首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
针对多模态、多尺度的高分辨率遥感影像分割问题,提出了结合空洞卷积的FuseNet变体网络架构对常见的土地覆盖对象类别进行语义分割。首先,采用FuseNet变体网络将数字地表模型(digital surface model,DSM)图像中包含的高程信息与红绿蓝(red green blue,RGB)图像的颜色信息融合;其次,在编码器和解码器中分别使用空洞卷积来增大卷积核感受野;最后,对遥感影像逐像素分类,输出遥感影像语义分割结果。实验结果表明,所提算法在国际摄影测量与遥感学会(International Society for Photogrammetry and Remote Sensing, ISPRS)提供的Potsdam、Vaihingen数据集上的mF1得分分别达到了91.6%和90.4%,优于已有的主流算法。  相似文献   

2.
高分辨率遥感影像分割方法研究   总被引:1,自引:0,他引:1  
在遥感应用分析中,遥感影像分割是低层影像处理和中高层影像分析和理解的桥梁,是实现遥感影像信息自动提取的关键步骤,具有重要的意义。随着大量高分辨率遥感影像的出现,传统基于像素的影像处理方法已不能适应高分辨率遥感影像。近年来,国内外研究者们提出了面向对象影像的分析方法,而面向对象影像分析方法的关键就是影像分割,影像分割精度直接影响着高分辨率遥感信息提取和目标识别的精度。首先给出一般图像分割方法的综述;然后分析和总结了当前主要的高分辨率遥感影像分割方法,着重阐述了均值漂移、分形网络进化、马尔科夫随机场等分割方法的特点和研究现状;最后,对高分辨率遥感应用分析中影像分割方法的发展趋势进行了讨论与展望。  相似文献   

3.
深度卷积神经网络支持下的遥感影像语义分割   总被引:1,自引:0,他引:1  
针对高分遥感影像语义分割面临的类别不平衡和上下文信息利用不充分问题,本文提出了一种优化的DeeplabV3+算法。首先通过修改交叉熵损失函数,解决数据不平衡问题;其次使用Vortex Pooling取代ASPP模块提高上下文信息;然后采用多尺度输入充分利用图像的多尺度信息,并用投票策略进行特征融合提高图像分割准确性;最后使用形态学作后处理消除拼接痕迹和噪声。在CCF大赛的数据集上进行训练,并与其他经典语义分割算法进行比较。试验结果表明,该算法充分利用上下文信息,有效减少了错误分类,且使分割边界更精确,尤其对于线状目标的捕捉能力更强;在整幅测试影像上的MIoU可达85.21%,明显优于SegNet、U-Net算法。  相似文献   

4.
融合可变形卷积与条件随机场的遥感影像语义分割方法   总被引:1,自引:1,他引:1  
左宗成  张文  张东映 《测绘学报》2019,48(6):718-726
当前,深度卷积神经网络在遥感影像语义分割领域取得了长足的发展.标准的卷积神经网络由于卷积核的几何形状是固定的,导致对几何变换的模拟能力受到限制.本文引入一种可变形卷积来增强卷积网络对空间变换的适应能力.由于神经网络架构中使用了池化层操作,这会导致在输出层未能充分地对局部对象进行准确的分割.为了克服这种特性,本文将神经网络输出层的粗糙预测分割结果通过全连接的条件随机场来进行处理,以此来提高对影像细节的分割能力.本文方法易于采用标准的反向传播算法进行端到端的方式训练.ISPRS数据集上的测试试验结果表明本文方法可以有效地克服遥感影像中分割对象的复杂结构对分割结果的影响,并在该数据集上获得了当前最好的语义分割结果.  相似文献   

5.
为了提高语义分割数据集的标注效率,研究人员提出了使用点击正负样本区域的交互式语义分割方法。然而,现有交互信息编码方式并未考虑图像上下文结构信息,当用户交互信息(鼠标点击位置)质量较差时,例如位于物体边缘附近时,易出现分割结果错误。针对该问题,本文提出结合超像素分割的交互信息编码方式。在遥感影像及医学影像数据集上的实验表明,结合超像素的交互信息编码方式,可有效提高交互式语义分割的效果,特别是在交互信息质量较差的情况下。  相似文献   

