首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among a collection of meteorites from the area of the Tenham shower (Queensland, Australia) was a 27 kg stone which proved to be different from the other Tenham stones. It is a bronzite, H4, chondrite, the principal minerals being olivine (average composition Fa 18.8), clinobronzite and bronzite (average composition Fs16.4), nickel-iron, and troilite; it is considerably weathered, much of the nickel-iron being converted to limonite. It has a highly chondritic structure, with devitrified glass within the chondrules, and without visible plagioclase. This meteorite was found about 1950 near the Hammond Downs station, hence the name; its coordinates are lat 25° 28′ S., long 142° 48′ E.  相似文献   

2.
Two meteorites impacted in 1925 around the town of Serooskerke on the isle of Schouwen, the Netherlands. The largest mass is widely known as the “Ellemeet” diogenite, while a second mass, heavily weathered due to environmental exposure, also survived until the present day. This work aims to reconstruct the history of the 1925 fall and for the first time documents the second mass, known as the “Serooskerke,” by integrating a historical and experimental approach. The study of historical news archives and cadastral records redefined the 1925 impact site at N 51°42.086′ E 3°49.789′. Environmental exposure experiments reproducing the effects of rainfall and frost weathering identified the latter as the main cause for the second mass' reported disintegration in the field sometime during the 1925–1926 winter. The bulk mineralogy of the second mass was established using XRD powder diffraction for a 2θ range of 3–70° and was found to be identical to an Ellemeet reference sample. UV/VIS/nIR spectroscopy (300–2500 nm) was subsequently used to broadly compare the second mass to HED clan meteorites Bouvante, EET87503, Johnstown and asteroid 4 Vesta in order to corroborate its vestan origin. The historical and geographic relationship of the two masses and the comparable bulk mineralogy supported the pairing of these two meteorites. This makes the Serooskerke a valuable legacy of the 1925 fall, especially as the location of ~50% of the remaining Ellemeet mass is presently unknown.  相似文献   

3.
Abstract— iron-magnesium ordering was determined in orthopyroxenes from two suites of unshocked (shock stage S1, S2), equilibrated L- and LL-chondrites (10 grains from 5 meteorites and 7 grains from 4 meteorites, respectively) by means of single crystal x-ray diffraction (SCXRD). This study, together with a previous investigation of H-chondrites (13 grains from 8 meteorites), produces an internally consistent data set about the thermal record in equilibrated ordinary chondrites (EOCs). The major feature outlined by cation ordering in EOC orthopyroxenes is that H-, L- and LL-chondrites share a common low-temperature record, that is, a common range of similar cooling rates in the 340–480 °C interval for the petrographic types 4 to 6. As a consequence, the thermal evolution of EOCs consists of at least two subsolidus stages; the first stage occurred at temperatures >480 °C where petrographic types were established in distinct environments; the second stage occurred when EOCs, irrespective of chemical class and type, cooled through 340–480 °C in environments characterized by close temperature-time conditions. Quantitative estimates of minimal cooling rates for EOCs range from a few °C/ka to ~102°C/ka in the 340–480 °C interval. Possibly, final ordering was attained in environments where moderate radiative heat-loss was possible and, thus indicating shallow burial depths in the parent body.  相似文献   

4.
Abstract— The mineralogy and composition of six Mongolian meteorites were studied in some detail. Previously, only limited information existed about these rocks, and some were still unclassified. The six meteorites include three ordinary chondrites and three irons. The ordinary chondrite Adzhi-Bogdo (stone) is a regolith breccia (LL3–6) containing various types of clasts (some of foreign origin) embedded within a fine-grained clastic matrix. Tugalin Bulen (H6) and Noyan Bogdo (L6) meteorites are typical, well-metamorphosed ordinary chondrites. Adzhi-Bogdo (iron) has to be regarded as an IA iron meteorite like Campo del Cielo or Canyon Diablo; although the sample studied had been heated to about 900 °C–950 °C some time in the past, thus eradicating all original structural elements. Manlai is structurally closely related to the IIC iron meteorites; but based on its chemistry, which does not fit into this group, it is suggested that Manlai is an anomalous iron meteorite. The third iron, Sargiin Gobi, is certainly a normal member of the IA iron meteorites. The concentrations and isotopic compositions of He, Ne, and Ar were measured for all meteorites and their gas retention ages and exposure ages are discussed.  相似文献   

