首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 713 毫秒
1.
It is suggested that the overall early melting of the lunar surface is not necessary for the explanation of facts and that the structure of highlands is more complicated than a solidified anorthositic ‘plot’. The early heating of the interior of the Moon up to 1000K is really needed for the subsequent thermal history with the maximum melting 3.5 × 109 yr ago, to give the observed ages for mare basalts. This may be considered as an indication that the Moon during the accumulation retained a portion of its gravitational energy converted into heat, which may occur only at rapid processes. A rapid (t < 103 yr) accretion of the Moon from the circumterrestrial swarm of small particles would give necessary temperature, but it is not compatible with the characteristic time 108 yr of the replenishment of this swarm which is the same as the time-scale of the accumulation of the Earth. It is shown that there were conditions in the circumterrestial swarm for the formation at a first stage of a few large protomoons. Their number and position is evaluated from the simple formal laws of the growth of satellites in the vicinity of a planet. Such ‘systems’ of protomoons are compared with the observed multiple systems, and the conclusion is reached that there could have been not more than 2–3 large protomoons with the Earth. The tidal evolution of protomoon orbits was short not only for the present value of the tidal phase-lag but also for a considerably smaller value. The coalescence of protomoons into a single Moon had to occur before the formation of the observed relief on the Moon. If we accept the age 3.9 × 109 yr for the excavation of the Imbrium basin and ascribe the latter to the impact of an Earth satellite, this collision had to be roughly at 30R, whereR is the radius of the Earth, because the Moon at that time had to be somewhere at this distance. Therefore, the protomoons had to be orbiting inside 20–25R, and their coalescence had to occur more than 4.0x109 yr ago. The energy release at coalescence is equivalent to several hundred degrees and even 1000 K. The process is very rapid (of the order of one hour). Therefore, the model is valid for the initial conditions of the Moon.  相似文献   

2.
A.W. Harris  W.M. Kaula 《Icarus》1975,24(4):516-524
Numerical calculation of a simple accretion model including the effects of tidal friction indicate that coformation is tenable only if the planet's Q is less than about 103. The parameter which most strongly affects the final mass ratio of the pair is the time at which the secondary embryo is introduced. Our model yields the proper Moon-Earth mass ratio if the Moon embryo is introduced when the Earth is only about 110 of its final mass. The lunar orbit remains at about 10 Earth radii throughout most of the growth.This model of satellite formation overcomes two difficulties of the “circumterrestrial cloud” model of Ruskol (1960, 1963, 1972): (1) The difficulty of accumulating a mass as great as the entire Moon before gravitational instability reduces the cloud to a small number of moonlets is removed. (2) The differences between terrestrial and outer planet satellite systems is easily understood in terms of the differences in Q between these planets. The high Q of the outer planets does not allow a satellite embryo to survive a significant portion of the accretion process, thus only small bodies which formed very late in the accumulation of the planet remain as satellites. The low Q of the terrestrial planets allows satellite embryos of these planets to survive during accretion, thus massive satellites such as the Earth's Moon are expected. The present lack of such satellites of the other terrestrial planets may be the result of tidal evolution, either infall following primary despinning (Burns, 1973) or escape due to increase in orbit eccentricity.  相似文献   

3.
We consider a model that describes the evolution of distant satellite orbits and that refines the solution of the doubly averaged Hill problem. Generally speaking, such a refinement was performed previously by J. Kovalevsky and A.A. Orlov in terms of Zeipel’s method by constructing a solution of the third order with respect to the small parameter m, the ratio of the mean motions of the planet and the satellite. The analytical solution suggested here differs from the solutions obtained by these authors and is closest in form to the general solution of the doubly averaged problem (∼m 2). We have performed a qualitative analysis of the evolutionary equations and conditions for the intersection of satellite orbits with the surface of a spherical planet with a finite radius. Using the suggested solution, we have obtained improved analytical time dependences of the elements of evolving orbits for a number of distant satellites of giant planets compared to the solution of the doubly averaged Hill problem and, thus, achieved their better agreement with the results of our numerical integration of the rigorous equations of perturbed motion for satellites.  相似文献   

