首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
冻胀过程与冻结缘特性   总被引:1,自引:0,他引:1  
何平  邴慧  张钊  杨成松 《冰川冻土》2004,26(Z1):21-25
The complex process of soil freezing which relates to moisture field, temperature and stress field usually accompanies water migration and crystallization. The mechanism of water migration in the -frozen fringe is blurry though there have rather mature theory analyzing water migration in the unfrozen zone and fully-frozen zone. It is a visualized and easy method to calculate the potential gradient of frozen fringe by frost heave amount, the duration of the steady state of frost heaving and the coefficient of permeability based on the Darcy penetration theory, not directly considering water driving force, ice segregation temperature and the thickness of frozen fringe. The method is feasible by comparing the calculated amount of frost-heaving with the test data.  相似文献   

2.
Water accumulation associated with water migration is closely related with the ice segregation,but their coupling relationship is still unclear. To decoupling the relationship of water accumulation and ice segrega⁃ tion,herein,the dynamics of water migration and ice segregation during the freezing and thawing of different soil types under different water supplying conditions have been investigated based on pore water pressure mea⁃ surement and layer-scanning technique. Results showed that apparent water accumulation near the freezing front during the freezing of silty clay and loess tested here,but there exist differences in modes. During loess freezing under closed system,no ice segregation was observed,the pore water pressure increased,and there existed ap⁃ parent liquid water accumulation during the early stage of freezing;while during the freezing of silty clay,there existed ice segregation,the pore water pressure decreased,and no apparent liquid water accumulation occurred during the early stage of freezing. The results implied that there exist two modes of water accumulation near the freezing front during soil freezing:one is the water accumulation induced by water pressure gradient induced by pore ice which results in water flowing from the frozen zone and unfrozen zone to the location near the freezing front;the other is the water accumulation induced by cryo-suction of segregation ice which results in the water flowing from the unfrozen zone to the location near the freezing front. Notably,the contribution from each mode associated with water accumulation of soil freezing depends on whether the ice segregation exists. As no ice seg⁃ regation forms,water accumulation induced water pressure gradient predominates during the early stage of freez⁃ ing. As there exists ice segregation during freezing,water accumulation induced cryo-suction predominates dur⁃ ing the later stage of freezing. Investigating on different modes of water accumulations will be helpful for the ex⁃ ploring the mechanisms of freeze-thaw diseases and the ground ice in the cold regions. © 2023 Chinese Journal of General Practitioners. All rights reserved.  相似文献   

3.
刘启  张泽  张圣嵘  恽晴飞  付峻松 《冰川冻土》2022,44(6):1820-1832
Seasonally frozen soils are widely distributed in China in terms of area,and the freeze-thaw cycle effect generated by the alternation of cold and warmth is one of the causes of engineering damage in cold areas during construction,and it is particularly important to restore the nature and state of the soil when it is subjected to freeze-thaw action. Therefore,sandy soil specimens with different numbers of freeze-thaw cycles were prepared,and the long-term strength of frozen sandy soil was tested using a spherical template indenter. Using fractal theory and the microstructure image processing software ImageJ,the change law of grain group and long-term strength of two frozen sandy soils under different numbers of freeze-thaw cycles were studied. The results show that:for fine sand(FS),the fractal dimension DB has a highly significant positive correlation with the long-term strength variation,among which ≥0. 15~0. 20 mm and ≥0. 25~0. 40 mm have the best fit with the long-term strength,and are the dominant grain classes of FS. For medium sand(MS),the fractal dimension DB is slightly positively correlated with the long-term strength,and the variation shows a“vertical N”trend,in which the grain size content of ≥0. 30~0. 40 mm and ≥0. 40 mm fits better with the long-term strength,and is the dominant grain class for MS. The content of other grain groups did not correlate significantly with the long-term strength change. The freeze-thaw action changed the content ratios of coarse and fine grain agglomerates in the soil. With the increase of the overall particle size interval,the dominant particle size also increases,which shows that the long-term strength of frozen sandy soil tends to decrease and then increase with the increase of the content of some particle sizes. The results of the study can provide theoretical reference for the determination of long-term strength in areas subject to freeze-thaw action. © 2022 Science Press (China).  相似文献   