5.
Abstract– The Old Woman meteorite, discovered in March 1976 by two prospectors searching for a fabled lost Spanish gold mine in mountains ~270 km east of Los Angeles, has achieved the status of a legend among meteorite hunters and collectors. The question of the ownership of the 2753 kg group IIAB meteorite, the second largest ever found in the United States (34°28′N, 115°14′W), gave rise to disputes involving the finders, the Bureau of Land Management, the Secretary of the Department of the Interior, the State of California, the California members of the U.S. Congress, various museums in California, the Smithsonian Institution, and the Department of Justice. Ultimately, ownership of the meteorite was transferred to the Smithsonian under the powers of the 1906 Antiquities Act, a ruling upheld in a U.S. District Court and a U.S. Court of Appeals. After additional debate, the Smithsonian removed a large cut for study and curation, and for disbursement of specimens to qualified researchers. The main mass was then returned to California on long‐term loan to the Bureau of Land Management’s Desert Discovery Center in Barstow. The Old Woman meteorite litigation served as an important test case for the ownership and control of meteorites found on federal lands. The Old Woman meteorite appears to be structurally unique in containing both hexahedral and coarsest octahedral structures in the same mass, unique oriented schreibersites within hexahedral areas, and polycrystalline parent austenite crystals. These structures suggest that different portions of the meteorite may have transformed via different mechanisms upon subsolidus cooling, making the large slices of Old Woman promising targets for future research.  相似文献   

6.
A parent body of the Lovina meteorite underwent processes which yielded dentritic structures of taenite in phosphide-sulfide-metal matrix unusual for iron meteorites. Similar dendritic structures can be found also in IIE meteorites as microinclusions but are unknown in other iron meteorites. The similarity between dendritic structures in the Lovina meteorite and metal-phosphide inclusions in IIE iron meteorites implies similar processes which led to their crystallization from molten materials in chambers of various sizes. Studying physical and chemical crystallization parameters of metal-phosphide inclusions in the Elga meteorite (IIE) makes it feasible to estimate the p-T conditions required for the unique Lovina meteorite to have formed. It is shown that dendrites in the Lovina meteorite may have been crystallized from molten materials close in composition to P-FeNi and P-S-FeNi that are produced when phosphides and sulfides melt locally in metals as a result of impact events with subsequent fast cooling. The temperature of homogeneous melting is likely to have been more than 1450°C, and the starting temperature of crystallization of such molten materials is estimated to have been between 1050 and 1150°C. The cooling rate of inclusions can be estimated to be 10−3 °C s−1, based on the structural and chemical concordance between samples obtained experimentally (Chabot et al., 2000) and metal-phosphide inclusions (P-FeNi and P-S-FeNi) in the Elga meteorite. Large-sized dendrites in the Lovina meteorite imply cooling rates that are considerably less than 10−3 °C s−1.  相似文献   

7.
Abstract— We investigated the transfer of meteorites from Mars to Earth with a combined mineralogical and numerical approach. We used quantitative shock pressure barometry and thermodynamic calculations of post‐shock temperatures to constrain the pressure/temperature conditions for the ejection of Martian meteorites. The results show that shock pressures allowing the ejection of Martian meteorites range from 5 to 55 GPa, with corresponding post‐shock temperature elevations of 10 to about 1000 °C. With respect to shock pressures and post‐shock temperatures, an ejection of potentially viable organisms in Martian surface rocks seems possible. A calculation of the cooling time in space for the most highly shocked Martian meteorite Allan Hills (ALH) 77005 was performed and yielded a best‐fit for a post‐shock temperature of 1000 °C and a meteoroid size of 0.4 to 0.6 m. The final burial depths of the sub‐volcanic to volcanic Martian rocks as indicated by textures and mineral compositions of meteorites are in good agreement with the postulated size of the potential source region for Martian meteorites during the impact of a small projectile (200 m), as defined by numerical modeling (Artemieva and Ivanov 2004). A comparison of shock pressures and ejection and terrestrial ages indicates that, on average, highly shocked fragments reach Earth‐crossing orbits faster than weakly shocked fragments. If climatic changes on Mars have a significant influence on the atmospheric pressure, they could account for the increase of recorded ejection events of Martian meteorites in the last 5 Ma.  相似文献   

