the other medium nuclei, carbon and oxygen, over the range of measurement from 100 MeV/nuc to > 22 GeV/nuc. The ratio of N to all M nuclei is found to be =0.125, constant to within 10% over this energy range. This ratio is extrapolated to the cosmic-ray source using the most recently obtained abundances of oxygen and heavier nuclei and fragmentation parameters for the production of nitrogen from these nuclei. Taking an average material path length of 4 g/cm2 of hydrogen constant with energy, as required to make the abundance of L nuclei 0 at the cosmic-ray source, the resulting N/M source ratio is 0.03. In other words, to the same degree that the so-called L nuclei are absent in the cosmic-ray sources, N nuclei are also absent. This nitrogen abundance is therefore different from the estimated solar atmospheric abundance of 0.10 for the N/M ratio which is believed to represent the integrated effects of nucleo-synthesis in the galaxy at the time of the formation of the sun. Nevertheless under certain conditions in the CNO bi-cycle that operates for the production of nitrogen in stellar objects a negligible production of nitrogen might be expected. It is suggested that these conditions exist in the cosmic-ray sources. The C/O ratio of 0.9 deduced for cosmic-ray sources is compatible with the observed low nitrogen abundance arising in this CNO bi-cycle.NRC-NASA Resident Research Associate at Goddard Space Flight Center.  相似文献   

5.
The recent 2009 solar-minimum period was characterized by a record-setting high Galactic cosmic-ray flux observed at Earth. This, along with the unexpected low heliospheric magnetic-field magnitude, caused this period to be characterized as unusual compared with previous minimum epochs. In this work, selected solar-activity proxies and corresponding cosmic-ray observations for the past five solar cycles are compared with each other, and we identify those that showed unusual behaviour during the 2009 solar-minimum modulation period. Using a state-of-the-art numerical-modulation model, the proton-intensity spectra for the past solar minima are reproduced to establish which of the transport processes might be considered the main cause of this unusually high cosmic-ray flux. It is found that diffusion was more prominent during 2009 so that drift effects on the modulation of cosmic rays in the heliosphere were less evident than during previous solar-polarity epochs. However, particle drifts still occurred and because of these drift effects, the proton spectrum is predicted to be even higher during the coming A>0 solar-minimum period.  相似文献   

6.
Numerical simulations of the disruption of a dwarf companion moving in the polar plane of a massive galaxy are presented. The constructed model is compared with observational data on the recently discovered low-surface-brightness stellar ring around the galaxy NGC 5907. Constraints on the ring lifetime (≤ 1.5 Gyr after the first approach of the galaxies), on the structure of the companion—the ring precursor, and on the mass of the dark halo of the main galaxy in whose gravitational field the companion moves are provided. The dark-halo mass within 50 kpc of the NGC 5907 center cannot exceed 3 or 4 “visible” masses.  相似文献   

7.
For simulations of fluid dynamics in astrophysics, physical viscosity and diffusion are typically neglected. However, in this high Reynolds number regime, real fluids become highly turbulent and turbulent processes mediate substantial transport of momentum and heat that is diffusive in nature. In the absence of models for these processes, code-dependent numerical effects dominate how diffusion operates and may lead to physically incorrect simulation results. We highlight the qualitative difference in these numerical effects for smooth particle hydrodynamics (SPH) and grid-based Eulerian codes using two test problems: a buoyant gas bubble and gas in a galaxy cluster. Grid codes suffer from numerical diffusion in the absence of explicit terms, and small-scale diffusion of heat is completely absent in the Lagrangian SPH method. We find that SPH with heat diffusion added at a level similar to that expected from turbulence diffusion generates more physically appealing results. These results suggest, but do not confirm, that a flat entropy core is to be expected for gas in an idealized galaxy cluster (i.e. one without physics beyond that of a non-radiating gas). A goal of this work is thus to draw attention to the as yet unfulfilled need for models of turbulent diffusive processes in compressible gases in astrophysics.  相似文献   

8.
We set up diffusion equations for the nuclear component of cosmic rays and solve these to find the ratio of light to medium nuclei in the cosmic rays as well as the gamma-ray distribution in our Galaxy. From a comparison of our calculated quantities with observational data we determine the values of various parameters appearing in the model. We find that best agreement between theory and observations is obtained if the cosmic-ray confinement region consists of a narrow disk of total height 160 pc and radius 16 kpc, where the cosmic-ray sources are located, and an extensive halo of height 20 kpc. The diffusion coefficient near the Sun must be between 1026 and 1027 cm2 s–1 while it equals 1028 to 1029 cm2 s–1 in the halo. Finally, we find that the diffusion coefficient in the Galaxy must depend on the gas density as a power law with an index of the order of –1.  相似文献   

