首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
与之前的国际地球参考框架(ITRF)将全球长期解作为输入数据进行组合不同,ITRF2005将测站坐标(卫星技术每星期的数据和VLBI每24小时的数据)和每天的地球自转参数(EOPs)作为输入数据。使用测站位置时间序列的优势在于可以监控测站的非线性运动和非连续性,并检验框架物理参数即原点和尺度的时变特性。ITRF2005原点定义为:相对于由SLR技术13年的观测数据所得的地球质心的平移和平移速度为零;尺度定义为:相对于由VLBI技术26年的观测数据所得的尺度及其变化率为零;ITRF2005的定向(2000.0历元)及其速率与ITRF2000中70个高质量的测站一致。ITRF2005原点(2000.0历元)及其速率相对于ITRF2000沿X,Y,Z轴在0.1,0.8,5.8mm和0.2,0.1,1.8mm/y的水平上一致,其分量的误差分别为0.3mm和0.3mm/y。两个参考框架原点间一致性差可能是因为SLR网的几何图形差。ITRF2005组合中包含了84个并置站,尺度的不一致性在2000.0历元为1ppb(赤道处为6.3mm),SLR和VLBI由各自时间序列堆栈得到的长期解之间尺度不一致性为0.08ppb/yr。这些不一致性可能是因为SLR和VLBI网形差、并置站质量不好、局部联系的不确定性、系统误差影响以及数据分析中模型改正的不一致性。ITRF历史上,ITRF2005第一次采用了紧组合的方式给出了与之相一致的EOP序列,包括由VLBI和卫星技术得到的极移和仅从VLBI得到的UT和日长数据。  相似文献   

2.
孙悦  薛树强  韩保民  肖圳 《测绘学报》2023,(11):1835-1843
海底基准站复测观测可用于海底构造和海底地震等灾害研究。然而,受观测条件和供电等因素影响,难以实现长时间不间断观测。为解决时间序列观测中新旧海底基准站替换位移补偿和站点偏移量计算问题,可采用中心点法求取相对于海底基准站网的虚拟中心点坐标的位移量,进而构造海底基准坐标时序,以监测海底构造运动。针对相同的问题,本文借鉴地球参考框架维持方式,直接利用可能存在间断的海底基准站网时序观测数据,提出了基于参考协议历元的海底基准坐标时序多站联合处理模型,即在一个区域基准站网内,各站点坐标作为局部参数,而站速度作为公共参数。本文方法适合于海底参考框架的建立与动态维持,利于对区域网内各站点坐标时序实施精细质量控制。结果表明,本文方法可以代替中心点法,且抗差估计结果更为可靠,与中心点法确定的海底基准站年速度估计之间的差值平均为3 mm/a,可为国家海底空间基准维持提供一种途径。  相似文献   

3.
王周杰  成英燕  卢浩  张珂 《测绘科学》2021,46(5):20-24,32
针对各省级地心坐标框架构建中数据处理的基准使用及转换方法不同引起的差异,该文以SDCORS连续观测2个月数据分别设计了不同的方案进行实验,分析不同基准、不同归算方法将测站坐标转换到CGCS2000下的结果差异.实验结果表明,3种基准解算出的CORS站坐标之间的差异,在X、Y方向上最大差异达1 cm左右,Z方向上的差异在毫米级,以全球解作为基准解算出的结果最好,控制点的改正数最小;同时,采用速度场归算方法和强制约束平差法将CORS站坐标归算到CGCS2000下的结果显示,两者之间的差异在1~3 cm.  相似文献   

4.
研究国际陆地参考框架(ITRF)坐标转换问题,分析坐标框架的转换模型,构建一种实用的历元转换方法.研究结果表明在相同历元下,不同框架之间的坐标差异较小,不同活动块体下ITRF2008和ITRF2014在2020.00历元时各分量坐标差小于3 mm.受不同区域地壳活动程度影响,相同框架下不同历元之间的坐标差异明显,基于建立的历元转换方法,实际测试精度可达1 cm左右,能够在工程应用中快速获得CGCS2000坐标.  相似文献   

