首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activity at Somma-Vesuvio volcanic area in southern Italy is monitored by seismic stations and periodic geodetic and gravity surveys. The seismic network, which consists at present of four vertical stations and one three-component station, recorded an increase in earthquake activity in 1978 and between November 1988 and March 1989. During the later activity, earthquakes were located in a cluster about 3 km beneath the summit of the volcano. Two tide gauges, two tiltmeters and a recording gravimeter are also operating at Somma-Vesuvio. Yearly levelling surveys are conducted along several closed routes that extend from as much as 6 km from the base of the volcano to the summit area. Survey results reveal no significant ground movement since 1959, except for a slight subsidence around the rim of the summit crater. Gravity changes have been larger than the expected 10 μGal uncertainty of the measurements. The lack of contemporary elevation changes implies that the observed gravity changes are the result of a slight change in density structure. The cone of Somma-Vesuvio has been very stable for the last few decades, showing no indications of a buildup to activity. The lack of surface movement should rule out a magma-supply rate to this volcano at the historic eruptive rate of 0.002 km3/yr.  相似文献   

2.
The Mt Cameroon volcano is the highest and most active volcano of the Cameroon Volcanic Line. Little geological information is available for improving the understanding of the structure of this large volcanic system and its relationship to regional tectonics. After reviewing the tectonic evolution of the region, the analysis of a Digital Elevation Model and results from a field campaign dedicated to mapping geological structures in the summit area and at the SE base of Mt Cameroon are presented. Mt Cameroon is a lava-dominated volcano with long steep (over 30°) flanks. It is elongate parallel to its well defined rift zone. The summit plateau is bordered by 10 m high cliffs formed by summit subsidence along normal faults. Geological profiles were measured along rivers cutting through a topographic step at the SE base of Mt Cameroon. This step is associated with deformed Miocene sediments from the Douala basin that are overlain by volcanic products. Weak sediments of this area are deformed by 050°–060° and 020°–030° trending asymmetrical folds verging toward the SE, and thrusts faults related to the spreading of the volcano over its mechanically weak substratum. Combined remote sensing and field observations suggest that spreading is accommodated by summit subsidence and flanks sliding. Both slow spreading movements and catastrophic collapses of the steep flanks are interpreted to result from complex interactions between the growing edifice, repeated dyke intrusions, the weak sedimentary substratum and tectonic structures.  相似文献   

3.
We report a compilation of data recorded at a distant tiltmeter station (RER) during recent episodes of dyke emplacement and eruption (2003–2007) at Piton de La Fournaise volcano (La Réunion Island). This sensitive station provides useful information for evaluating the extent of deformation. Distinct responses of this station were recorded based on the eruption type. Dykes feeding summit eruptions did not significantly influence the RER tiltmeter signals, whereas dykes feeding large distal eruptions (with vents located more than 4 km from the summit) generated up to 1.4 μrad of tilt, an amplitude 2 to 4 times greater than for proximal eruptions (0.3–0.7 μrad) on the flanks of the summit cone. The distinct tilt amplitude is directly linked to the location, depth, and volume of the dyke. Comparison with summit tiltmeters reveals that up to one-third to half of the RER tilt signal associated to dyke propagation is recorded when the dyke is still below the summit crater. Thus, before large distal eruptions, more than 0.5 μrad of tilt is recorded in less than 20 min when the dyke is below the summit crater (i.e. a few minutes/hours before the beginning of the eruption). We can thus propose for the RER station a threshold value of 0.5 μrad which, when reached as a dyke rises beneath the summit crater, suggests a high likelihood of a large distal eruption. The distant RER tiltmeter station thus appears to be a powerful tool for forecasting the type of eruption that is likely to occur, and can contribute to the early detection of large distal eruptions at Piton de La Fournaise, which are the most dangerous to inhabitants. For volcano monitoring, installation of high precision distant tiltmeters along the lower slopes of a volcano may provide warnings of large eruptions with enough lead time to allow for short-term hazards mitigation efforts.  相似文献   

