首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Quasars, pulsars and other cosmic sources of intense radiation are known to have large brightness temperature (kT b?mc 2) and relativistic electron density values. In this case the induced Compton scattering by relativistic electrons should be considered. The probability of scattering with decreasing radiation frequency is derived for isotropic radiation scattering. When induced scattering takes place, the relativistic electron obtains its energy by transforming high-frequency quanta into the low-frequency ones. In the most intensive sources electrons would receive energiesE?mc 2 ××(kT b/mc 2)1/7 due to the heating rate proportional toE ?5 with the cooling rate proportional toE 2. Considerable distortion of the quasar spectrum is possible for reasonably large values of relativistic electron density (N?106cm?3) notwithstanding that the heating is negligible. In pulsars relativistic electron heating and spectrum distortion appear to depend more on the induced Compton scattering.  相似文献   

2.
We consider the COMPTON scattering of a distribution of photons and relativistic electrons in a constant magnetic field. The influence of the magnetic field upon the energy spectrum of the photons scattered by the electrons has been calculated.  相似文献   

3.
We investigate a scenario of photon scattering by electrons within a relativistic outflow. The outflow is composed of discrete shells with different speeds. One shell emits radiation for a short duration. Some of this radiation is scattered by the shell(s) behind. We calculate in a simple two-shell model the observed scattered flux density as a function of the observed primary flux density, the normalized arrival time delay between the two emission components, the Lorentz factor ratio of the two shells and the scattering shell's optical depth. Thomson scattering in a cold shell and inverse Compton scattering in a hot shell are both considered. The results of our calculations are applied to the gamma-ray bursts and the afterglows. We find that the scattered flux from a cold slower shell is small and likely to be detected only for those bursts with very weak afterglows. A hot scattering shell could give rise to a scattered emission as bright as the X-ray shallow decay component detected in many bursts, on a condition that the isotropically equivalent total energy carried by the hot electrons is large, ∼1052–1056 erg. The scattered emission from a faster shell could appear as a late short γ-ray/MeV flash or become part of the prompt emission depending on the delay of the ejection of the shell.  相似文献   

4.
The measured brightness temperatures of the low-frequency synchrotron radiation from intense extragalactic sources reach 1011–1012 K. If there is some amount of nonrelativistic ionized gas within such sources, it must be heated through induced Compton scattering of the radiation. If cooling via inverse Compton scattering of the same radio radiation counteracts this heating, then the plasma can be heated up to mildly relativistic temperatures kT~10–100 keV. In this case, the stationary electron velocity distribution can be either relativistic Maxwellian or quasi-Maxwellian (with the high-velocity tail suppressed), depending on the efficiency of Coulomb collisions and other relaxation processes. We derive several simple approximate expressions for the induced Compton heating rate of mildly relativistic electrons in an isotropic radiation field, as well as for the stationary electron distribution function and temperature. We give analytic expressions for the kernel of the integral kinetic equation (one as a function of the scattering angle, and the other for an isotropic radiation field), which describes the photon redistribution in frequency through induced Compton scattering in thermal plasma. These expressions can be used in the parameter range [in contrast to the formulas written out previously in Sazonov and Sunyaev (2000), which are less accurate].  相似文献   

5.
The high-energy continuum in Seyfert galaxies and galactic black hole candidates is likely to be produced by a thermal plasma. There are difficulties in understanding what can keep the plasma thermal, especially during fast variations of the emitted flux. Particle–particle collisions are too inefficient in hot and rarefied plasmas, and a faster process is called for. We show that cyclo-synchrotron absorption can be such a process: mildly relativistic electrons thermalize in a few synchrotron cooling times by emitting and absorbing cyclo-synchrotron photons. The resulting equilibrium function is Maxwellian at low energies, with a high-energy tail when Compton cooling is important. Assuming that electrons emit completely self-absorbed synchrotron radiation and at the same time Compton scatter their own cyclo-synchrotron radiation and ambient UV photons, we calculate the time-dependent behaviour of the electron distribution function, and the final radiation spectra. In some cases, the 2–10 keV spectra are found to be dominated by the thermal synchrotron self-Compton process rather than by thermal Comptonization of UV disc radiation.  相似文献   

