首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 31 毫秒
1.
The use of wild species is extensive in both high- and low-income countries. At least 50,000 wild species are used by billions of people around the world for food, energy, medicine, material, education or recreation, contributing significantly to efforts to achieve the United Nations Sustainable Development Goals. However, overexploitation remains a major threat to many wild species. Ensuring and enhancing the sustainability of use of wild species is thus essential for human well-being and biodiversity conservation. Globally, the use of wild species is increasing due to growing human demand and efficiency, but its sustainability varies and depends on the social-ecological contexts in which the use occurs. Multiple environmental and social (including economic) drivers affect the sustainability of use of wild species, posing major current and future challenges. In particular, climate change has already increased the vulnerability of many uses and is expected to increase it further in the coming decades, while global and illegal trades are, in many cases, key drivers of unsustainability. There is no single “silver bullet” policy to address these and other major challenges in the sustainable use of wild species. Rather, effective policies need to integrate inclusive actions at multiple scales that adopt right-based approaches, pay attention to equitable distribution of access and costs and benefits, employ participatory processes, strengthen monitoring programs, build robust customary or government institutions and support context-specific policies, as well as adaptive management.  相似文献   

2.
Tyler Volk 《Climatic change》2007,85(3-4):251-258
Axel Kleidon (Clim Change 66:271–319, 2004) proposed that the organisms that constitute Earth’s biota have free parameters that can be selected to create states of maximum entropy production (MEP) on various scales, from the biota to the planetary radiation balance of the Earth system. I show that Kleidon’s concept, here called the biotic-MEP hypothesis, is fundamentally mistaken. A thought experiment with a life form that would be selected against even though it would generate a higher degree of entropy demonstrates my case: A hypothetical tree that puts forth a non-productive but high-entropy producing black carpet of tissue clearly separates out entropy production from other biological processes and shows that entropy production is not a functional adaptation and therefore it cannot be selected for. A real world example comes from dimethyl sulfide-emitting plankton, which, by increasing cloud albedo, do not raise but rather lower the entropy flux of the Earth system. I provide a number of other examples of biotic processes that individually either decrease or increase the environmental entropy production. It is argued that biological effects on environmental entropy production can be expected to include both positive and negative examples, because these effects are merely by-products of the actual processes that are selected for by evolution. Given my framework of entropy production as a by-product of the true processes that are being selected for, the concept of MEP on environmental scales has no great relevance for discussions of biological evolution or the time history of the effects of life on the global system.  相似文献   

3.
Co-management institutional arrangements have an important role in creating conditions for social learning and adaptation in a rapidly changing Arctic environment, although how that works in practice has not been clearly articulated. This paper draws on three co-management cases from the Canadian Arctic to examine the role of knowledge co-production as an institutional trigger or mechanism to enable learning and adapting. Experience with knowledge co-production across the three cases is variable but outcomes illustrate how co-management actors are learning to learn through uncertainty and environmental change, or learning to be adaptive. Policy implications of this analysis are highlighted and include the importance of a long-term commitment to institution building, an enabling policy environment to sustain difficult social processes associated with knowledge co-production, and the value of diverse modes of communication, deliberation and social interaction.  相似文献   

4.
The promotion of environmental knowledge is viewed as a fundamental component of environmental education and a necessary prerequisite to ecological behaviour; however, it has little effect on actual behaviour. Nature-based environmental education, which combines the acquisition of environmental knowledge with the promotion of an intrinsic driver, namely connectedness to nature, is proposed as a holistic approach to increase ecological behaviour. This paper evaluates the effect of participation in nature-based environmental education in 4th to 6th graders (N = 255). As expected, increased participation in nature-based environmental education was related to greater ecological behaviour, mediated by increases in environmental knowledge and connectedness to nature. While both factors were similarly predicted by participation in nature-based environmental education, connectedness to nature explained 69% and environmental knowledge 2% of the variance in ecological behaviour. However, the design of our data do not evidence the causality of these relations, which are solely based on theoretical assumptions supported by literature. Nevertheless, the importance of fostering both environmental knowledge and connectedness to nature as complementary drivers of ecological behaviour, as offered by nature-based environmental education, should be researched further as a highly promising approach to fostering ecologically-motivated individuals.  相似文献   

5.
The element phosphorus underpins the viability of global and national food systems, by ensuring soil fertility, maximising crop yields, supporting farmer livelihoods and ultimately nutritional security of the global population. The implications of global phosphorus scarcity therefore have serious potential consequences for future food security, yet these implications have not been be comprehensively or sufficiently assessed at the global or national scales. This paper offers a new integrated framework for assessing the vulnerability of national food systems to global phosphorus scarcity—the Phosphorus Vulnerability Assessment framework. Drawing on developments in assessing climate and water vulnerability, the framework identifies and integrates 26 phosphorus-related biophysical, technical, geopolitical, socio-economic and institutional factors that can lead to food system vulnerability. The theoretical framework allows analysis of context-specific food system by examining impact due to exposure, sensitivity and adaptive capacity. The framework will also ultimately provide guidance for food and agriculture policy-makers, phosphate producers and phosphorus end-users (primarily farmers and consumers) to take action to reduce their vulnerability to this new global challenge.  相似文献   