4.
A new analytical solution of the system of differential equations describing secular perturbations and long-period solar perturbations of mean orbits of outer satellites of giant planets was obtained. As distinct from other solutions, the solution constructed using von Zeipel’s method approximately takes into account, in the secular part of the perturbing function, the totality of fourth order with respect to the small parameter m of the ratio of the mean motions of the primary planet and the satellite. This enables us to describe more accurately the evolution of satellite orbits with large apocentric distances, which in the course of evolution may exceed the halved radius of the Hill sphere of the planet with respect to the Sun. Among these are the orbits of the two outermost Neptunian satellites N10 (Psamathe) and N13 (Neso). For these satellites, the parameter m amounts to 0.152 and 0.165, respectively. Different from a purely analytical solution, the proposed solution requires preliminary calculations for each satellite. More precisely, in doing so, we need to construct some simple functions to approximate more complex ones. This is why we use the phrase “constructive analytical.” To illustrate the solution, we compare it with the results of the numerical integration of the strict motion equations of the satellites N10 and N13 over time intervals 5–15 thousand years.  相似文献   

5.
For a satellite to survive in the disk the time scale of satellite migration must be longer than the time scale for gas dissipation. For large satellites (∼1000 km) migration is dominated by the gas tidal torque. We consider the possibility that the redistribution of gas in the disk due to the tidal torque of a satellite with mass larger than the inviscid critical mass causes the satellite to stall and open a gap (W.R. Ward, 1997, Icarus 26, 261-281). We adapt the inviscid critical mass criterion to include gas drag, and m-dependent nonlocal deposition of angular momentum. We find that such a model holds promise of explaining the survival of satellites in the subnebula, the mass versus distance relationship apparent in the saturnian and uranian satellite systems, the concentration of mass in Titan, and the observation that the satellites of Jupiter get rockier closer to the planet whereas those of Saturn become increasingly icy. It is also possible that either weak turbulence (close to the planet) or gap-opening satellite tidal torque removes gas on a similar time scale (104-105 years) as the orbital decay time of midsized (200-700 km) regular satellites forming in the inner disk (inside the centrifugal radius (I. Mosqueira and P.R. Estrada, 2003, Icarus, this issue)). We argue that Saturn’s satellite system bridges the gap between those of Jupiter and Uranus by combining the formation of a Galilean-sized satellite in a gas optically thick subnebula with a strong temperature gradient, and the formation of smaller satellites, closer to the planet, in a disk with gas optical depth ?1, and a weak temperature gradient.Using an optically thick inner disk (given gaseous opacity), and an extended, quiescent, optically thin outer disk, we show that there are regions of the disk of small net tidal torque (even zero) where satellites (Iapetus-sized or larger) may stall far from the planet. For our model these outer regions of small net tidal torque correspond roughly to the locations of Callisto and Iapetus. Though the precise location depends on the (unknown) size of the transition region between the inner and outer disks, the result that Saturn’s is found much farther out (at ∼3rcS, where rcS is Saturn’s centrifugal radius) than Jupiter’s (at ∼ 2rcJ, where rcJ is Jupiter’s centrifugal radius) is mostly due to Saturn’s less massive outer disk and larger Hill radius. However, despite the large separation between Ganymede and Callisto and Titan and Iapetus, the long formation and migration time scales for Callisto and Iapetus (I. Mosqueira and P.R. Estrada, 2003, Icarus, this issue) makes it possible (depending on the details of the damping of acoustic waves) that the tidal torque of Ganymede and Titan clears the gas disk out to their location, thus stranding Callisto and Iapetus far from the planet. Either way, our model provides an explanation for the presence of regular satellites outside the centrifugal radii of Jupiter and Saturn, and the absence of such a satellite for Uranus.  相似文献   