8.
In the summer of 1984, two meteorites fell in the northern part of Honshu, Japan; Aomori, at 1:50 p.m. on June 30, and Tomiya, at 1:35 p.m. on August 22. Coordinates of the falls of the Aomori and the Tomiya are at 140°47.1'E., 40°48.6'N., and 140°51.9'E., 38°22.0'N., respectively. Results of chemical analyses of major elements, ratios of Fetotal/SiO2 (0.546 and 0.803) and Femetal/Fetotal (0.332 and 0.581), and molar compositions of olivines (Fa25 and Fa19) indicate that the Aomori and the Tomiya are typical L- and H-group ordinary chondrites, respectively. In the Aomori, chondrules are present as relicts in the well-recrystallized matrix. Olivine and pyroxene are homogeneous in composition, and coarse clear feldspar, up to 100 micrometers in size, is well developed in the chondrules and matrix. Though the Aomori is a petrologic type 6 based on its texture and mineralogy, it includes a few grains of multiple twinned clinobronzite which is rarely observed in highly equilibrated ordinary chondrites. In the Tomiya, chondrules possess a fine-grained mesostasis, and both orthopyroxene and clinobronzite are noticeable in thin sections. Plagioclase is mostly microcrystalline, but is also sparsely present as tiny, visible grains. Thus, the Tomiya was classified to be petrologic type between 4 and 5. The deformation texture of olivine, pyroxene and plagioclase indicates that both meteorites were shocked by 0.2-0.25 Mb. In conjunction with the discussion of the frequency of meteorite-falls, all observed falls of meteorites in Japan are tabulated in this paper.  相似文献   

9.
Abstract— Evolved gas analysis has been used to study the weathering of ordinary chondrites from Roosevelt County (western United States) and from the Sahara (Daraj, western Libya). An interpretation of the evolved gas analysis curves was possible by comparing the data measured on meteorites with the results of analysis on selected Fe minerals as well as chemically synthesised Fe compounds. The amount of H2O released over the temperature range from 25 °C to 400 °C, and the terrestrial age of the meteorites show a weak correlation. With a higher weathering grade (C,D) that is usually not any longer, H2 is evolved >1300 °C, and O2 is the dominant species in this temperature region. The amount of evolved CO2 and SO2 in different temperature ranges shows significant varieties between specimens from the two desert localities.  相似文献   

10.
Abstract— Isotopic variations have been reported for many elements in iron meteorites, with distinct N signatures found in the metal and graphite of IAB irons. In this study, a dozen IAB/IIICD iron meteorites (see Table 1 for new classifications) were analyzed by stepwise pyrolysis to resolve nitrogen components. Although isotopic heterogeneity has been presumed to be lost in thermally processed parent objects, the high‐resolution nitrogen isotopic data indicate otherwise. At least one reservoir has a light nitrogen signature, δ15N = ?(74 ± 2)‰, at 900 °C to 1000 °C, with a possible second, even lighter, reservoir in Copiapo (δ15N ≤ ?82‰). These releases are consistent with metal nitride decomposition or low‐temperature metal phase changes. Heavier nitrogen reservoirs are observed in steps ≤700 °C and at 1200 °C to 1400 °C. The latter release has a δ15N signature with a limit of ≥?16‰. Xenon isotopic signatures are sensitive indicators for the presence of inclusions because of the very low abundances of Xe in metal. The combined high‐temperature release shows 131Xe and 129Xe excesses to be consistent with shifts expected for Te(n,γ) reaction in troilite by epithermal neutrons, but there are also possible alterations in the isotopic ratios likely due to extinct 129I and cosmic‐ray spallation. The IAB/IIICD iron data imply that at least one light N component survived the formation processes of iron parent objects which only partially exchanged nitrogen between phases. Preservation of separate N reservoirs conflicts with neither the model of impact‐heating effects for these meteorites nor reported age differences between metal and silicates.  相似文献   