4.
肖杨  满浩然  董星丰  臧淑英  李苗 《冰川冻土》2022,44(6):1944-1957
Soil freeze-thaw cycles have important effects on surface water and energy balance,and then affect vegetation growth,soil water content,carbon cycle and terrestrial ecosystem. Passive microwave plays an important role in monitoring global and regional surface freeze-thaw processes due to its high temporal resolution,abundant data and sensitivity to soil moisture. With the launch of passive microwave sensors at home and abroad,it provides conditions for the study of permafrost interannual variation,seasonal variation,diurnal variation and long time series of near-surface soil freeze-thaw cycle. In recent years,the study of surface freeze-thaw cycle using passive microwave data has gradually increased. Based on previous studies,this paper summarizes the types of passive microwave remote sensing data and the characteristics of the bands contained in them. Expounded the principle of passive microwave monitoring data used for freezing and thawing,focus on passive microwave data in five categories in the study of freezing and thawing monitoring algorithms,including double index algorithm,the decision tree algorithm,freeze-thaw discriminant algorithm,seasonal threshold algorithm and based on the freezing L-band relative factors discriminant algorithm threshold,and analysis of 5 kinds of algorithms are compared;The freeze-thaw products based on different algorithms and passive microwave data were combed. Finally,the problems and future research directions of passive microwave remote sensing in surface freeze-thaw applications are summarized. In the acquisition of passive microwave data,it is found that the passive microwave data is missing due to the physical characteristics of the sensor,the shape and orbit of the earth,and the low resolution of passive microwave data leads to the low precision of freeze-thaw discrimination. For the problem of missing passive microwave data,it is proposed to use the average value of passive microwave data before and after two days to fill the missing brightness temperature data,or establish statistical function to complement the missing data. For the problem of low passive microwave resolution,the current development trend is to scale down based on passive microwave data and combine with multiple data products,such as ground temperature and active microwave data,or perform probability discrimination on surface freezing-thawing state in pixels,so as to better describe surface freeze-thaw state. In terms of the algorithm for discriminating surface freezing-thawing,based on the problem that dual-index algorithm,decision tree algorithm,freezing-thawing discriminant algorithm and seasonal threshold algorithm cannot accurately distinguish snow and frozen soil,this paper proposes to adopt the method of data assimilation or start from the snow radiation and frozen soil dielectric model. Optimization of the algorithm for the snow covered surface can further improve the accuracy of freeze-thaw classification. Based on existing freeze-thaw products,Although SMAP freeze-thaw products continue to be updated,SAMP satellite was launched late,and SAMP freeze-thaw products have a short time series. In the future,the time span of this algorithm for freezing-thawing products can be extended by combining L-band data provided by SMOS satellite. The problems mentioned above and the direction of further research are of great significance for improving the accuracy of freezing and thawing discrimination and improving the understanding of the variation law of freezing and thawing cycles,and also have certain research space. © 2022 Science Press (China).  相似文献   