6.
The past tidal evolution of the satellite Dysnomia of the dwarf planet Eris can be inferred from the current physical and orbital properties of the system. Preliminary considerations, which assumed a circular orbit for the satellite, suggested that the satellite formed close to the planet, perhaps as a result of a giant impact, and that it is thus unlikely that smaller satellites lie further out. However, if the satellite's orbit is eccentric, even if the eccentricity is very small, a qualitatively different past tidal evolution may be indicated. Early in the Solar System's history, the satellite may have been on a highly eccentric orbit much farther from the planet than it is now, suggestive of a capture origin. Additional satellites farther out cannot be ruled out.  相似文献   

7.
We study the evolution of several distant satellite orbits. These are the orbits (including the improved ones)of the recently discovered Neptunian satellites S/2002 N1, N2, N3, N4; S/2003 N1 and the orbits of Jovian, Saturnian, and Uranian satellites with librational variations in the argument of the pericenter: S/2001 J10 (Euporie), S/2003 J20; S/2000 S5 (Kiviuq), S/2000 S6 (Ijiraq), and S/2003 U3. The study is performed using mainly an approximate numerical-analytical method. We determine the extreme eccentricities and inclinations as well as the periods of the variations in the arguments of pericenters and longitudes of the ascending nodes on time intervals ~105?106 yr. We compare our results with those obtained by numerically integrating the rigorous equations of satellite motion on time intervals of the order of the circulation periods of the longitudes of the ascending nodes (102?103 yr).  相似文献   

8.
The outer region of the jovian system between ∼50 and 300 jovian radii from the planet is found to be the host of a previously unknown dust population. We used the data from the dust detector aboard the Galileo spacecraft collected from December 1995 to April 2001 during Galileo's numerous traverses of the outer jovian system. Analyzing the ion amplitudes, calibrated masses and speeds of grains, and impact directions, we found about 100 individual events fully compatible with impacts of grains moving around Jupiter in bound orbits. These grains have moderate eccentricities and a wide range of inclinations—from prograde to retrograde ones. The radial number density profile of the micrometer-sized dust is nearly flat between about 50 and 300 jovian radii. The absolute number density level (∼10 km−3 with a factor of 2 or 3 uncertainty) surpasses by an order of magnitude that of the interplanetary background. We identify the sources of the bound grains with outer irregular satellites of Jupiter. Six outer tiny moons are orbiting the planet in prograde and fourteen in retrograde orbits. These moons are subject to continuous bombardment by interplanetary micrometeoroids. Hypervelocity impacts create ejecta, nearly all of which get injected into circumjovian space. Our analytic and numerical study of the ejecta dynamics shows that micrometer-sized particles from both satellite families, although strongly perturbed by solar tidal gravity and radiation pressure, would stay in bound orbits for hundreds of thousands of years as do a fraction of smaller grains, several tenths of a micrometer in radius, ejected from the prograde moons. Different-sized ejecta remain confined to spheroidal clouds embracing the orbits of the parent moons, with appreciable asymmetries created by the radiation pressure and solar gravity perturbations. Spatial location of the impacts, mass distribution, speeds, orbital inclinations, and number density of dust derived from the data are all consistent with the dynamical model.  相似文献   

9.
We consider a satellite in a circular orbit about a planet that, in turn, is in a circular orbit about the Sun; we further assume that the plane of the planetocentric orbit of the satellite is the same as that of the heliocentric orbit of the planet. The pair planet–satellite is encountered by a population of small bodies on planet-crossing, inclined orbits. With this setup, and using the extension of Öpik’s theory by Valsecchi et al. (Astron Astrophys 408:1179–1196, 2003), we analytically compute the velocity, the elongation from the apex and the impact point coordinates of the bodies impacting the satellite, as simple functions of the heliocentric orbital elements of the impactor and of the longitude of the satellite at impact. The relationships so derived are of interest for satellites in synchronous rotation, since they can shed light on the degree of apex–antapex cratering asymmetry that some of these satellites show. We test these relationships on two different subsets of the known population of Near Earth Asteroids.  相似文献   