5.
2000国家大地坐标系(CGCS2000)发布后的推广使用不仅涉及大量参心坐标系下的成果转换,同时也涉及基于全球导航卫星系统(Global Navigation Satellite System,GNSS)手段获得的点位坐标的归算。获取GNSS观测数据和将其归算到CGCS2000采用的策略方法不同,如参考站选择原则不同,整网平差前的分区方案不同以及采用不同的方法将位置从当前历元改正到CGCS2000等,将会使最终的CGCS2000系下的坐标差异较大,最大可达到分米级。造成这种结果的原因在于GNSS数据处理的多个环节中依赖数据处理软件操作者的理解,存在人为的选择,换言之,GNSS数据处理缺乏科学的规则为依据。鉴于此,采用一种统计方法,即监督聚类作为参考站选择规则;采用间距分区法进行区域划分;并用板块运动归算方法将当前历元位置改正到CGCS2000。其中基于间距分区方案的站坐标解算精度优于区域划分方案,三维方向的坐标精度优于2 mm。通过以上方案设计,X、Y、Z方向上的速度从0.92、0.72、0.97 mm/a分别降至0.19、0.45、0.32 mm/a,优化和改进了CGCS2000框架维持精度。  相似文献   

6.
肖飞 《测绘科学》2013,38(3):5-6,13
本文通过联测IGS跟踪站获取南宁地区若干控制点的ITRF框架瞬时历元坐标,并根据IGS跟踪站速度内插出南宁地区地壳板块运动速度,从而将控制点ITRF坐标进行历元转换与框架转换;同时根据南宁某CORS站观测值所求板块运动速度,对相关结论进行验算。结果表明:基于准确的板块运动速度场,采用历元与框架转换方式求取CGCS2000坐标能够满足小区域GPS控制测量的精度要求。  相似文献   

7.
本文基于RTKLIB现有的框架,对精密单点定位中的主要误差模型进行分析,通过调用其误差改正模型算法,实现了精密单点定位解算;对定位误差分析表明,X、Y、Z三个方向均在80个历元内误差达到0.1 m,而且逐步减小趋于稳定。定位误差在180个历元达到7 cm.   相似文献   

8.
顾及框架点坐标误差的三维基准转换严密模型   总被引:1,自引:1,他引:0  
曾安敏  明锋 《测绘学报》2017,46(1):16-25
框架点坐标是由观测数据通过平差得到的,不可避免地受到观测误差的影响。针对原框架和目标框架坐标均存在误差、非公共点与公共点间存在相关性,以及转换系数矩阵中仅部分元素存在误差的实际情况,提出了同时考虑框架内误差以及转换点间相关性的基准转换严密模型,该模型将公共点和非公共点联合处理,同时计算坐标转换参数和所有点的坐标转换值,推导出了新的严格坐标转换公式,该公式为传统坐标转换公式基础上增加一改正量的形式;进一步,推导了原框架和目标框架坐标的方差不一致情况下的坐标转换模型的自适应解法;最后,利用"陆态网络工程"2000个区域站的实测坐标进行坐标转换验证,结果表明,这种严密模型较传统坐标转换模型具有更高的坐标转换精度。  相似文献   

9.
采用麻省理工学院开发的GAMIT/GLOBK软件,将2015年-2016年全球347个IGS站观测数据分七个子网解算,得到一个固定的参考框架来解算云南及周边地区的35个全球卫星导航系统(GNSS)基准站的坐标,测站坐标均方根误差水平方向在0.7 mm以内,垂直方向在0.3 mm以内,水平方向的坐标重复性精度在5 mm以内,垂向坐标的重复性精度大多数在2.5 cm以内;与在ITRF2014下解算的测站坐标、基线长度、水平速度场结果对比表明:测站坐标存在系统误差,水平方向上的差异在8.5 mm以内,垂直方向上在3 cm以内;基线长度差异在2 mm以内,水平速度场在数值上存在毫米级的差异,方向上基本一致.   相似文献   