5.
In recent years,more and more attention has been paid to the problem of the cryosphere changes on the Tibetan Plateau,and it has gradually become a hot issue for scholars. Known as the“water tower of Asia”,the Tibetan Plateau is the source of many major rivers in Asia. Under the combined influence of climate change and human activities,water resources on the Tibetan Plateau have undergone profound changes,especially soil water,as an important component of water resources,which plays an important role in regulating vegetation and crop growth,rainfall and runoff. However,global warming leads to the degradation of permafrost and seasonal⁃ ly frozen soil,which affects the original water cycle process and the spatial and temporal pattern of water re⁃ sources by changing the properties of soil water storage and water transport. In the Tibetan Plateau,where there are few data,it is difficult to directly study the soil water cycle process under freezing-thawing by using original data. Therefore,it is an important means to simulate the variation characteristics of soil water and temperature under freezing-thawing in seasonally frozen soil regions of the Tibetan Plateau by using coupling model of soil water and heat. Aiming at the key problem of the difference of soil temperature and moisture characteristics in typical seasonally frozen soil regions under different meteorological conditions,this paper simulated the charac⁃ teristics of soil moisture and temperature change in Maqu,Naqu(Nagqu)and Shiquanhe from 2017 to 2018 by using SHAW(Simultaneous Heat and Water)model and three soil moisture characteristic curve models. The simulation effect and variation characteristics of soil moisture and temperature under different meteorological conditions were analyzed,and the influence of soil moisture characteristic curve model on the simulation effect was studied. The results show that SHAW model can well simulate the temporal variation and vertical distribu⁃ tion of soil temperature and moisture under different meteorological conditions. The simulation effect of soil tem⁃ perature is better than that of soil moisture. The average NSE,R2 and RMSE of soil temperature are 0. 88,0. 96 and 2. 20 ℃,respectively. The mean NSE,R2 and RMSE of soil moisture are 0. 60,0. 72 and 0. 03 m3·m-3,respec⁃ tively. In terms of different meteorological conditions,the simulation effect of soil temperature in relatively dry region was significantly better than that in humid region,while the simulation effect of soil water in relatively hu⁃ mid region was significantly better than that in arid region. From different depths in soil,the simulation effect of soil temperature decreases gradually with the increase of depth,while the simulation effect of soil moisture in the middle and lower layers is better than that in the surface layer. From the view of different soil moisture character⁃ istic curve models,different soil water characteristic curve models have no significant effect on soil temperature simulation effect,but there are significant differences in soil moisture simulation effect. In addition,there are great differences and uncertainties in simulating soil temperature and moisture in different freezing-thawing stag⁃ es. With the increasing trend of climate warming,permafrost and seasonally frozen soil on the Tibetan Plateau may continue to degrade,may change the current water resources pattern,resulting in frequent extreme weather events. Therefore,from the perspective of numerical simulation,this paper verified the applicability of soil moisture and heat coupling model in soil temperature and moisture simulation under different meteorological con⁃ ditions,revealed the influence of precipitation and temperature on soil temperature and moisture simulation at different depths in seasonally frozen soil regions,and analyzed the differences in simulation effects of different soil moisture characteristic curve models. The results provide reference for the study of soil water resources vari⁃ ation under freezing-thawing conditions. © 2023 Chinese Journal of General Practitioners. All rights reserved.  相似文献   

6.
Cryogenic structure (patterns made by ice inclusions) in seasonally frozen and permafrost-af-fected soils result from ice formation during freezing. Analysis of cryogenic structures in soils is essential to our understanding of the cryogenic processes in soils and to formulating land use management interpretations. When soils freeze, the freezing front moves downward and attracts water moving upward resulting in mainly horizontal lenticular ice formation. Platy and lenticular soil structures form between ice lenses in upper active layer. The reticular soil structure usually forms above the permafrost table caused by freeze-back of the permafrost. The upward freeze-back resulted in platy soil structure and the volume changes following the annual freeze-thaw cycle resulted in vertical cracks. The combined result is an ice-net formation with mineral soils embedded in the ice net. The upper permafrost layer that used to be a part of the active layer has an ice content exceeding 50% due to repeated freeze-thaw cycles over time. The mineral soils appear in blocks embedded in an ice matrix. The permafrost layer that never experienced the freeze-thaw cycle often consists of alternate layers of thin ice lens and frozen soils with extreme hard consistence and has relatively lower ice content than the ice-rich layer of the upper permafrost. Ice contents and thaw settling potentials associated with each cryogenic structure should be considered in engineering and land use interpretations.  相似文献   

7.
Beiluhe basin lies in a permafrost region where is located in the interior of Tibetan Plateau. Ecosystem in the area is subjected to the freeze-thaw process of the active tjaele,and there is conspicuous correlation between soil moisture(SM)and vegetation coverage. To retrieve the soil moisture content of Beiluhe basin with a total area of 2 037. 94 km2,a synergistic method,which combined improved water cloud model,Oh,Dubois and Topp model,was presented in this paper base on Sentinel-1A multi-polarization SAR and Landsat-8 time series images data. The accuracy was validated with the in-situ point SM data:Adjusted-R2 of the regression equation is 0. 6848,and RMSE is 0. 039 cm3·cm-3. The analysis of correlation among freeze-thaw process,SM and vegetation cover from macro watershed scale manifests:Vegetation coverage has a significant delayed effect on the freeze-thaw process of the active tjaele,that is,the higher vegetation coverage,the more lagging freeze-thaw time;These study results are basically consistent with predecessors in-situ observation data,verifying the feasibility of studying correlation among soil freeze-thaw process,SM,and vegetation coverage from the macro watershed scale based on Sentinel-1A annual time series data. © 2022 Science Press (China).  相似文献   