10.
The origin and evolution of the Earth-Moon system is studied by comparing it to the satellite systems of other planets. The normal structure of a system of secondary bodies orbiting around a central body depends essentially on the mass of the central body. The Earth with a mass intermediate between Uranus and Mars should have a normal satellite system that consists of about half a dozen satellites each with a mass of a fraction of a percent of the lunar mass. Hence, the Moon is not likely to have been generated in the environment of the Earth by a normal accretion process as is claimed by some authors.Capture of satellites is quite a common process as shown by the fact that there are six satellites in the solar system which, because they are retrograde, must have been captured. There is little doubt that the Moon is also a captured satellite, but its capture orbit and tidal evolution are still incompletely understood.The Earth and the Moon are likely to have been formed from planetesimals accreting in particle swarms in Kepler orbits (jet streams). This process leads to the formation of a cool lunar interior with an outer layer accreted at increasingly higher temperatures. The primeval Earth should similarly have formed with a cool inner core surrounded in this case by a very strongly heated outer core and with a mantle accreted slowly and with a low average temperature but with intense transient heating at each individual impact site.  相似文献   

11.
In this paper we extend the theory of close encounters of a giant planet on a parabolic orbit with a central star developed in our previous work (Ivanov and Papaloizou in MNRAS 347:437, 2004; MNRAS 376:682, 2007) to include the effects of tides induced on the central star. Stellar rotation and orbits with arbitrary inclination to the stellar rotation axis are considered. We obtain results both from an analytic treatment that incorporates first order corrections to normal mode frequencies arising from stellar rotation and numerical treatments that are in satisfactory agreement over the parameter space of interest. These results are applied to the initial phase of the tidal circularisation problem. We find that both tides induced in the star and planet can lead to a significant decrease of the orbital semi-major axis for orbits having periastron distances smaller than 5?C6 stellar radii with tides in the star being much stronger for retrograde orbits compared to prograde orbits. Assuming that combined action of dynamic and quasi-static tides could lead to the total circularisation of orbits this corresponds to observed periods up to 4?C5 days. We use the simple Skumanich law to characterise the rotational history of the star supposing that the star has its rotational period equal to one month at the age of 5 Gyr. The strength of tidal interactions is characterised by circularisation time scale, t ev , which is defined as a typical time scale of evolution of the planet??s semi-major axis due to tides. This is considered as a function of orbital period P obs , which the planet obtains after the process of tidal circularisation has been completed. We find that the ratio of the initial circularisation time scales corresponding to prograde and retrograde orbits, respectively, is of order 1.5?C2 for a planet of one Jupiter mass having P obs ~ 4 days. The ratio grows with the mass of the planet, being of order five for a five Jupiter mass planet with the same P orb . Note, however, this result might change for more realistic stellar rotation histories. Thus, the effect of stellar rotation may provide a bias in the formation of planetary systems having planets on close orbits around their host stars, as a consequence of planet?Cplanet scattering, which favours systems with retrograde orbits. The results reported in the paper may also be applied to the problem of tidal capture of stars in young stellar clusters.  相似文献   