11.
Abstract Research on meteorite finds, especially those from the Antarctic and from desert regions in Australia, Africa, and America, has become increasingly important, notably in studies of possible changes in the nature of the meteorite flux in the past. One important piece of information needed in the study of such meteorites is their terrestrial age which can be determined using a variety of methods, including 14C, 36Cl, and 81Kr. Natural thermoluminescence (TL) levels in meteorites can also be used as an indicator of terrestrial age. In this paper, we compare 14C-determined terrestrial ages with natural TL levels in finds from the Prairie States (central United States), a group of finds from Roosevelt County (New Mexico, USA), and a group from the Sahara Desert. We find that, in general, the natural TL data are compatible with the 14C-derived terrestrial ages using a 20 °C TL decay curve for the Prairie States and Roosevelt County and a 30 °C decay curve for the Saharan meteorites. We also present TL data for a group of meteorites from the Sahara desert which has not been studied using cosmogenic radionuclides. Within these data there are distinct terrestrial age clusters which probably reflect changes in meteorite preservation efficiency over ~ 15, 000 years in the region.  相似文献   

12.
Abstract— Miono et al. (1990) and Miono and Nakanishi (1994) have proposed that the build‐up of natural thermoluminescence (TL) in a drained layer directly below the meteorite fusion crust can be used to determine terrestrial ages of meteorites in the 40 to 200 ka range. We have measured the natural TL of the drained layer of 15 meteorites. The data indicate that this technique could be used to determine terrestrial ages of meteorites with ages <200 ka, after which TL equilibrium is reached. Comparison of TL build‐up with terrestrial ages for a suite of Antarctic meteorites suggests that the meteorites have been exposed to temperatures of 0 to 5 °C. The close correspondence between natural TL levels and surface exposure TL growth curves suggest that Allan Hills meteorites with ages <200 ka have spent a significant portion of their terrestrial history exposed on the ice surface, rather than being buried in the ice sheet. The technique is, however, sensitive to thermal history; and, for Antarctic meteorites with terrestrial ages <200 ka, natural TL of the drained zone largely reflects exposure on the ice surface.  相似文献   

13.
Abstract— Quantifying the peak temperatures achieved during metamorphism is critical for understanding the thermal histories of ordinary chondrite parent bodies. Various geothermometers have been used to estimate equilibration temperatures for chondrites of the highest metamorphic grade (type 6), but results are inconsistent and span hundreds of degrees. Because different geothermometers and calibration models were used with different meteorites, it is unclear whether variations in peak temperatures represent actual ranges of metamorphic conditions within type 6 chondrites or differences in model calibrations. We addressed this problem by performing twopyroxene geothermometry, using QUILF95, on the same type 6 chondrites for which peak temperatures were estimated using the plagioclase geothermometer (Nakamuta and Motomura 1999). We also calculated temperatures for published pyroxene analyses from other type 6 H, L, and LL chondrites to determine the most representative peak metamorphic temperatures for ordinary chondrites. Pyroxenes record a narrow, overlapping range of temperatures in H6 (865–926 °C), L6 (812–934 °C), and LL6 (874–945 °C) chondrites. Plagioclase temperature estimates are 96–179 °C lower than pyroxenes in the same type 6 meteorites. Plagioclase estimates may not reflect peak metamorphic temperatures because chondrule glass probably recrystallized to plagioclase prior to reaching the metamorphic peak. The average temperature for H, L, and LL chondrites (~900 °C), which agrees with previously published oxygen isotope geothermometry, is at least 50 °C lower than the peak temperatures used in current asteroid thermal evolution models. This difference may require minor adjustments to thermal model calculations.  相似文献   