10.
GNSS直接定位成果的坐标基准同观测时刻定位所采用的卫星星历基准是一致的,但有时需要获得测站在不同ITRF框架及对应不同历元的坐标,因此基准转换和历元转换是需要的。本文探讨使用约束平差法和速度场法对GNSS定位成果基准和历元进行转换,并分析所能达到的精度,试验结果表明:两种方法都可以达到5 cm左右的转换精度。  相似文献   

11.
为满足新建射电望远镜在单站或多站联合进行的深空探测或射电天文观测对中心坐标精确测定的要求,提出一种利用已知精确中心坐标的望远镜作为参照物,测量地平式射电望远镜中心点坐标的方法和测量数据处理方法。这一方法对场地和设备的要求较低,能够得到毫米级或亚毫米级的位置精度。尤其适合对天线阵列的中心位置进行测量。对国家天文台密云观测站的40 m射电望远镜进行了中心坐标测量,位置均方根误差为2.312 mm,满足了后续的观测工作对其位置的需求。  相似文献   

12.
ITRF2014是地球参考系的最新实现。该框架利用正弦函数估计负荷对台站位置的季节性效应,与ITRF2008相比,可以得到更稳定、精确的速度场;另外,ITRF2014引入了震后形变模型,可以更好地分析测站的非线性运动。本文通过分析发现:ITRF2014其原点相较于ITRF2008,其符合精度为3.5 mm;两种技术(VLBI和SLR)在2010.0历元确定的尺度因子不符值为1.18 ppb;同时,局部测量解与空间大地测量解解算的本地连接向量仍存在较大不符。  相似文献   

13.
We develop a method to evaluate the terrestrial reference frame (TRF) scale rate error using Global Positioning System (GPS) satellite antenna phase center offset (APCO) parameters and apply it to ITRF2008. We search for the TRF in which z-APCO parameters have the smallest drift. In order to provide realistic error bars for the z-APCO drifts, we pay attention to model periodic variations and auto-correlated noise processes in the z-APCO time series. We will show that the GPS scale rate with respect to a frame is, as a first approximation, proportional to the estimated mean z-APCO trend if that frame is used to constrain station positions. Thus, an ITRF2008 scale rate error between ?0.27 and ?0.06 mm/yr depending on the GPS analysis center can be estimated, which demonstrates the high quality of the newly constructed ITRF2008. We will also demonstrate that the traditional estimates of the GPS scale rate from 7-parameter similarity transformations are consistent with our newly derived GPS scale rates with respect to ITRF2008 within two sigmas. We find using International GNSS Service (IGS) products that the traditional approach is relevant for scale rate determination even if some of the z-APCO values supplied by the IGS were not simultaneously calibrated. As the scale rate is related to the accuracy of vertical velocities, our estimates supply a conservative evaluation that can be used for error budget computation.  相似文献   

14.
The 2008 DGFI realization of the ITRS: DTRF2008   总被引:11,自引:11,他引:0  
A new realization of the International Terrestrial System was computed at the ITRS Combination Centre at DGFI as a contribution to ITRF2008. The solution is labelled DTRF2008. In the same way as in the DGFI computation for ITRF2005 it is based on either normal equation systems or estimated parameters derived from VLBI, SLR, GPS and DORIS observations by weekly or session-wise processing. The parameter space of the ITRS realization comprises station positions and velocities and daily resolved Earth Orientation Parameters (EOP), whereby for the first time also nutation parameters are included. The advantage of starting from time series of input data is that the temporal behaviour of geophysical parameters can be investigated to decide whether the parameters can contribute to the datum realization of the ITRF. In the same way, a standardized analysis of station position time series can be performed to detect and remove discontinuities. The advantage of including EOP in the ITRS realization is twofold: (1) the combination of the coordinates of the terrestrial pole—estimated from all contributing techniques—links the technique networks in two components of the orientation, leading to an improvement of consistency of the Terrestrial Reference Frame (TRF) and (2) in their capacity as parameters common to all techniques, the terrestrial pole coordinates enhance the selection of local ties as they provide a measure for the consistency of the combined frame. The computation strategy of DGFI is based on the combination of normal equation systems while at the ITRS Combination Centre at IGN solutions are combined. The two independent ITRS realizations provide the possibility to assess the accuracy of ITRF by comparison of the two frames. The accuracy evaluation was done separately for the datum parameters (origin, orientation and scale) and the network geometry. The accuracy of the datum parameters, assessed from the comparison of DTRF2008 and ITRF2008, is between 2–5?mm and 0.1–0.8?mm/year depending on the technique. The network geometry (station positions and velocities) agrees within 3.2?mm and 1.0?mm/year. A comparison of DTRF2008 and ITRF2005 provides similar results for the datum parameters, but there are larger differences for the network geometry. The internal accuracy of DTRF2008—that means the level of conservation of datum information and network geometry within the combination—was derived from comparisons with the technique-only multi-year solutions. From this an internal accuracy of 0.32?mm for the VLBI up to 3.3?mm for the DORIS part of the network is found. The internal accuracy of velocities ranges from 0.05?mm/year for VLBI to 0.83?mm/year for DORIS. The internal consistency of DTRF2008 for orientation can be derived from the analysis of the terrestrial pole coordinates. It is estimated at 1.5–2.5?mm for the GPS, VLBI and SLR parts of the network. The consistency of these three and the DORIS network part is within 6.5?mm.  相似文献   