6.
While it is generally asserted that those countries who have contributed least to anthropogenic climate change are most vulnerable to its adverse impacts some recently developed indices of vulnerability to climate change come to a different conclusion. Confirmation or rejection of this assertion is complicated by the lack of an agreed metric for measuring countries’ vulnerability to climate change and by conflicting interpretations of vulnerability. This paper presents a comprehensive semi-quantitative analysis of the disparity between countries’ responsibility for climate change, their capability to act and assist, and their vulnerability to climate change for four climate-sensitive sectors based on a broad range of disaggregated vulnerability indicators. This analysis finds a double inequity between responsibility and capability on the one hand and the vulnerability of food security, human health, and coastal populations on the other. This double inequity is robust across alternative indicator choices and interpretations of vulnerability. The main cause for the higher vulnerability of poor nations who have generally contributed little to climate change is their lower adaptive capacity. In addition, the biophysical sensitivity and socio-economic exposure of poor nations to climate impacts on food security and human health generally exceeds that of wealthier nations. No definite statement can be made on the inequity associated with climate impacts on water supply due to large uncertainties about future changes in regional water availability and to conflicting indicators of current water scarcity. The robust double inequity between responsibility and vulnerability for most climate-sensitive sectors strengthens the moral case for financial and technical assistance from those countries most responsible for climate change to those countries most vulnerable to its adverse impacts. However, the complex and geographically heterogeneous patterns of vulnerability factors for different climate-sensitive sectors suggest that the allocation of international adaptation funds to developing countries should be guided by sector-specific or hazard-specific criteria despite repeated requests from participants in international climate negotiations to develop a generic index of countries’ vulnerability to climate change.  相似文献   

7.
Energy and climate policies may have significant economy-wide impacts, which are regularly assessed based on quantitative energy-environment-economy models. These tend to vary in their conclusions on the scale and direction of the likely macroeconomic impacts of a low-carbon transition. This paper traces the characteristic discrepancies in models’ outcomes to their origins in different macro-economic theories, most importantly their treatment of technological innovation and finance. We comprehensively analyse the relevant branches of macro-innovation theory and group them into two classes: ‘Equilibrium’ and ‘Non-equilibrium’. While both approaches are rigorous and self-consistent, they frequently yield opposite conclusions for the economic impacts of low-carbon policies. We show that model outcomes are mainly determined by their representations of monetary and finance dimensions, and their interactions with investment, innovation and technological change. Improving these in all modelling approaches is crucial for strengthening the evidence base for policy making and gaining a more consistent picture of the macroeconomic impacts of achieving emissions reductions objectives. The paper contributes towards the ongoing effort of enhancing the transparency and understanding of sophisticated model mechanisms applied to energy and climate policy analysis. It helps tackle the overall ‘black box’ critique, much-cited in policy circles and elsewhere.

Key policy insights

  • Quantitative models commissioned by policy-makers to assess the macroeconomic impacts of climate policy generate contradictory outcomes and interpretations.

  • The source of the differences in model outcomes originates primarily from assumptions on the workings of the financial sector and the nature of money, and of how these interact with processes of low-carbon energy innovation and technological change.

  • Representations of innovation and technological change are incomplete in energy-economy-environment models, leading to limitations in the assessment of the impacts of climate-related policies.

  • All modelling studies should state clearly their underpinning theoretical school and their treatment of finance and innovation.

  • A strong recommendation is given for modellers of energy-economy systems to improve their representations of money and finance.

  相似文献   

8.
Presented is a review of the radiative properties of ice clouds from three perspectives: light scattering simulations, remote sensing applications, and broadband radiation parameterizations appropriate for numerical models. On the subject of light scattering simulations, several classical computational approaches are reviewed, including the conventional geometric-optics method and its improved forms, the finite-difference time domain technique, the pseudo-spectral time domain technique, the discrete dipole approximation method, and the T-matrix method, with specific applications to the computation of the singlescattering properties of individual ice crystals. The strengths and weaknesses associated with each approach are discussed.With reference to remote sensing, operational retrieval algorithms are reviewed for retrieving cloud optical depth and effective particle size based on solar or thermal infrared(IR) bands. To illustrate the performance of the current solar- and IR-based retrievals, two case studies are presented based on spaceborne observations. The need for a more realistic ice cloud optical model to obtain spectrally consistent retrievals is demonstrated. Furthermore, to complement ice cloud property studies based on passive radiometric measurements, the advantage of incorporating lidar and/or polarimetric measurements is discussed.The performance of ice cloud models based on the use of different ice habits to represent ice particles is illustrated by comparing model results with satellite observations. A summary is provided of a number of parameterization schemes for ice cloud radiative properties that were developed for application to broadband radiative transfer submodels within general circulation models(GCMs). The availability of the single-scattering properties of complex ice habits has led to more accurate radiation parameterizations. In conclusion, the importance of using nonspherical ice particle models in GCM simulations for climate studies is proven.  相似文献   