4.
From a combination of results of gravity, magnetic and seismic refraction surveys, the dike complex under the east rift zone of Kilauea Volcano in Hawaii was found to extend for 110 km from the summit area of the volcano to a point 60 km at sea beyond the eastern tip of the island. Near the summit the complex is 20 km wide, and at about 40 km distance from the summit, the complex narrows to 12 km wide. The main body of the dike complex is 2.3 km deep, but some parts are as shallow as 1 km. From extrapolation of temperature data of a deep well and from analysis of magnetic data, it was inferred that temperature of the dike complex is above the Curic point of 540°C. The internal part of the complex can approach the melting point of 1060°C. The dike complex was formed by numerous excursions of magma from the holding reservoir under the volcano summit. The theory of forceful intrusion of magma into rift zones accounts for the magma excursions and migration of the passageways. Gravity and seismic velocity data indicate that density of the material left in the dike complex is 3.1 g/cm3. In the light of recent density determinations of Hawaiian rocks under high pressure and temperature, it is concluded that during Hawaiian volcanic activity, less dense components of the parent magma crupt through surface vents while the more dense components remain trapped below. Samples of the dense material from the dike complex are required before we can have a complete picture of the parent magma of Hawaiian volcanoes. The dike complex is the source of thermal energy for a commercial quality geothermal reservoir that was found by drilling.  相似文献   

5.
Seismic data from the MVT-SLN sesmic station located 7 km from the summit area of Mt Etna volcano, which has been operating steadily for the last two decades, have been analysed together with the volcanic activity during the same period. Cross-correlation techniques are used to investigate possible relationships between seismic and volcanic data and to evaluate the statistical significance of the results. A number of significant correlations have been identified, showing that there is an evident relation between seismic events and flank eruptions, and a less clear relation with summit activity, which appears more linked to tremor rather than to the low-frequency events. Particularly interesting are the low-frequency events whose rate of occurrence increases, starting from 17 to 108 days, prior to the onset of the flank activity and are candidates for a useful precursor. On the other hand, a tendency towards the increase in both the duration and the occurrence rate of transients in the volcanic tremor was observed before the onset of summit eruptions. As a result of this study different stages in the volcanic activity of Mt Etna, represented by changes in the characteristics of the recorded seismic phenomena, are identified.  相似文献   

6.
Magnetic and electric field variations associated with the 2000 eruption of Miyake-jima volcano are summarized. For about 1 week prior to the July 8 phreatic explosion, significant changes in the total intensity were observed at a few stations, which indicated uprising of a demagnetized area from a depth of 2 km towards the summit: this non-magnetic source can be regarded as a vacant space itself. Electric and magnetic field variations were observed simultaneously associated with the tilt-step event, which was the abrupt (∼50 s) inflation at a few km depth within the volcano followed by gradual recovery (∼several hours). The electric field is ascribed to the electrokinetic effect most probably due to forced injection of fluids from the source, while the magnetic field to the piezomagnetic effect due to increased pressure. Large magnetic variations amounting to a few tens of nT were observed at several stations since July 8, and they turned almost flat after the August 18 largest eruption. Magnetic changes are explained mostly by the vanishing of magnetic mass in the summit and additionally by the thermal demagnetization at a rather shallow depth. A large increase in the self-potential by 130 mV was also observed near the summit caldera associated with the August 18 eruption, which suggests that the hydrothermal circulation system sustained within the volcano for the past more than 10 years was destroyed by this eruption.  相似文献   