15.
2000中国大地坐标系统(China Geodetic Coordinate System 2000,CGCS2000)的建立和维持主要依赖于GPS技术,不利于保障国家时空信息安全。中国北斗卫星导航系统(BeiDou navigation satellite system,BDS)提供亚太区域服务,可满足中国及周边地区高精度定位导航应用需求,对建立和维持国家大地坐标参考框架具有重要意义。研究利用已建成的北斗基准站网观测数据,实现基于BDS技术、并与国际地球参考框架(International Terrestrial Reference Frame,ITRF)一致的国家大地坐标参考框架,为今后国家级和全球性北斗坐标参考框架(BeiDou Terrestrial Reference Frame,BTRF)的建立和维持提供理论基础和方法支撑。初步计算结果表明,积累2 a以上的观测数据,利用单独BDS数据可以获得与GPS精度相当的水平速度场,精度约为2~3 mm/a。基于单独BDS数据,测站残差平面和高程的重复性分别可优于0.8 cm和1.7 cm。利用BDS数据已可监测到测站高程方向的季节性变化。此外,还对单独BDS与GPS数据计算的坐标可能存在的与经纬度相关的系统误差进行了分析。总体来说,目前的北斗系统可满足建立和维持中国cm级大地坐标框架的需求。  相似文献   

16.
In preparation of activities planned for the realization of the Global Geodetic Observing System (GGOS), a group of German scientists has carried out a study under the acronym GGOS-D which closely resembles the ideas behind the GGOS initiative. The objective of the GGOS-D project was the investigation of the methodological and information-technological realization of a global geodetic-geophysical observing system and especially the integration and combination of the space geodetic observations. In the course of this project, highly consistent time series of GPS, VLBI, and SLR results were generated based on common state-of-the-art standards for modeling and parameterization. These series were then combined to consistently and accurately compute a Terrestrial Reference Frame (TRF). This TRF was subsequently used as the basis to produce time series of station coordinates, Earth orientation, and troposphere parameters. In this publication, we present results of processing algorithms and strategies for the integration of the space-geodetic observations which had been developed in the project GGOS-D serving as a prototype or a small and limited version of the data handling and processing part of a global geodetic observing system. From a comparison of the GGOS-D terrestrial reference frame results and the ITRF2005, the accuracy of the datum parameters is about 5?C7?mm for the positions and 1.0?C1.5?mm/year for the rates. The residuals of the station positions are about 3?mm and between 0.5 and 1.0?mm/year for the station velocities. Applying the GGOS-D TRF, the offset of the polar motion time series from GPS and VLBI is reduced to 50 ??as (equivalent to 1.5?mm at the Earth??s surface). With respect to troposphere parameter time series, the offset of the estimates of total zenith delays from co-located VLBI and GPS observations for most stations in this study is smaller than 1.5?mm. The combined polar motion components show a significantly better WRMS agreement with the IERS 05C04 series (96.0/96.0???as) than VLBI (109.0/100.7???as) or GPS (98.0/99.5???as) alone. The time series of the estimated parameters have not yet been combined and exploited to the extent that would be possible. However, the results presented here demonstrate that the experiences made by the GGOS-D project are very valuable for similar developments on an international level as part of the GGOS development.  相似文献   