9.
Radiative transfer model simulations were used to investigate the erythemal ultraviolet(EUV) correction factors by separating the UV-A and UV-B spectral ranges. The correction factor was defined as the ratio of EUV caused by changing the amounts and characteristics of the extinction and scattering materials. The EUV correction factors(CFEUV) for UV-A[CFEUV(A)] and UV-B [CFEUV(B)] were affected by changes in the total ozone, optical depths of aerosol and cloud, and the solar zenith angle. The differences between CFEUV(A) and CFEUV(B) were also estimated as a function of solar zenith angle, the optical depths of aerosol and cloud, and total ozone. The differences between CFEUV(A) and CFEUV(B) ranged from-5.0% to 25.0% for aerosols, and from-9.5% to 2.0% for clouds in all simulations for different solar zenith angles and optical depths of aerosol and cloud. The rate of decline of CFEUV per unit optical depth between UV-A and UV-B differed by up to 20% for the same aerosol and cloud conditions. For total ozone, the variation in CFEUV(A) was negligible compared with that in CFEUV(B) because of the effective spectral range of the ozone absorption band. In addition, the sensitivity of the CFEUVs due to changes in surface conditions(i.e., surface albedo and surface altitude) was also estimated by using the model in this study. For changes in surface albedo, the sensitivity of the CFEUVs was 2.9%–4.1% per 0.1 albedo change,depending on the amount of aerosols or clouds. For changes in surface altitude, the sensitivity of CFEUV(B) was twice that of CFEUV(A), because the Rayleigh optical depth increased significantly at shorter wavelengths.  相似文献   

10.
Agricultural systems, with their links to human wellbeing, have been at the heart of sustainability debates for decades. But there is only limited agreement among scientists and stakeholders about the indicators needed to measure the sustainability of agricultural commodity production. We analyze the metrics and indicators of sustainability used in contemporary research on commodity agriculture to demonstrate that new sustainability indicators continue to be developed rapidly by researchers interested in the three principal pillars of sustainability (environmental, economic, and sociocultural). Data from interviews with main agencies and organizations investing in sustainable commodity agriculture reveals that the most commonly used indicators in the academic literature do not overlap with the central aspects of agricultural commodity production that practitioners seek to monitor. Increased dialogue between researchers and practitioners is necessary for better design and use of metrics and indicators that are cost-effective and can be used to compare sustainability outcomes across countries and commodities. We argue that finding common ground among researchers and practitioners requires coordinating ongoing data collection efforts, a greater focus on linking data collection to relevant indicators for sustainable agricultural production, and more attention to the analysis of combined datasets, rather than on the collection of new data on new indicators. By outlining twelve key aspects of agricultural commodity production that the interviewed practitioners from major agencies and organizations deem important to track, our analysis provides a strong framework that can help bridge research-practitioner divisions related to agricultural commodity production and the use of indicators to monitor and assess its sustainability. Our findings are relevant to the search for a parsimonious set of sustainability indicators at a critical time within the context of a new emerging global sustainability agenda.  相似文献   

11.
Spate irrigation is increasingly recognized as contributing to potential of accessible water-resource use, local food production, and resource sustainability. This study constructs an approach to spate irrigation as a landscape technology by selectively fusing concepts of resilience ecology, political ecology, and actor-network theory. It is applied to a case study of the Calicanto area (Cochabamba, Bolivia) with emphasis on the 1990-1993 period. Calicanto spate irrigation provided an effective landscape technology over more than 15 km2 and 3500 fields via a 65-km canal network, thus comprising the largest spate-irrigated area of Latin America. Use of this irrigation technology was linked to climate variability and environmental variation as well as landscape features, livelihood diversification including widespread migration, and innovative high-agrobiodiversity land use, in addition to community resource management, settlement patterning, population density, and production intensity. Notwithstanding social-ecological resilience and versatility, the trajectory of this irrigation underwent major change with new waterworks launched in 1993. Key lessons for the related social-ecological sciences, development policy, and sustainability perspectives include: (i) versatility and viability of spate irrigation hinges on multiple social-ecological links; and (ii) its limitations include eclipse via irrigation trajectories lacking social-ecological analytic and conceptual capacities, and widespread albeit largely unacknowledged biases against the landscape technology of spate irrigation.  相似文献   