7.
Microgravity observations at Mt. Etna have been routinely performed as both discrete (since 1986) and continuous (since 1998) measurements. In addition to describing the methodology for acquiring and reducing gravity data from Mt. Etna, this paper provides a collection of case studies aimed at demonstrating the potential of microgravity to investigate the plumbing system of an active volcano and detect forerunners to paroxysmal volcanic events. For discrete gravity measurements, results from 1994–1996 and 2001 are reported. During the first period, the observed gravity changes are interpreted within the framework of the Strombolian activity which occurred from the summit craters. Gravity changes observed during the first nine months of 2001 are directly related to subsurface mass redistributions which preceded, accompanied and followed the July-August 2001 flank eruption of Mt. Etna. Two continuous gravity records are discussed: a 16-month (October 1998 to February 2000) sequence and a 48-hour (26–28 October, 2002) sequence, both from a station within a few kilometers of the volcano's summit. The 16-month record may be the longest continuous gravity sequence ever acquired at a station very close to the summit zone of an active volcano. By cross analyzing it with contemporaneous discrete observations along a summit profile of stations, both the geometry of a buried source and its time evolution can be investigated. The shorter continuous sequence encompasses the onset of an eruption from a location only 1.5 km from the gravity station. This gravity record is useful for establishing constraints on the characteristics of the intrusive mechanism leading to the eruption. In particular, the observed gravity anomaly indicates that the magma intrusion occurred “passively” within a fracture system opened by external forces.  相似文献   

8.
The magmatic plumbing system of Kilauea Volcano consists of a broad region of magma generation in the upper mantle, a steeply inclined zone through which magma rises to an intravolcano reservoir located about 2 to 6 km beneath the summit of the volcano, and a network of conduits that carry magma from this reservoir to sites of eruption within the caldera and along east and southwest rift zones. The functioning of most parts of this system was illustrated by activity during 1971 and 1972. When a 29-month-long eruption at Mauna Ulu on the east rift zone began to wane in 1971, the summit region of the volcano began to inflate rapidly; apparently, blockage of the feeder conduit to Mauna Ulu diverted a continuing supply of mantle-derived magma to prolonged storage in the summit reservoir. Rapid inflation of the summit area persisted at a nearly constant rate from June 1971 to February 1972, when a conduit to Mauna Ulu was reopened. The cadence of inflation was twice interrupted briefly, first by a 10-hour eruption in Kilauea Caldera on 14 August, and later by an eruption that began in the caldera and migrated 12 km down the southwest rift zone between 24 and 29 September. The 14 August and 24–29 September eruptions added about 107 m3 and 8 × 106 m3, respectively, of new lava to the surface of Kilauea. These volumes, combined with the volume increase represented by inflation of the volcanic edifice itself, account for an approximately 6 × 106 m3/month rate of growth between June 1971 and January 1972, essentially the same rate at which mantle-derived magma was supplied to Kilauea between 1952 and the end of the Mauna Ulu eruption in 1971.The August and September 1971 lavas are tholeiitic basalts of similar major-element chemical composition. The compositions can be reproduced by mixing various proportions of chemically distinct variants of lava that erupted during the preceding activity at Mauna Ulu. Thus, part of the magma rising from the mantle to feed the Mauna Ulu eruption may have been stored within the summit reservoir from 4 to 20 months before it was erupted in the summit caldera and along the southwest rift zone in August and September.The September 1971 activity was only the fourth eruption on the southwest rift zone during Kilauea's 200 years of recorded history, in contrast to more than 20 eruptions on the east rift zone. Order-of-magnitude differences in topographic and geophysical expression indicate greatly disparate eruption rates for far more than historic time and thus suggest a considerably larger dike swarm within the east rift zone than within the southwest rift zone. Characteristics of the historic eruptions on the southwest rift zone suggest that magma may be fed directly from active lava lakes in Kilauea Caldera or from shallow cupolas at the top of the summit magma reservoir, through fissures that propagate down rift from the caldera itself at the onset of eruption. Moreover, emplacement of this magma into the southwest rift zone may be possible only when compressive stress across the rift is reduced by some unknown critical amount owing either to seaward displacement of the terrane south-southeast of the rift zone or to a deflated condition of Mauna Loa Volcano adjacent to the northwest, or both. The former condition arises when the forceful emplacement of dikes into the east rift zone wedges the south flank of Kilauea seaward. Such controls on the potential for eruption along the southwest rift zone may be related to the topographic and geophysical constrasts between the two rift zones.  相似文献   