8.
邓友生  何平  周成林  张钊 《冰川冻土》2004,26(Z1):39-43
By the indoor experiment research the hydraulic parameters of the saline soil (soil-water potential and coefficient of permeability), find the some characters of the soil- water potential of saline soil: for the same saline soil at the same dry bulk density, whenever salt solution in soil, at the same liquor content the absolute value of the soil-water potential is always bigger than the saltless soil. And at the same liquor content the absolute value of the soil-water potential increases with increasing the concentration of the salt liquor. And at the same concentration of the salt liquor and at the same liquor content, the absolute value of the soil-water potential of sulphate salt liquor soil is bigger than chloride salt liquor soil. Moreover, the absolute value of the soil-water potential of calcium chloride liquor is bigger than sodium chloride liquor. The disciplinarian of the coefficient of permeability to the saline soil is that whenever saline soil the coefficient of permeability decreases with increasing the salt content and the fine soil change more obviously than coarse-grained soil and the sulphate salt soil change more obviously than sodium chloride salt soil.  相似文献   

9.
Horizontal soil column method was used to determine the horizontal diffusion rate of sandy loam, loam and clay loam under the same bulk density. The results showed that the migration rates of different lithological wet fronts were different. The sandy loam had the fastest migration rate, the loam followed, and the clay loam was the slowest, but the law of change is the same among the three lithologies. The volumetric water content affects the change of Boltzmann parameter λ. When the volumetric water content is between 0.35-0.45 cm~3/cm~3, λ approaches stability. When the volumetric water content is less than 0.35 cm~3/cm~3, the λ value decreases rapidly with the decrease of water content. The water diffusion rate is related to the volumetric water content and particle size. The greater the moisture content is, the greater the diffusion rate will be. The larger the particle size, the larger the diffusion rate. The diffusivity of sandy loam is 10-30 times larger than that of loam and clay loam. The relationship between water content and diffusion rate is in accordance with the exponential function.  相似文献   

10.
11.
温度-湿度-荷载综合作用下路基冻融过程试验研究   总被引:5,自引:3,他引:2  
为了研究季节冻土路基内部温度场、水分场及应力场综合效应的变化特性,基于自主研发的温度-湿度-荷载综合模型试验测试系统,进行室内路基模型的冻结与融化循环试验,分析了冻融循环过程路基内部土体水、热及力学性能的变化特性.试验表明:冻结过程中,初期温度变化大,温度梯度从顶端向底部逐渐递减;路基顶冻结后,0℃冻结锋面不断往下移动,0℃分界线两段内温度梯度差异大;路基含水率分为冻结区未冻水含量似稳定段、过渡区未冻水快速相变段、未冻结区含水率减小段.融化过程中,温度变化先大后小,未冻结水含量与温度大小相关,路基内部含水量呈现中间增大,两端减小的情形.水热综合作用下,应力场表现:冻融过程中,路基回弹模量随着冻结深度的增大呈线性增加,随融化深度的增加而减小;路基回弹模量随冻融循环次数增加而衰减,当达到6次时,衰减趋于稳定.结果表明,土体水热耦合作用是影响路基土体力学性能的关键因素.  相似文献   

12.
张莲海  马巍  杨成松 《岩土力学》2015,36(7):1856-1864
冻融循环对土的结构以及物理力学性质有着重要影响,其变化与冻融过程中的孔隙水压力变化有密切关系。但土体冻结过程中的孔隙水压力测试一直是冻土土工测试试验的技术难题。针对这一难题,研发了一种适用于冻结土体孔隙水压力测试的探头,并对砂土和粉质黏土在冻融循环过程中的孔隙水压力发展变化进行了实时监测,获得了圆柱试样冻融循环过程中不同深度处的孔隙水压力变化过程。在冻结过程中,粉质黏土形成冻结缘区及可视的分凝冰,而砂土则无冻结缘及分凝冰的形成。冻融循环过程中土体内部的孔隙水压力变化受温度、冻结速率、冻融循环以及土质等因素的影响。孔隙水压力随温度的循环变化而经历周期性变化:冻结过程中,孔隙水压力不断下降,吸力不断增加;融化过程中,孔隙水压力增大。而冻结速率、冻融循环及土质主要对孔隙水压力降的幅值变化产生影响。此外,冻结锋面位置附近孔隙水压力的下降、吸力的增加,正是水分由未冻区向冻结区迁移的主要驱动力。根据以上试验结果及其理论分析发现,所研制的孔隙水压力探头具有一定的实用性。  相似文献   