6.
It is generally believed that the complexity and variability of the light curves of gamma-ray bursts (GRBs) are caused by the internal shocks, which would occur when a rapid shell catches up a slower one and collides with it. The electrons in the shock layer are heated by the shocks and radiate via the mechanisms of synchrotron radiation and inverse Compton scattering. Based on relativistic kinematics, a relation between the photon number of the emission from the rapidly moving shock layer and the number of the photons received by an observer is derived. Then, employing the angular spreading of the internal shock emission, the curve equation and profile of a single pulse are obtained, and the shape is typically in the shape of a fast rise and exponential decline. Furthermore, by using the model of the successive collisions of multiple shells under the condition of reasonable parameters, the observed light curves are fitted with a rather good effect. Therefore, by this means, more different types of light curves of GRBs can be explained.  相似文献   

7.
We discuss the properties of gamma-ray radiation accompanying the acceleration of cosmic rays via the converter mechanism. The mechanism exploits multiple photon-induced conversions of high-energy particles from charged into neutral state (namely, protons to neutrons and electrons to photons) and back. Because a particle in the neutral state can freely cross the magnetic field lines, this allows to avoid both particle losses downstream and reduction in the energy gain factor, which normally takes place due to highly collimated distribution of accelerated particles. The converter mechanism efficiently operates in relativistic outflows under the conditions typical for Active Galactic Nuclei, Gamma-Ray Bursts, and microquasars, where it outperforms the standard diffusive shock acceleration. The accompanying radiation has a number of distinctive features, such as an increase of the maximum energy of synchrotron photons and peculiar radiation beam-pattern, whose opening angle is much wider at larger photon energies. This provides an opportunity to observe off-axis relativistic jets in GeV–TeV energy range. One of the implications is the possibility to explain high-latitude unidentified EGRET sources as off-axis but otherwise typical relativistic-jet sources, such as blazars.  相似文献   

8.
We investigate the problem of determining the plasma composition of relativistic jets in blazars and microquasars from the polarization frequency spectra of their synchrotron radiation. The effect of plasma composition on this radiation is attributable to a change in the structure of the ordinary and extraordinary waves in plasma, depending on the presence of a nonrelativistic electron-proton component in it and on the type of relativistic particles (electrons, positrons). The structure of the normal waves determines the properties of the observed radiation and primarily the shape of the polarization frequency spectrum. Our analytic calculations of the polarization spectra for simple models of jets with a uniform magnetic field and with a magnetic-field shear revealed characteristic features in the polarization spectra. These features allow us to differentiate between the synchrotron radiation from an admixture of relativistic particles in a cold plasma and the radiation from a relativistic plasma. However, definitive conclusions regarding the relativistic plasma composition (electrons or electron-positron pairs) can be reached only by a detailed analysis of the polarization frequency spectra that will be obtained in future radioastronomical studies with high angular and frequency resolutions.  相似文献   

9.
The blast-wave model for gamma-ray bursts (GRBs) has been called into question by observations of spectra from GRBs that are harder than can be produced through optically thin synchrotron emission. If GRBs originate from the collapse of massive stars, then circumstellar clouds near burst sources will be illuminated by intense gamma radiation, and the electrons in these clouds will be rapidly scattered to energies as large as several hundred keV. Low-energy photons that subsequently pass through the hot plasma will be scattered to higher energies, hardening the intrinsic spectrum. This effect resolves the "line-of-death" objection to the synchrotron shock model. Illuminated clouds near GRBs will form relativistic plasmas containing large numbers of electron-positron pairs that can be detected within approximately 1-2 days of the explosion before expanding and dissipating. Localized regions of pair annihilation radiation in the Galaxy would reveal past GRB explosions.  相似文献   

10.
We study the multi-waveband non-thermal emission from the pulsar wind neb- ulae (PWNe) Vela X and G0.9 + 0.1 in the frame of a time-dependent model describing non-thermal radiation from the PWNe. In such a model, the relativistic wind of parti- cles driven by a central pulsar blows into the ambient medium and creates a termination shock that accelerates the particles to very high energy in a PWN. The non-thermal pho-tons in the PWN are produced both by synchrotron radiation and the inverse Compton process, with electrons coming directly from the pulsar magnetosphere and electrons be- ing accelerated at the termination shock. We apply this model to reproduce the observed multi-waveband photon spectra of Vela X and the G0.9+0.1, both of which have been detected emitting very high energy photons. Our results indicate that TeV photons are produced by the inverse Compton scattering of the high-energy electrons in the infrared photon field in both Vela X and PWN G0.9+0.1. The TeV photons from these two PWNe may have leptonic origins.  相似文献   