9.
Tangkuban Parahu is an active stratovolcano located 17 km north of the city of Bandung in the province west Java, Indonesia. All historical eruptive activity at this volcano has been confined to a complex of explosive summit craters. About a dozen eruptions-mostly phreatic events- and 15 other periods of unrest, indicated by earthquakes or increased thermal activity, have been noted since 1829. The last magmatic eruption occurred in 1910. In late 1983, several small phreatic explosions originated from one of the summit craters. More recently, increased hydrothermal and earthquake activity occurred from late 1985 through 1986. Tilt measurements, using a spirit-level technique, have been made every few months since February 1981 in the summit region and along the south and east flanks of the volcano. Measurements made in the summit region indicated uplift since the start of these measurements through at least 1986. From 1981 to 1983, the average tilt rate at the edges of the summit craters was 40–50 microradians per year. After the 1983 phreatic activity, the tilt rate decreased by about a factor of five. Trilateration surveys across the summit craters and on the east flank of the volcano were conducted in 1983 and 1986. Most line length changes measured during this three-year period did not exceed the expected uncertainty of the technique (4 ppm). The lack of measurable horizontal strain across the summit craters seems to contradict the several years of tilt measurements. Using a point source of dilation in an elastic half-space to model tilt measurements, the pressure center at Tangkuban Parahu is located about 1.5 km beneath the southern part of the summit craters. This is beneath the epicentral area of an earthquake swarm that occurred in late 1983. The average rate in the volume of uplift from 1981 to 1983 was 3 million m3 per year; from 1983 to 1986 it averaged about 0.4 million m3 per year. Possible causes for this uplift are increased pressure within a very shallow magma body or heating and expansion of a confined aquifier.  相似文献   

10.
Despite the recent recognition of Mount Etna as a periodically violently explosive volcano, the hazards from various types of pyroclastic density currents (PDCs) have until now received virtually no attention at this volcano. Large-scale pyroclastic flows last occurred during the caldera-forming Ellittico eruptions, 15–16 ka ago, and the risk of them occurring in the near future is negligible. However, minor PDCs can affect much of the summit area and portions of the upper flanks of the volcano. During the past ~ 20 years, small pyroclastic flows or base-surge-like vapor and ash clouds have occurred in at least 8 cases during summit eruptions of Etna. Four different mechanisms of PDC generation have been identified during these events: (1) collapse of pyroclastic fountains (as in 2000 and possibly in 1986); (2) phreatomagmatic explosions resulting from mixing of lava with wet rock (2006); (3) phreatomagmatic explosions resulting from mixing of lava with thick snow (2007); (4) disintegration of the unstable flanks of a lava dome-like structure growing over the rim of one of the summit craters (1999). All of these recent PDCs were of a rather minor extent (maximum runout lengths were about 1.5 km in November 2006 and March 2007) and thus they represented no threat for populated areas and human property around the volcano. Yet, events of this type pose a significant threat to the lives of people visiting the summit area of Etna, and areas in a radius of 2 km from the summit craters should be off-limits anytime an event capable of producing similar PDCs occurs. The most likely source of further PDCs in the near future is the Southeast Crater, the youngest, most active and most unstable of the four summit craters of Etna, where 6 of the 8 documented recent PDCs originated. It is likely that similar hazards exist in a number of volcanic settings elsewhere, especially at snow- or glacier-covered volcanoes and on volcano slopes strongly affected by hydrothermal alteration.  相似文献   

11.
Two photogrammetric aerial surveys were carried out over the summit area of the basaltic shield volcano Piton de la Fournaise (Indian Ocean), one survey in 1981 and the second one in 1984. During this time, only two eruptions occurred; both the December 4, 1983, and the January 18, 1984, eruptions opened fissures on the southwestern part of the summit. Because of the slight and erratic ground deformation measured on the dry-tilt network, by continuous tilt stations, and within the geodetic network between 1981 and November 1983, and between February 1984 and June 1984, ground deformations revealed by the two photogrammetric surveys can be essentially associated with the two eruptions. Large displacement vectors were obtained, up to 40 cm. Horizontal displacement vectors indicate a northeastward ground deformation of the southwestern part of the cone where the effusive vents opened. A more diffuse uplift along the main fracture zones that cut the volcanic edifice was observed, while east of these fractures only slight—less than 10 cm—and opposite displacements were observed. This displacement field can be associated with the main geological structures of the dome of Piton de la Fournaise volcano. Some consequences of the observed displacement field may be outlined for the volcanic observational ground deformation networks. To estimate the displacement field revealed by the photogrammetric surveys, a simple model of dyke intrusion has been computed. This model is based on dislocations and takes into account the main fracture zones. Good agreement is observed between computed and observed data in the area of the effusive vents. Some disagreement remains in the northwestern part of the survey area, where horizontal deformations are small and erratic, and also in the northern part, where an uplift was observed that can be associated with the northern active fracture zones.  相似文献   