12.
The response of the upper-ocean temperatures and currents in the tropical Pacific to the spatial distribution of chlorophyll-a and its seasonal cycle is investigated using a coupled atmosphere-ocean model and a stand-alone oceanic general circulation model.The spatial distribution of chlorophyll-a significantly influences the mean state of models in the tropical Pacific.The annual mean SST in the eastern equatorial Pacific decreases accompanied by a shallow thermocline and stronger currents because of shallow penetration depth of solar radiation.Equatorial upwelling dominates the heat budget in that region.Atmosphere-ocean interaction processes can further amplify such changes. The seasonal cycle of chlorophyll-a can dramatically change ENSO period in the coupled model.After introducing the seasonal cycle of chlorophyll-a concentration,the peak of the power spectrum becomes broad,and longer periods(>3 years) are found.These changes led to ENSO irregularities in the model. The increasing period is mainly due to the slow speed of Rossby waves,which are caused by the shallow mean thermocline in the northeastern Pacific.  相似文献   

13.
Weather variability poses numerous risks to agricultural communities, yet farmers may be able to reduce some of these risks by adapting their cropping practices to better suit changes in weather. However, not all farmers respond to weather variability in the same way. To better identify the causes and consequences of this heterogeneous decision-making, we develop a framework that identifies (1) which socio-economic and biophysical factors are associated with heterogeneous cropping decisions in response to weather variability and (2) which cropping strategies are the most adaptive, considering economic outcomes (e.g., yields and profits). This framework aims to understand how, why, and how effectively farmers adapt to current weather variability; these findings, in turn, may contribute to a more mechanistic and predictive understanding of individual-level adaptation to future climate variability and change. To illustrate this framework, we assessed how 779 farmers responded to delayed monsoon onset in fifteen villages in Gujarat, India during the 2011 growing season, when the monsoon onset was delayed by three weeks. We found that farmers adopted a variety of strategies to cope with delayed monsoon onset, including increasing irrigation use, switching to more drought-tolerant crops, and/or delaying sowing. We found that farmers’ access to and choice of strategies varied with their assets, irrigation access, perceptions of weather, and risk aversion. Richer farmers with more irrigation access used high levels of irrigation, and this strategy was associated with the highest yields in our survey sample. Poorer farmers with less secure access to irrigation were more likely to push back planting dates or switch crop type, and economic data suggest that these strategies were beneficial for those who did not have secure access to irrigation. Interestingly, after controlling for assets and irrigation access, we found that cognitive factors, such as beliefs that the monsoon onset date had changed over the last 20 years or risk aversion, were associated with increased adaptation. Our framework illustrates the importance of considering the complexity and heterogeneity of individual decision-making when conducting climate impact assessments or when developing policies to enhance the adaptive capacity of local communities to future climate variability and change.  相似文献   

14.
This paper applies the methods of multi-dimensional mathematical demography to project national populations based on alternative assumptions on future, fertility, mortality, migration and educational transitions that correspond to the five shared socioeconomic pathways (SSP) storylines. In doing so it goes a significant step beyond past population scenarios in the IPCC context which considered only total population size. By differentiating the human population not only by age and sex—as is conventionally done in demographic projections—but also by different levels of educational attainment the most fundamental aspects of human development and social change are being explicitly addressed through modeling the changing composition of populations by these three important individual characteristics. The scenarios have been defined in a collaborative effort of the international Integrated Assessment Modeling community with the medium scenario following that of a major new effort by the Wittgenstein Centre for Demography and Global Human Capital (IIASA, OEAW, WU) involving over 550 experts from around the world. As a result, in terms of total world population size the trajectories resulting from the five SSPs stay very close to each other until around 2030 and by the middle of the century already a visible differentiation appears with the range between the highest (SSP3) and the lowest (SSP1) trajectories spanning 1.5 billion. The range opens up much more with the SSP3 reaching 12.6 billion in 2100 and SSP1 falling to 6.9 billion which is lower than today's world population.  相似文献   

15.
马耀明 《高原气象》2007,26(6):1141-1145
喜马拉雅山区的高海拔冰雪覆盖使主山体两侧形成下泄流,而在强太阳辐射的加热作用下,无冰雪覆盖的周边山体形成山谷风环流.上述两者叠加形成地气间的强烈交换过程.这种交换过程使得地面的物质和能量与北半球自由大气相联系,将青藏高原置于全球变化的背景中.在本文中作者介绍了中国科学院珠穆朗玛峰大气与环境综合观测研究站的建站背景及其研究喜马拉雅山地气相互作用过程中的作用,同时介绍了台站建设及其在该地区地气相互作用研究中所取得的初步研究成果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号