6.
语义分割是高空间分辨率遥感图像分析和理解的核心内容之一。现有基于深度学习的语义分割网络会导致遥感图像高频信息损失,边界分割不准确。针对此问题,本文提出一种双解耦语义分割网络模型,将提取的两级特征图解耦为具有高频特性的边界特征和具有低频特性的主体特征,并将解耦后的边界和主体特征图进行融合,从而改善高分辨率遥感图像语义分割性能。进一步提出了一种顾及边界和主体的损失函数,对地物要素及其边界和主体部分进行优化学习。在ISPRS Vaihingen和Potsdam 2D高空间分辨率遥感图像数据集上进行试验,与已有的遥感图像语义分割网络模型结果比较,双解耦语义分割网络模型能有效提高地物要素分割精度。  相似文献   

7.
高空间分辨率遥感影像的多智能体分割方法研究   总被引:1,自引:0,他引:1  
赵贝  钟燕飞  张良培 《测绘学报》2013,42(1):108-115
提出一种基于多智能体的高空间分辨率遥感影像分割算法(high spatial resolution remote sensing image segmentation algorithm based on multi-agent theory,MARSS).该方法在区域合并中结合了影像的光谱信息和形状信息,同时利用多智能体与图像环境交互性强,灵活性高,具有并行运算的优点,通过多个智能体控制不同区域的合并过程,能够使分割算法的全局合并控制更加优化.试验结果表明,该算法的分割效果要优于分形网络演化算法(FNEA).  相似文献   

8.
高分辨率遥感影像语义分割的半监督全卷积网络法   总被引:1,自引:0,他引:1  
耿艳磊  陶超  沈靖  邹峥嵘 《测绘学报》2020,49(4):499-508
在遥感领域,利用大量的标签影像数据来监督训练全卷积网络,实现影像语义分割的方法会导致标签绘制成本昂贵,而少量标签数据的使用会导致网络性能下降。针对这一问题,本文提出了一种基于半监督全卷积网络的高分辨率遥感影像语义分割方法。通过采用一种集成预测技术,同时优化有标签样本上的标准监督分类损失及无标签数据上的非监督一致性损失,来训练端到端的语义分割网络。为验证方法的有效性,分别使用ISPRS提供的德国Vaihingen地区无人机影像数据集及国产高分一号卫星影像数据进行试验。试验结果表明,与传统方法相比,无标签数据的引入可有效提升语义分割网络的分类精度并可有效降低有标签数据过少对网络学习性能的影响。  相似文献   

9.
耕地资源的快速、精准提取是支撑耕地保护和耕地用途管制的重要基础。随着高分辨率遥感和人工智能技术的快速发展,高分辨率遥感耕地提取已逐渐由传统的基于像元和面向对象的分类算法过渡至以深度学习为代表的智能化耕地提取新阶段,并取得不少成果,但也同样面临着诸多挑战。首先,梳理和分析了传统耕地提取算法和基于深度学习的智能化耕地提取算法的研究现状,阐述了深度学习支持下的耕地提取研究的必要性;然后,结合全卷积神经网络的发展历程,介绍了深度语义分割技术的基本原理以及在耕地提取应用中的实验流程,并归纳了主要的智能耕地提取算法;最后,围绕智能化耕地提取研究存在的不足,探讨了智能化耕地提取技术的发展趋势。  相似文献   

10.
针对基于像素模型的单尺度或多尺度谱聚类影像分割方法在相似矩阵存储、特征分解效率及分割精度方面存在的不足。该文首先通过给定多组空间及光谱带宽参数,利用mean-shift初分割生成不同尺度的超像素对象层;然后联合像素与超像素对高空间分辨率影像中的不同类别地物进行的多尺度建模表达其空间拓扑关系,即在图割理论框架下建立"像素-超像素"联合的多尺度无向权图模型G(V,E,W),同时根据遥感影像纹理特征丰富的特点,在顶点相似性计算过程中融合纹理特征;最后使用基于normalized cut准则的谱聚类算法,对图模型划分得到最终分割结果。该方法较好地降低了基于像素的谱聚类分割方法的计算复杂度,同时提高分割结果准确率。标准测试数据集和"高分2号"遥感影像分割结果表明了该方法的有效性。  相似文献   

11.
高分辨率遥感影像的深度学习变化检测方法   总被引:2,自引:0,他引:2  
张鑫龙  陈秀万  李飞  杨婷 《测绘学报》2017,46(8):999-1008
为提升高分辨率遥感影像的变化检测精度,提出一种利用深度学习的变化检测方法。在预处理的基础上,利用顾及邻域信息的改进变化矢量分析算法和灰度共生矩阵算法获取影像间光谱和纹理变化,并通过设置自适应采样区间提取最可能的变化和未变化区域样本。构建并训练包含标签层的高斯伯努利深度限制玻尔兹曼机模型,以提取变化和未变化区域深层特征,从而有效辨别变化区域。通过WorldView-3与Pléiades-1影像的试验表明本文方法在变化检测精度方面优于对比方法。  相似文献   