12.
Mount Cameroon is an active volcano located in the Gulf of Guinea, west of Central Africa. After the March–April 1999 eruption on the SW flank, another eruption of the volcano occurred in 2000. It took place from three sites on the southwest flank and near the summit. The first eruptive site was located 500 m to the southwest of the summit, at 3900 m altitude. Activity on this site was mainly explosive with no lava flow. The second site was located between 3220 and 3470 m altitude. Lava was emitted along NNE–SSE fissures from this site and flew towards Buea, the main city of the area, stopping ~ 4 km from the first houses. The last site was located in the south western flank at 2750 m altitude. The lava ejected from an old cone near the first 1999 eruptive site was divided into two branches, for a total length of around 1 km. The location of active volcanic cones in 1999 and 2000 seems to be linked to the local tectonics. The pre-eruptive period was characterized by a seismic swarm which may be a precursor recorded in March 2000 by an analogue seismic station. The main shock was a magnitude 3.2 event, and was felt by the population in Ekona town located on the eastern flank. It had a Modified Mercalli intensity of III–IV. When the eruption started, a temporary network of short period 3-component seismic stations was set up around the volcano to improve the monitoring of seismic activity. The co-eruptive period from late May to September was characterized by sequences of earthquake swarms, volcanic tremor and a family of earthquakes having similar waveform and appearing regularly in August and early September. Some of the earthquakes were felt by the population in Buea and its environments. The largest seismic event recorded had a magnitude of 4. During the post-eruptive period from mid-September to December, seismicity returned to its background level of 1–3 earthquakes per 3 days. Hypocenter locations reveal a linear narrow structure under the summit zone which could represent the magmatic conduit of the volcano. The frequency/magnitude relationship revealed a b-value of 1.43 higher than those previously determined, but more representative of volcanic media. Seismic energy release was gradual after the 2000 eruption started.  相似文献   

13.
The first sign of magma accumulating beneath Miyakejima, an island volcano in the northern Izu islands, Japan, came at around 18:00 on 26 June 2000, when a swarm of earthquakes was detected by a volcano seismic network on the island. Earthquakes occurred initially beneath the southwest flank near the summit and gradually migrated west of the island, where a submarine eruption occurred the next morning. Earthquakes then migrated further to the northwest between Miyakejima and Kozushima, another volcanic island and developed to the most intense earthquake swarm ever observed in and around Japanese archipelago. To better image how the initial magma intrusion occurred, we relocated hypocenters by using a station-correction method and a double-difference method. The relocated epicenters are generally concentrated near the upper bound of dyke intrusions inferred from geodetic studies throughout the initial stages of the 2000 eruption at Miyakejima from 26 to 27 June 2000. As for seismic activity westward off Miyakejima in the morning on 27 June, hypocenters from both a nationwide seismic network that were relocated by the double-difference method, and those from the volcano seismic network relocated by the station-correction method, formed a very shallow cluster that ascended slowly with time as it propagated northwestward from Miyakejima. This suggests that the dykes have both a radial and upward component of movement.Editorial responsibility: S. Nakada, T. Druitt  相似文献   