9.
The smallest dwarf galaxies are the most straight forward objects in which to study star formation processes on a galactic scale. They are typically single cell star forming entities, and as small potentials in orbit around a much larger one they are unlikely to accrete much (if any) extraneous matter during their lifetime (either intergalactic gas, or galaxies) because they will typically lose the competition with the much larger galaxy. We can utilise observations of stars of a range of ages to measure star formation and enrichment histories back to the earliest epochs. The most ancient objects we have ever observed in the Universe are stars found in and around our Galaxy. Their proximity allows us to extract from their properties detailed information about the time in the early Universe into which they were born. A currently fashionable conjecture is that the earliest star formation in the Universe occurred in the smallest dwarf galaxy sized objects. Here I will review some recent observational highlights in the study of dwarf galaxies in the Local Group and the implications for understanding galaxy formation and evolution. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
The influence of compressibility of media on both the statistical acceleration and the turbulent diffusion of cosmic-ray particles is investigated. The averaging over an ensemble of random velocity fields of the medium was performed in the kinetic equation. The kinetic coefficients, which are responsible for the particle acceleration, were obtained in the cases of weak and strong scattering due inhomogeneous magnetic fields.  相似文献   

11.
The Fokker-Planck equation which describes the motion of charged particles in a random electromagnetic field is derived from the Liouville equation by a new method. The size of the perturbing magnetic field, for the Fokker-Planck equation to be valid, is calculated in a regime appropriate for cosmic-ray diffusion.  相似文献   

12.
An ensemble cluster has been formed from a data set comprising a complete magnitude-limited sample of 680 giant galaxies  ( M 0 B ≲−19)  in eight low-redshift clusters, normalized by the velocity dispersions and virial radii for the early-type cluster populations. Distinct galaxy populations have been identified, including an infall population. A majority (50–70 per cent or greater) of the infall population are found to be in interacting or merging systems characterized by slow gravitational encounters. The observed enhancement of galaxy–galaxy encounters in the infall population compared to the field can be explained by gravitational shocking. It is shown that disc galaxy mergers in the infall population integrated over the estimated lifetime of the cluster (∼10 Gyr) can readily account for the present cluster S0 population.  相似文献   

13.
A diffusion model for the propagation of relativistic nuclear cosmic rays in the Galaxy is developed. The model has two nonstandard features: The escape of cosmic-ray particles from the Galaxy is simulated by a term in the diffusion equations, rather than the imposition of boundary conditions on the diffusion solution at the surface of the confinement region. And an age-dependent, locally-averaged effective gas distribution is employed in the diffusion equations. The model simulates free-particle outflow at the Galactic boundary. The model is fit to chemical composition data in the 0.3–5 GeV per nucleon range. It is then consistent with the large-scale Galactic -ray data, radio halo data, energy constraints on the assumed supernova sources, and, when extended to very high energies, cosmic-ray anisotrophy data. From the fit we conclude that the cosmic rays are confined in a large flattened or quasis-pherical halo with a scale height in the range 3–6 kpc and an average Galactic escape time of 108 yr.  相似文献   

14.
The concept of the cosmic-ray path-length distribution is examined. The corresponding cosmic-ray propagation calculational procedure has been justified theoretically at relativistic energies (Ginzburg and Syrovatskii, 1964) where the effects of ionization energy loss are negligible. The present paper extends the use of the path-length distribution concept in cosmic-ray propagation calculations to nonrelativistic energies. Sufficient constraints to effect this extension are presented. The solution of the cosmic-ray propagation equations in terms of a Green's function approach is also investigated and is used to provide a formulation of the path-length distribution at non-relativistic as well as relativistic energies in terms of the cosmic-ray source distribution and the propagation characteristics of the interstellar medium. The leaky-box model of cosmic-ray propagation is also examined.  相似文献   

15.
Cosmic-ray intensity data for the period 1964–1985 covering two solar cycles are used to investigate the solar activity behaviour in relation to cosmic-ray modulation. A detailed statistical analysis of them shows a large time-lag of about one and half years between cosmic-ray intensity and solar activity (as indicated by sunspot number, solar flares and high-speed solar-wind streams) during the 21st solar cycle appearing for a first time. This lag indicates the very high activity level of this solar cycle estimating the size of the modulating region to the unambiguous value of 180 AU. The account of the solar-wind speed in the 11-year variation significantly decreases the modulation region of cosmic-rays to the value of 40 AU.A comparison with the behaviour of the previous solar cycle establishes a distinction between even and odd solar cycles. This is explained in terms of different contributions of drift, convection and diffusion to the whole modulation mechanism during even and odd solar cycles.  相似文献   