13.
土体冻融过程中的未冻水动态变化与冰-水相变过程密切相关,是冻融过程中非饱和土研究的重要基础。利用在线控温以及分层扫描的核磁共振新技术直观测试冻融过程中非饱和砂土的未冻水含量。结合T_(2)分布曲线(曲线上不同的T;值对应着孔隙水类别特性,曲线下方的面积对应试样水分含量)在冻融过程中的峰值大小和峰面积数据反演土体中含水量的大小与赋存的位置,而曲线的峰形态以及弛豫范围(各峰起始值以及终止值)等信息反演不同类型水分(吸附水与毛细水)以及土体结构的分布。在处理试验结果时,首先依据测试得到的冻结温度划分试样冻结区与未冻区。冻结区与未冻区未冻水含量及其孔隙变化差异明显,究其原因是冰水相变与水分迁移。在土样冻结区域冰水相变占主导地位,水分主要由未冻区向冻结锋面附近的e、f层迁移。首先以中大孔隙中毛细水迁移为主,其次以小孔隙中的吸附水迁移为辅。依据水相变成冰体积增大和孔隙体积占比数据分析可知,冻结区微小孔隙会在冻结过程中连通形成中大孔隙;而在未冻区水分迁移占主导地位。未冻区受固结作用中大孔隙压缩形成为小孔隙。试验过程中冻结锋面附近的e、f层孔隙变化最为剧烈。  相似文献   

14.
常丹  刘建坤  李旭 《岩土力学》2015,36(12):3500-3505
为研究粉砂在不同冻融循环下的应力-应变关系特性,进行了粉砂土的不固结不排水三轴剪切试验,试验结果表明:在围压较低时,未冻融及经历较少次冻融循环的粉砂表现出一定的软化性,但软化程度较弱;而经历一定次数的冻融循环后,其逐渐由弱软化型转化成硬化型;在围压较高时,未冻融及冻融以后的粉砂都表现出应变硬化的特征,其应力-应变关系曲线为典型的双曲线。基于Konder双曲线模型,概述了土体应力-应变关系中常见的几种归一化因子及相应的归一化条件。提出了针对冻融循环下粉砂土的应力-应变关系的归一化因子,并给出了相应的归一化条件。基于新的归一化因子,建立了粉砂土在不同围压、不同冻融循环次数下的应力-应变特性的归一化方程,并对应力-应变曲线进行预测,其试验值与拟合值较为接近,预测效果较好。  相似文献   

15.
以伊犁地区S315线蜂场至尼勒克段低液限粉黏土为研究对象,以碱激发材料为固化剂,对粉质黏土和其固化土开展了路用性能指标试验与冻融循环试验,并利用电镜扫描试验(SEM)与X射线衍射试验(XRD)研究了固化土的微观特征,探讨了碱激发材料对粉质黏土路用性能指标与抗冻融特性的影响.试验结果表明,固化土的无侧限抗压强度与抗剪强度...  相似文献   

16.
粉砂土反复冻胀融沉特性试验研究   总被引:3,自引:0,他引:3  
严晗  王天亮  刘建坤 《岩土力学》2013,34(11):3159-3165
针对深季节冻土区的特殊环境,通过室内试验研究了粉砂土在不同初始含水率、干密度、荷载、冻融次数条件下的反复冻胀、融沉特性。研究结果表明:粉砂土的冻结温度为-1.03 °C;其冻胀融沉变形随冻融次数的增加呈现波浪式起伏变化,并最终趋于稳定状态;经历多次冻融后,干密度较大试样整体表现为膨胀,干密度较小试样整体表现为压密;上部荷载在抑制冻胀的同时加大了试样的整体融沉变形,却降低了每次冻融的冻胀率和融沉系数;存在一个最优初始含水率,该含水率条件下,试样经历多次冻融后的高度不发生变化;由于外界水源的补给,冻融后试样内部含水率均大于初始含水率;干密度和顶端荷载的增大均有效地抑制了外界水源的补给;4次冻融循环后,粉砂土的冻胀率、融沉系数均逐渐趋于稳定。  相似文献   