14.
Tangkuban Parahu is an active stratovolcano located 17 km north of the city of Bandung in the province west Java, Indonesia. All historical eruptive activity at this volcano has been confined to a complex of explosive summit craters. About a dozen eruptions-mostly phreatic events- and 15 other periods of unrest, indicated by earthquakes or increased thermal activity, have been noted since 1829. The last magmatic eruption occurred in 1910. In late 1983, several small phreatic explosions originated from one of the summit craters. More recently, increased hydrothermal and earthquake activity occurred from late 1985 through 1986. Tilt measurements, using a spirit-level technique, have been made every few months since February 1981 in the summit region and along the south and east flanks of the volcano. Measurements made in the summit region indicated uplift since the start of these measurements through at least 1986. From 1981 to 1983, the average tilt rate at the edges of the summit craters was 40–50 microradians per year. After the 1983 phreatic activity, the tilt rate decreased by about a factor of five. Trilateration surveys across the summit craters and on the east flank of the volcano were conducted in 1983 and 1986. Most line length changes measured during this three-year period did not exceed the expected uncertainty of the technique (4 ppm). The lack of measurable horizontal strain across the summit craters seems to contradict the several years of tilt measurements. Using a point source of dilation in an elastic half-space to model tilt measurements, the pressure center at Tangkuban Parahu is located about 1.5 km beneath the southern part of the summit craters. This is beneath the epicentral area of an earthquake swarm that occurred in late 1983. The average rate in the volume of uplift from 1981 to 1983 was 3 million m3 per year; from 1983 to 1986 it averaged about 0.4 million m3 per year. Possible causes for this uplift are increased pressure within a very shallow magma body or heating and expansion of a confined aquifier.  相似文献   

15.
Three-dimensional displacements and gravity changes were measured at 20 points between 2000 and 2002 at Merapi volcano, Java, Indonesia. Former models focused on the modeling of a single magmatic source located in the summit region of the volcano. Such models do not fit to our measurements between 2000 and 2002. A new hybrid model approach is developed consisting of an elastic-gravitational source described by a mass and energy term as well as a combined dip-slip/strike-slip fault zone in the summit region. Both nonlinear optimization problems, given by the common inversion of three-dimensional displacements and gravity changes, are solved by applying a genetic algorithm. The hybrid model fits the measurements accurately, tested by Fisher test statistics. Furthermore, our model for Merapi volcano confirms previous structural models for this region so that the new model is statistically proven as well as physically reliable.  相似文献   

16.
An eruption on the eastern flank of Piton de la Fournaise volcano started on 16 November, 2002 after 10 months of quiescence. After a relatively constant level of activity during the first 13 days of the eruption, lava discharge, volcanic tremor and seismicity increased from 29 November to 3 December. Lava effusion suddenly ceased on 3 December while shallow earthquakes beneath the Dolomieu summit crater were still recorded at a rate of about one per minute. This unusual activity continued and increased in intensity over the next three weeks, ending with the formation of a pit crater within Dolomieu. Based on ground deformation, measured by rapid-static and continuous GPS and an extensometer, seismic data, and lava effusion patterns, the eruptive period is divided into five stages: 1) slow summit inflation and sporadic seismicity; 2) rapid summit inflation and a short seismic crisis; 3) rapid flank inflation, onset of summit deflation, sporadic seismicity, accompanied by stable effusion; 4) flank inflation, coupled with summit deflation, intense seismicity, and increased lava effusion; and finally 5) little deflation, intense shallow seismicity, and the end of lava effusion. We propose a model in which the pre-intrusive inflation of Stage 1 in the months preceding the eruption was caused by a magma body located near sea level. The magma reservoir was the source of an intrusion rising under the summit during Stage 2. In Stage 3, the magma ponded at a shallow level in the edifice while the lateral injection of a radial dike reached the surface on the eastern flank of the basaltic volcano, causing lava effusion. Pressure decrease in the magmatic plumbing system followed, resulting in upward migration of a collapse front, forming a subterranean column of debris by faulting and stoping. This caused intense shallow seismicity, increase in discharge of lava and volcanic tremor at the lateral vent in Stage 4 and, eventually the formation of a pit crater in Stage 5.  相似文献   