16.
It is well known that both the galactic and anomalous cosmic rays show positive intensity gradients in the outer heliosphere which are connected with corresponding pressure gradients. Due to an efficient dynamical coupling between the solar wind plasma and these highly energetic media by means of convected MHD turbulences, there exists a mutual interaction between these media. As one consequence of this scenario the enforced pressure gradients influence the distant solar wind expansion. Here we concentrate in our theoretical study on the interaction of the solar wind only with the anomalous cosmic-ray component. We use the standard two-fluid model in which the cosmic-ray fluid modifies the solar wind flow via the cosmic-ray pressure gradient. Then we derive numerical solutions in the following steps: first we calculate an aspherical pressure distribution for the anomalous cosmic rays, describing their diffusion in an unperturbed radial solar wind. Second, we then consider the perturbation of the solar wind flow due to these induced anomalous cosmic-ray pressure gradients. Within this context we especially take account of the action of a non-spherical geometry of the heliospheric shock which may lead to pronounced upwinddownwind asymmetries in the pressures and thereby in the resulting solar wind flows. As we can show in our model, which fits the available observational data, radial decelerations of the distant solar wind by between 5 to 11% are to be expected, however, the deviations of the bulk solar wind flow from the radialdirections are only slightly pronounced.  相似文献   

17.
Cosmic rays of interest here are electrically charged protons or nuclei having kinetic energy of the order of 1018 eV or more. The theory of cosmic-ray propagation is carried out on the assumption that the original particle may be of extragalactic origin. The curvature and gradient drift is incorporated in the anti-symmetric term of the diffusion tensor. The theory of force-field is examined including diffusion, convection, and energy losses of the cosmic rays. Finally some observation aspects are included in the concluding remarks.  相似文献   

18.
A multiple scales analysis is used to derive a mixed Burgers-Korteweg-de Vries (BKdV) equation in the long wavelength regime for a two-fluid MHD model used to describe cosmic-ray acceleration by the first-order Fermi process in astrophysical shocks. The BKdV equation describes the time evolution of weak shocks in the theory of diffusive shock acceleration for all possible cosmic-ray pressures. Previous work on weak shocks in the cosmic-ray MHD model has assumed that dissipation alone is sufficient to balance nonlinearity, but, as cosmic-ray pressures become small, the weak shock becomes discontinous. By including Hall current effects into the MHD model, the low cosmic-ray pressure limit leads smoothly into solitary wave behaviour. For low cosmic-ray pressures, the shock has a downstream oscillatory precursor which is smoothed into the standard Taylor shock profile with increasing cosmic-ray pressure. As a by-product of the perturbation analysis, a dissipative KdV equation is derived. In conclusion, dispersive effects on Alfvén waves are discussed and a modulational stability analysis is presented.  相似文献   

19.
The effect of the solar wind on the spectrum of cosmic rays accelerated in the Galaxy is studied. The coefficient of cosmic-ray diffusion in the interplanetary turbulent magnetic field is assumed to be independent of the particle energy and a power-law function of the distance from the Sun. The particle spectrum at the heliospheric boundary is specified as a power-law function of the total particle energy.  相似文献   

20.
The principal result of this paper is the demonstration that in interplanetary space the electric-field drifts and convective flow parallel to the magnetic field of cosmic-ray particles combine as a simple convective flow with the solar wind. In addition there are diffusive currents and transverse gradient drift currents. With this interpretation direct reference to the interplanetary electric-field drifts is eliminated and the study of steady-state and transient cosmic-ray anisotropies is both more systematic and simpler. Following a discussion of our present knowledge of the diffusion coefficient in the interplanetary medium, the theory is applied to steady-state anisotropies near Earth in the kinetic energy (T) range 7.5 MeV<T<20 GeV. First the theory of the diurnal variation atT>-2 GeV is examined and it is suggested that the azimuthal streaming associated with the observations be regarded simply as proof that there is no significant net radial flow of cosmic rays at these energies. Second, it is predicted that, near Earth, the radial anisotropy will have a (+?+) variation with energy and this prediction is very insensitive to the precise values of the parameters used: intensity spectrum, solar wind speed, radial density gradient, and diffusion coefficient. Then, third, the small and radial steady-state anisotropies reported by Raoet al. (1967) in the intervals 7.5<T<45 MeV and 45<T<90 MeV are re-examined and it is found that the gradients and diffusion coefficients required to produce the reported anisotropies in 7.5<T<45 MeV are inconsistent with those expected from other data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号