12.
We present an improved analytic calculation for the tidal radius of satellites and test our results against N -body simulations.
The tidal radius in general depends upon four factors: the potential of the host galaxy, the potential of the satellite, the orbit of the satellite and the orbit of the star within the satellite . We demonstrate that this last point is critical and suggest using three tidal radii to cover the range of orbits of stars within the satellite. In this way we show explicitly that prograde star orbits will be more easily stripped than radial orbits; while radial orbits are more easily stripped than retrograde ones. This result has previously been established by several authors numerically, but can now be understood analytically. For point mass, power-law (which includes the isothermal sphere), and a restricted class of split power-law potentials our solution is fully analytic. For more general potentials, we provide an equation which may be rapidly solved numerically.
Over short times (≲1–2 Gyr ∼1 satellite orbit), we find excellent agreement between our analytic and numerical models. Over longer times, star orbits within the satellite are transformed by the tidal field of the host galaxy. In a Hubble time, this causes a convergence of the three limiting tidal radii towards the prograde stripping radius. Beyond the prograde stripping radius, the velocity dispersion will be tangentially anisotropic.  相似文献   

13.
A.W. Harris 《Icarus》1978,34(1):128-145
The satellite formation model of Harris and Kaula (Icarus24, 516–524, 1975) is extended to include evolution of planetary ring material and elliptic orbital motion. This model is more satisfactory than the previous one in that the formation of the moon begins at a later time in the growth of the earth, and that a significant fraction of the lunar material is processed through a circumterrestrial debris cloud where volatiles might have been lost. Thus the chemical differences between the earth and moon are more plausibly accounted for. Satellites of the outer planets probably formed in large numbers throughout the growth of those planets. Because of rapid inward evolution of the orbits of small satellites, the present satellite systems represent only satellites formed in the last few percent of the growths of their primaries. The rings of Saturn and Uranus are most plausibly explained as the debris of satellites disrupted within the Roche limit. Because such a ring would collapse onto the planet in the course of any significant further accretion by the planet, the rings must have formed very near or even after the conclusion of accretion.  相似文献   

14.
Keiko Atobe 《Icarus》2007,188(1):1-17
We have investigated the obliquity evolution of terrestrial planets in habitable zones (at ∼1 AU) in extrasolar planetary systems, due to tidal interactions with their satellite and host star with wide varieties of satellite-to-planet mass ratio (m/Mp) and initial obliquity (γ0), through numerical calculations and analytical arguments. The obliquity, the angle between planetary spin axis and its orbit normal, of a terrestrial planet is one of the key factors in determining the planetary surface environments. A recent scenario of terrestrial planet accretion implies that giant impacts of Mars-sized or larger bodies determine the planetary spin and form satellites. Since the giant impacts would be isotropic, tilted spins (sinγ0∼1) are more likely to be produced than straight ones (sinγ0∼0). The ratio m/Mp is dependent on the impact parameters and impactors' mass. However, most of previous studies on tidal evolution of the planet-satellite systems have focused on a particular case of the Earth-Moon systems in which m/Mp?0.0125 and γ0∼10° or the two-body planar problem in which γ0=0° and stellar torque is neglected. We numerically integrated the evolution of planetary spin and a satellite orbit with various m/Mp (from 0.0025 to 0.05) and γ0 (from 0° to 180°), taking into account the stellar torques and precessional motions of the spin and the orbit. We start with the spin axis that almost coincides with the satellite orbit normal, assuming that the spin and the satellite are formed by one dominant impact. With initially straight spins, the evolution is similar to that of the Earth-Moon system. The satellite monotonically recedes from the planet until synchronous state between the spin period and the satellite orbital period is realized. The obliquity gradually increases initially but it starts decreasing down to zero as approaching the synchronous state. However, we have found that the evolution with initially tiled spins is completely different. The satellite's orbit migrates outward with almost constant obliquity until the orbit reaches the critical radius ∼10-20 planetary radii, but then the migration is reversed to inward one. At the reversal, the obliquity starts oscillation with large amplitude. The oscillation gradually ceases and the obliquity is reduced to ∼0° during the inward migration. The satellite eventually falls onto the planetary surface or it is captured at the synchronous state at several planetary radii. We found that the character change of precession about total angular momentum vector into that about the planetary orbit normal is responsible for the oscillation with large amplitude and the reversal of migration. With the results of numerical integration and analytical arguments, we divided the m/Mp-γ0 space into the regions of the qualitatively different evolution. The peculiar tidal evolution with initially tiled spins give deep insights into dynamics of extrasolar planet-satellite systems and discussions of surface environments of the planets.  相似文献   