17.
One of the best-studied volcanoes of the world, Mt. Etna in Sicily, repeatedly exhibits eruptive scenarios that depart from the behavior commonly considered typical for this volcano. Episodes of intense explosive activity, pyroclastic flows, dome growth and cone collapse pose a variety of previously underestimated threats to human lives in the summit area of the volcano. However, retrospective analysis of these events shows that they were likely caused by the same very sets of premises and starting conditions as “normal” eruptions, yet combined in an unexpected, probably unique, way. To cope with such unexpected consequences, we involve an approach of artificial intelligence developed specially for needs of the geosciences, the event bush. Scenarios inferred from the event bush fit the observed ones and allow to foresee other low-probability events that may occur at the volcano. Application of the event bush provides a more impartial vision of volcanic phenomena and may serve as an intermediary between expert knowledge and numerical assessment, e.g., by means of Bayesian Belief Networks.  相似文献   

18.
Cauldron collapse and voluminous pumice eruptions, some 2000 years ago, indicate a mature stage in the summit cone of a volcano rising 8000 feet above the ocean floor. Volcanic rocks ranging from early submarine tholeiitic basalts to young subaerial dacite obsidians have been mapped in chronologic sequence through five formations; plutonic rocks, found as accidental blocks and as disrupted cumulates, are gabbros or diorites. Twenty-three new analyses are listed.  相似文献   

19.
Beneath Mount Fuji, the highest active volcano in Japan, deep low-frequency (DLF) earthquake activity has been monitored since the early 1980s. The DLF earthquakes occurred in the mid-crustal depth range, and burst-type activity lasting from several minutes to 30 min was detected 10 to 20 times in an ordinary year. The DLF earthquake activity increased sharply in the period from October 2000 to May 2001, showing swarm-like activity. The occurrence rate during the DLF earthquake swarm was approximately 20 times higher than the usual activity, and the wave energy released during the swarm period was twice as high as the total wave energy during the past 20 years. The DLF earthquakes in the period from 1987 to 2001 were relocated by estimating station corrections in order to reduce the effect of the change of seismic station distribution. The epicenters of most DLF earthquakes occurred in an elongated region with a long axis of about 5 km, whose center is located 2–3 km NE from the summit. A few percent of the DLF earthquakes, however, occurred around the summit area, significantly apart from the main epicenter region. The focal depths of well-located DLF events range from 10 to 20 km. During the high activity period in 2000 and 2001, most DLF events occurred within this main hypocenter area. The sharp increase of DLF earthquake activity at Mount Fuji started immediately after magma discharge and intrusion events in the Miyake-jima and Kozu-shima regions in July and August 2000. The tectonic and volcanic activity changes around the area suggest that the DLF earthquake swarm at Mount Fuji was triggered by the change of state of the deep magmatic system around Mount Fuji.Editorial responsibility: J Stix  相似文献   

20.
Shishaldin Volcano, Unimak Island Alaska, began showing signs of thermal unrest in satellite images on 9 February 1999. A thermal anomaly and small steam plume were detected at the summit of the volcano in short-wave thermal infrared AVHRR (advanced very high resolution radiometer) satellite data. This was followed by over 2 months of changes in the observed thermal character of the volcano. Initially, the thermal anomaly was only visible when the satellite passed nearly directly over the volcano, suggesting a hot source deep in the central crater obscured from more oblique satellite passes. The "zenith angle" needed to see the anomaly increased with time, presumably as the thermal source rose within the conduit. Based on this change, an ascent rate of ca. 14 m per day for the thermal source was estimated, until it reached the summit on around 21 March. It is thought that Strombolian activity began around this time. The precursory activity culminated in a sub-Plinian eruption on 19 April, ejecting ash to over 45,000 ft. (13,700 m). The thermal energy output through the precursory period was calculated based on geometric constraints unique to Shishaldin. These calculations show fluctuations that can be tied to changes in the eruptive character inferred from seismic records and later geologic studies. The remote location of this volcano made satellite images a necessary observation tool for this eruption. To date, this is the longest thermal precursory activity preceding a sub-Plinian eruption recorded by satellite images in the region. This type of thermal monitoring of remote volcanoes is central in the efforts of the Alaska Volcano Observatory to provide timely warnings of volcanic eruption, and mitigate their associated hazards to air-traffic and local residents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号