17.
国际地球参考框架2000(ITRF2000)的定义及其参数   总被引:10,自引:1,他引:10  
对国际地球参考框架2000(ITRF2000)的定义、主要参数及其应满足的条件进行了研究,重点指出了它和历史上的各个ITRFyy的不同,并阐述了各个ITRFyy的联系和区别,给出了它们之间相互转换的参数。  相似文献   

18.
针对全球导航卫星系统(GNSS)数据处理过程中旧的ITRF 2008参考框架现势性不足及新的ITRF2014框架在数据的数量与质量、参数模型、测站的分布合理性上均有提高等状况,该文以陆态网的最近两年的观测数据为例,对比分析了ITRF2008和ITRF2014框架下各测站的坐标、基线长度、水平速度场的差异,以期为当前高精度GNSS数据处理提供参考。实验表明:两个框架下的成果经基准转换后,测站在X、Y、Z方向的差异均为毫米级;基线差异平均在1 mm以内;水平速度场差值的最大值为5.75(mm·a~(-1)),最小值为-4.88(mm·a~(-1)),平均值为-0.45(mm·a~(-1)),方向上差值的平均值为0.02rad。目前两个框架的差异对一般工程应用基本上可以忽略,但对地震监测的陆态网来说,则必须考虑。  相似文献   

19.
The WGS84 (World Geodetic System 1984) reference system is, originally, mathematically defined from the NSWC-9Z2 (Naval Surface Weapons Center — 9Z2) reference system. The WGS84 associated realization, called in this paper WGS84-D, is a 1 meter consistency NNSS (US Navy Navigation Satellite System) Doppler realized reference frame. In contrast, the ITRF (IERS Terrestrial Reference Frame) is a 1 centimeter consistency reference frame realized through the most accurate techniques of Space Geodesy. This work intends to improve the transformation parameters between the WGS84-D and the ITRF through the use of both a NSWC-9Z2/Doppler realization and an extension of the ITRF network. A strong linear correlation was also modeled between the Doppler determined scale factor and the mean smoothed sunspot number, due to uncompensated ionospheric effects. This correction improved NSWC-9Z2 (i.e. WGS84) Doppler realization consistency. The uncertainty of adjusted transformation parameters between the ITRF and the WGS84-D is improved by a factor 2 over previous determinations.  相似文献   

20.
Quality assessment of GPS reprocessed terrestrial reference frame   总被引:5,自引:1,他引:4  
The International GNSS Service (IGS) contributes to the construction of the International Terrestrial Reference Frame (ITRF) by submitting time series of station positions and Earth Rotation Parameters (ERP). For the first time, its submission to the ITRF2008 construction is based on a combination of entirely reprocessed GPS solutions delivered by 11 Analysis Centers (ACs). We analyze the IGS submission and four of the individual AC contributions in terms of the GNSS frame origin and scale, station position repeatability and time series seasonal variations. We show here that the GPS Terrestrial Reference Frame (TRF) origin is consistent with Satellite laser Ranging (SLR) at the centimeter level with a drift lower than 1 mm/year. Although the scale drift compared to Very Long baseline Interferometry (VLBI) and SLR mean scale is smaller than 0.4 mm/year, we think that it would be premature to use that information in the ITRF scale definition due to its strong dependence on the GPS satellite and ground antenna phase center variations. The new position time series also show a better repeatability compared to past IGS combined products and their annual variations are shown to be more consistent with loading models. The comparison of GPS station positions and velocities to those of VLBI via local ties in co-located sites demonstrates that the IGS reprocessed solution submitted to the ITRF2008 is more reliable and precise than any of the past submissions. However, we show that some of the remaining inconsistencies between GPS and VLBI positioning may be caused by uncalibrated GNSS radomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号