14.
Dynamic crystallization experiments were performed on a liquid having the bulk composition of olivine‐phyric shergottite Yamato 980459, to constrain the igneous thermal history of this meteorite. Key characteristics of the meteorite's mineralogy and texture, including several morphologically distinct olivine and pyroxene crystal populations and a glassy mesostasis devoid of plagioclase, were replicated upon cooling from 1435 to 909 °C at 1 atmosphere under reducing conditions. Three sequential cooling ramps are required to produce synthetic samples with textures and compositions matching Yamato 980459. Olivine phenocrysts formed at <1 °C h?1, presumably at depth in the Martian crust. Pyroxene phenocrysts formed mainly at ~10 °C h?1, consistent with crystallization within a lava flow at depths of 25–45 cm. Increased cooling rate (~100 °C h?1) in a third stage suppressed the formation of plagioclase and produced groundmass crystals, consistent with crystallization at lava flow depths of 5–7 cm. Although Y 980459 is unique among Martian meteorites (i.e., preserving a primary glassy mesostasis), its emplacement did not require unique physical conditions. Rather, the second and third cooling stages may reflect cooling within the core of a pāhoehoe‐like flow and subsequent breakout on the surface of Mars.  相似文献   

15.
Long-termobservations of the muon intensity of galactic cosmic rays at the Nagoya (35°10′ N, 136°58′ E) and Yakutsk (62°01′ N, 129°43′ E) stations have revealed amplitude-phase annual and semiannual oscillations of the semidiurnal variation. These oscillations are attributable to the properties of the cosmic-ray anisotropy tensor that result from shielding by the interplanetary magnetic field and solar-wind shear flow. The mentioned tensor is also shown to have a north-south asymmetry.  相似文献   

16.
Abstract On the basis of reported optical measurements of iron and stony meteorites, upper and lower limits for solar absorptance and hemispherical emittance of the surfaces of meteoroids have been established. Temperatures of three classes of meteoroids, none larger than approximately 10 meters in radius, have been calculated for various orbits and a/e ratios. These classes are light chondrites, dark chondrites and the irons. Temperatures for a meteoroid in a Mercury orbit range from 100° C for a light chondrite to 400° C for an iron.  相似文献   

17.
Abstract— We report induced thermoluminescence (TL) data for separates from three howardite, eucrite and diogenite (HED) meteorites and the Vaca Muerta mesosiderite. The results of thermal modeling of the surface of their parent body are also described. The TL sensitivities for matrix samples from the LEW 85300, 302 and 303 paired eucrites and the Bholghati howardite are lower than the TL sensitivities for the clasts, which is consistent with regolith working of the matrix in fairly mature regoliths. Within an isochemical series of HED meteorites, TL sensitivity reflects metamorphic intensity, but clast-to-clast variations in the TL sensitivities of the Vaca Muerta mesosiderite and clasts in the EET 87509, 513 and 531 paired howardite primarily reflect differences in mineralogy and petrology. Thermoluminescence peak temperatures indicate that all the components from the LEW 85300, 302 and 303 paired eucrites experienced a reheating event involving temperatures >800 °C, which is thought to have been due to impact heating, and therefore that the event was concurrent with or postdated brecciation. The Vaca Muerta clasts are essentially unmetamorphosed, but the induced TL data indicate that the remaining howardite, eucrite, dioenite and mesosiderite (HEDM) meteorites experienced metamorphism to a variety of intensities but involving temperatures <800 °C. Laboratory heating experiments show that temperatures >800 °C cause a change in TL peak temperature. Feldspars from a variety of terrestrial and extraterrestrial sources show this behavior, and x-ray diffraction and kinetic studies suggest that it is indirectly related to Al, Si disordering. Cooling rates are not consistent with autometamorphism following the initial igneous event or with heating by subsequent eruptions of lava onto the surface of the HED parent body. Instead, our thermal models suggest that the metamorphism occurred within a regolith ejecta blanket of up to a few kilometers thick, with different levels of metamorphism corresponding to different thicknesses of blanket, between essentially 0 and ~2 km, rather than different burial depths in a regolith of uniform thickness. We argue that metamorphism occurred 3.9 Ga ago and was associated with the resetting of the Ar-Ar system for the HED meteorites.  相似文献   