15.
We present here a model for the tidal evolution of an isolated two-body system. Equations are derived, including the dissipation in the planet as in the satellite, in a frequency dependent lag model. The set of differential equations obtained is still valid for large eccentricity, as well as for all inclinations. The reference plane chosen enables us to study the evolution for both the orbital plane and the equatorial plane.The results obtained show the Moon, after having approached the Earth with small variations for the inclination and the eccentricity, exhibits strong increase for the two parameters in the vicinity of the closest approach. In every case the eccentricity tends towards the value 1, whereas the variations of the in clinations are dependent on the magnitude of the dissipation in the satellite.Some qualitative results are also investigated for the final behaviour of satellites such as Triton and the Galilean satellites.  相似文献   

16.
17.
The twice-averaged Hill problem with the oblateness of the central planet is considered in the case where its equatorial plane coincides with the plane of its orbital motion relative to the perturbing body. A qualitative study of this so-called coplanar integrable case was begun by Y. Kozai in 1963 and continued by M.L. Lidov and M.V. Yarskaya in 1974. However, no rigorous analytical solution of the problem can be obtained due to the complexity of the integrals. In this paper we obtain some quantitative evolution characteristics and propose an approximate constructive-analytical solution of the evolution system in the form of explicit time dependences of satellite orbit elements. The methodical accuracy has been estimated for several orbits of artificial lunar satellites by comparison with the numerical solution of the evolution system.  相似文献   

18.
We propose an approach to the study of the evolution of high-apogee twelve-hour orbits of artificial Earth’s satellites. We describe parameters of the motion model used for the artificial Earth’s satellite such that the principal gravitational perturbations of the Moon and Sun, nonsphericity of the Earth, and perturbations from the light pressure force are approximately taken into account. To solve the system of averaged equations describing the evolution of the orbit parameters of an artificial satellite, we use both numeric and analytic methods. To select initial parameters of the twelve-hour orbit, we assume that the path of the satellite along the surface of the Earth is stable. Results obtained by the analytic method and by the numerical integration of the evolving system are compared. For intervals of several years, we obtain estimates of oscillation periods and amplitudes for orbital elements. To verify the results and estimate the precision of the method, we use the numerical integration of rigorous (not averaged) equations of motion of the artificial satellite: they take into account forces acting on the satellite substantially more completely and precisely. The described method can be applied not only to the investigation of orbit evolutions of artificial satellites of the Earth; it can be applied to the investigation of the orbit evolution for other planets of the Solar system provided that the corresponding research problem will arise in the future and the considered special class of resonance orbits of satellites will be used for that purpose.  相似文献   

19.
We present some families of horseshoe periodic orbits in the general planar three-body problem for the case of two equal masses. The considered system is a symmetric version of the one formed by Saturn, Janus and Epimetheus. We use a mass ratio equal to 35×10−5, corresponding to 105 times the Saturn-Janus mass parameter of the restricted case; for this mass ratio the satellites have a significantly bigger influence on the planet than in the classical Saturn, Janus and Epimetheus system. To obtain periodic orbits, we search those horseshoe orbits passing through two reversible configurations. A particular kind of periodic orbits where the minor bodies follow the same path is discussed.  相似文献   

20.
The expressions of the tidal velocity in not very close binaries (double stars, the Sun and a planet, a planet and a satellite) are derived and applied in particular to white dwarfs and the giant planets of the solar system. The magnitude of the velocity on the surface of Jupiter is estimated to be about 0.5 cm s?1. In white dwarfs the velocities of the order of tens m s?1 may be encountered, and they can influence their evolution. The symmetry of the tidal flows is noted to be suitable for the magnetic field generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号