12.
高空间分辨率遥感影像中地物目标内部光谱信息复杂性的增强,使得传统基于光谱特征值的数据处理方法效果不再显著,影像分割为解决这一问题提供了一种思路,成为当前高空间分辨率遥感影像处理的研究焦点.时刻独立脉冲耦合神经网络具有状态相近、空间相邻神经元相互耦合同步脉冲激发和区域之间神经元脉冲激发时刻独立两大特点,已被应用于非遥感影像分割中,并取得较好效果.本文结合高空间分辨率遥感影像特点,通过对网络参数进行实验和分析,提出一个基于时刻独立脉冲耦合神经网络的高空间分辨率遥感影像分割方法,并利用空间分辨率0.3m的航空影像进行了数据试验,将分割结果进行讨论并与现有时刻独立脉冲耦合神经网络方法和ISODATA方法分割结果进行对比分析.结果表明:时刻独立脉冲耦合神经网络在高空间分辨率遥感影像分割处理中具有很好的应用前景.  相似文献   

13.
针对遥感图像分割时仅利用光谱信息容易造成过分割和边缘定位不准的问题,提出一种结合光谱强度和纹理信息的遥感图像分水岭分割算法。首先分别提取图像的光谱梯度和纹理梯度,提出一种改进双边滤波模型,滤除图像中的噪声的周时,采用了一种局部的平滑尺度,能够有效消除纹理信息,借助于滤波算法,分别对原图像和Gabor纹理特征图像进行平滑处理,利用边缘检测算子得到光谱梯度和纹理梯度。最后利用形态学膨胀方法进行融合融合,使用分水岭变换对图像分割。用三幅高分辨率彩色遥感图像数据进行实验,并与JSEG(Joint Systems Engineering Group)和多分辨率分割方法进行比较,结果表明该方法具有较高的边界定位准确性,同时降低了过分割和欠分割现象。  相似文献   

14.
目前遥感影像变化检测技术已广泛应用在许多领域,成为遥感技术的热点。对变化检测分类和传统变化检测方法在高分辨率遥感影像变化检测中存在的问题进行分析,提出面向对象的变化检测思路,并进行试验。试验结果表明,利用面向对象技术进行影像分类,再进行变化检测能达到较好的效果。  相似文献   

15.
基于直线和区域特征的遥感影像线状目标检测   总被引:1,自引:0,他引:1  
针对高分辨率航空遥感影像中线状目标的特点,提出一种结合区域和直线特征识别线状目标的方法。在基于标记点分水岭变换进行初始分割的基础上,利用关于目标的知识和区域邻接图(RAG)对感兴趣区域进行合并,得到最终检测结果。实验结果表明,本文方法可以有效地从遥感影像中提取线状目标。  相似文献   

16.
高空间分辨率遥感影像下的违法用地变化检测   总被引:2,自引:0,他引:2  
遥感影像时间、空间分辨率的逐渐提高和图像识别技术的发展,使基于高分辨率遥感影像进行自动、准确、快速的违法用地检测成为可能。本文利用高空间分辨率遥感影像,提出了一种基于地物分布特性的违法用地变化检测方法,将违法用地判别特征知识融入变化检测模型,实现违法用地变化信息自动提取。选取广州市从化街口地区为研究区域,试验结果表明该方法能够辅助应用人员在大范围内快速地定位疑似违章用地图斑,提高生产效率,取得较好的应用效果。  相似文献   

17.
多水平集演化的高分辨率遥感影像分割   总被引:2,自引:0,他引:2  
提出多水平集演化的非监督高分辨率影像分割模型,避免传统多水平集方法中的区域重叠问题。提出新的水平集函数重初始化技术加快曲线演化,该模型缓解面向像元分割中的“椒盐效应”及面向对象分割中尺度选择不佳造成的过/欠分割现象。  相似文献   

18.
高分辨率遥感影像的精纠正   总被引:10,自引:1,他引:10  
论述了对高分辨率遥感影像进行精纠正获得正射影像的关键技术。若干实际不同分辨率的高分辨率遥感影像被用于相应的实验,实例证明了本文算法的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号