18.
Abstract Thermal metamorphism study of the C, G, B, and F asteroids has been revisited using their UV, visible, NIR, and 3 μm reflectance spectra. High-quality reflectance spectra of seven selected C, G, B, and F asteroids have been compared with spectra for 29 carbonaceous chondrites, including thermally-metamorphosed CI/CM meteorites. There are three sets of spectral counterparts, among which 511 Davida and B-7904 are the most similar to each other in terms of both spectral shape and brightness. By comparing the 0.7 μm and 3 μm absorption strengths of 21 C, G, B, and F asteroids and heated Murchison samples, these asteroids have been grouped into three heating-temperature ranges. These correspond to (1) <400 °C: phyllosilicate-rich; (2) 400–600 °C: phyllosilicates transformed to anhydrous silicates; and (3) >600 °C: fully anhydrous. A good correlation between the UV and 3 μm absorption strengths has been confirmed for the C, G, B, and F asteroids and the CI, CM, and CR meteorites. A plot of the UV absorption strength vs. the IRAS diameter for 142 C, G, B, and F asteroids shows that the maximum UV absorption strength decreases as the diameter increases for the asteroids >60 km, with a notable exception, Ceres. These relationships suggest that some of the larger asteroids may be the heated inner portions of once larger bodies and that common CI/CM meteorites may have come from the lost outer portions, which escaped extensive late-stage heating events.  相似文献   

19.
We have attempted to reconstruct the orbit of the Farmington L5 chondrite which fell in Kansas in 1890. Because its radiation age is uniquely short (25 000 years), its orbit should still closely resemble that of its parent body. A search of 280 contemporary newspapers and other sources turned up more than 60 useable eyewitness reports from 32 localities, which led to the following estimate of the apparent radiant: height 60°, azimuth 20°, with an uncertainty of about 10°. Orbital elements were determined for this radiant for four plausible preatmospheric velocities: 13, 16, 19, and 22 km/sec. The results show quite definitely that Farmington had a small orbit of low inclination: semimajor axis 1–1.9 AU, perihelion ? 0.4 AU, aphelion ? 3.0 AU, inclination ? 16°. Because of the short radiation age, the parent body of Farmington must already have been in an Earth-crossing orbit when the meteorite was ejected from it by an impact. Of the 11 known Earth-crossing asteroids with encounter velocities below 22 km/sec, 1862 Apollo, Hermes, and 1865 Cerberus are passable matches, while 1620 Geographos and 1685 Toro are more marginal possibilities. Apparently Earth-crossing asteroids are the immediate parent bodies of at least some meteorites. Their ultimate source must be the ultimate source of most stony meteorites.  相似文献   

20.
Abstract— The MORP camera network in western Canada observed 56 events which we associate with meteorites larger than 0.1 kg. An additional 33 Prairie Network (central USA) fireballs with published orbits were previously identified as the sources of meteorites of at least 0.25 kg. A comparison of the MORP orbits with each other and with the PN orbits, using the D′ criterion of orbital similarity, exhibits a surprising number of small values. This suggests there are groups of related objects among the 89 events. We evaluate the probability of small values of D′ arising by chance from a group of random orbits that has the distribution of orbital elements expected for meteorites. There is an excess of small values of D′ among the 89 meteoritic objects over the expectation for random orbits and a marked excess of very small values. Four groups comprising a total of 16 objects account for this excess. These groups exhibit a preference for the larger masses of the population and a very strong concentration of perihelia just slightly inside the Earth's orbit. Although it has been shown by others that gravitational perturbations will disperse Earth-crossing streams in times that are much less than cosmic-ray exposure ages, the properties of the four groups suggest they may be streams of fragments that crossed the Earth's orbit only recently. Such streams may include a considerable fraction of meteorites falling at a given time. Orbital evolution of these streams could alter the sample of meteorites arriving on Earth over time intervals that are less than the accumulation time of the Antarctic collections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号