17.
A new soil moisture content sensor coupled with a new matric potential sensor that can operate in the subfreezing environment was used to measure the moisture content and soil matric potential dynamics of Qinghai-Tibetan silty clay. Combined with nuclear magnetic resonance (NMR) technique and thermal resistor temperature probe, the characteristics of unfrozen water content and soil matric potential, and their relationships with temperature were analyzed. The results show that initial water content has an impact on the freezing point and unfrozen water content. The decrease in the initial water content results in a depression in the freezing point. The Qinghai-Tibetan silty clay has more similar unfrozen water content characteristic to clay than to silt. There is approximately 3% of unfrozen water content retained when the soil temperature drops to −15°C. The change of soil matric potential with temperature is similar to that of the unfrozen water content. The matric potential value of the saturated silty clay is approximately −200 kPa when the soil temperature drops to −20°C. The measured matric potentials are significantly lower than the calculated theoretical values based on the freezing point depression. Moisture migration experiment indicates that soil matric potential controls the direction of moisture movement and moisture redistribution (including ice and liquid water) during the soil freezing.  相似文献   

18.
冷毅飞  张喜发  杨凤学  姜龙  赵意民 《岩土力学》2010,31(12):3758-3764
冻土未冻水含量不但是评价冻土中水分迁移特性的重要指标,而且也是冻土热工计算中常用的参数。采用未冻水测量方法中的经典量热法对采自中俄石油管道工程大庆-漠河段沿线大兴安岭多年冻土带的6类典型土样(共76个)进行了-0.5、-2、-5、-10℃左右负温下的未冻水含量测试。分析了负温温度t、土质类型和初始含水率wo对未冻水含量wu的影响及其变化规律。通过统计分析,给出了6类土在上述4个给定温度下的未冻水含量代表值及其幂函数wu=at-b方程中的参数值。将黏土、粉质黏土、粉土和泥炭质土各给定温度下的未冻水含量对塑限wp归一化,得到各土类各温度下未冻水量系数值。对其进行幂函数拟合得到wu-wp-t经验计算公式。将温度、土质条件和初始含水率3影响因素进行综合分析,得到各类土在给定温度下的wu-wo-wp关系的二元一次线性回归经验方程式,为实际工程应用提供参考。  相似文献   

19.
青藏高原含砂砾石土壤导热率实验研究   总被引:4,自引:1,他引:3  
土壤导热率是土壤的基本物理参数之一,也是陆面模式的重要输入量,对研究土壤热传输、水热耦合运移有重要意义。青藏高原由于独特的地理环境备受学者关注,但目前常用的土壤水、热属性参数化方案仅仅考虑了沙土、粉土和黏土,就砂砾石重要性的认识还不足,很少有模式模拟砾石对青藏高原多年冻土和高寒草地的影响。采用便携式热导仪(KD2 Pro,DECAGON,美国)测量了青藏高原玛多和北麓河两地典型土壤在冻结和未冻结状态下不同水分条件时的土壤导热率,分析了砂砾石含量对土壤孔隙度的影响及冻结和未冻结状态下,不同水分条件下砂砾石含量对土壤导热率的影响。结果表明:当含水量高于某一阈值时,含水土壤冻结状态下的导热率高于未冻结状态下的导热率;土壤含水量对土壤导热率影响显著,导热率随着含水量的增加而增大,在含水量较小时变化更明显;砂砾石含量比重多的土壤孔隙度较小,且砂砾石含量越大的土壤在冻结状态下导热率高。以上结果表明,砂砾石对土壤导热率有显著影响,在将来的模式模拟研究中必须考虑砂砾石对土壤热属性的影响,进而提高土壤水热过程模拟的精度。  相似文献   

20.
为探究冻融循环条件下初始含水率对膨胀土偏应力-应变关系和剪切特性的影响,本文对不同初始含水率的非饱和膨胀土进行了不固结不排水三轴剪切试验。结果表明:1)非饱和膨胀土的偏应力-应变曲线的形式随含水率增大由应变软化逐渐转变为应变硬化,偏应力峰值随含水率增大而降低;2)非饱和膨胀土的抗剪强度随初始含水率的增加呈线性下降趋势;3)非饱和膨胀土在第1次冻融循环后偏应力及抗剪强度大幅度下降,在3~7次冻融循环后达到稳定。初始含水率是影响非饱和膨胀土力学性质的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号