11.
Population studies of EGRET gamma-ray sources indicate that there is a distinctive population of bright sources at low galactic latitudes. The sources have a distribution consistent with that of young galactic objects, with a concentration toward the inner spiral arms. There is a subgroup that displays strong variability with timescales from days to months. Following an earlier suggestion by Kaufman Bernadó et al. (2002), we explore the possibility that these sources could be high-mass microquasars. Detailed models for the gamma-ray emission that include inverse Compton interactions of electrons in the relativistic jets and photons from all local fields (stellar UV photons, synchrotron photons, soft X-ray photons from the accretion disk, and hard X-ray photons from a corona) are presented. We conclude that microquasars are excellent candidates for the parent population of the subgroup of variable low-latitude EGRET sources.  相似文献   

12.
We investigate the process of synchrotron radiation from thermal electrons at semirelativistic and relativistic temperatures. We find an analytic expression for the emission coefficient for random magnetic fields with an accuracy significantly higher than those derived previously. We also present analytic approximations to the synchrotron turnover frequency, treat Comptonization of self-absorbed synchrotron radiation, and give simple expressions for the spectral shape and the emitted power. We also consider modifications of the above results by bremsstrahlung.
We then study the importance of Comptonization of thermal synchrotron radiation in compact X-ray sources. We first consider emission from hot accretion flows and active coronae above optically thick accretion discs in black hole binaries and active galactic nuclei (AGNs). We find that for plausible values of the magnetic field strength, this radiative process is negligible in luminous sources, except for those with hardest X-ray spectra and stellar masses. Increasing the black hole mass results in a further reduction of the maximum Eddington ratio from this process. Then, X-ray spectra of intermediate-luminosity sources, e.g. low-luminosity AGNs, can be explained by synchrotron Comptonization only if they come from hot accretion flows, and X-ray spectra of very weak sources are always dominated by bremsstrahlung. On the other hand, synchrotron Comptonization can account for power-law X-ray spectra observed in the low states of sources around weakly magnetized neutron stars.  相似文献   

13.
Inverse Compton (IC) scattering is one of two viable mechanisms that can produce prompt non-thermal soft gamma-ray emission in gamma-ray bursts. IC requires low-energy seed photons and a population of relativistic electrons that upscatter them. The same electrons will upscatter the gamma-ray photons to even higher energies in the TeV range. Using the current upper limits on the prompt optical emission, we show that under general conservative assumption the IC mechanism suffers from an 'energy crisis'. Namely, IC will overproduce a very high energy component that would carry much more energy than the observed prompt gamma-rays, or alternatively it will require a low-energy seed that is more energetic than the prompt gamma-rays. Our analysis is general, and it makes no assumptions on the specific mechanism that produces the relativistic electron population.  相似文献   

14.
High brightness temperatures are a characteristic feature of IntraDay Variability (IDV) of extragalactic radio sources. Recent studies of the polarization properties of some IDV sources (e.g., 1150 812, PKS 0405-385 and 0716 714) have shown that these sources harbor several compact IDV components with angular sizes of -10-30/uas and very high polarizations (of up to -50%-70%). These results indicate the possibility of the existence of uniform magnetic fields in the IDV components. We investigate the incoherent synchrotron and self- Compton radiation of an anisotropic distribution of relativistic electrons which spin around the magnetic field lines at small pitch angles. The brightness temperature limit caused by second-order Compton losses is discussed and compared to the brightness temperatures derived from energy equipartition arguments. It is found that anisotropic distributions of electrons moving in ordered magnetic fields can raise the equipartition and Compton brightness temperatures by a factor of up to -3-5. This would remove some of the difficulties in the interpretation of extremely high intrinsic brightness temperatures of > 1012 K (or apparent brightness temperatures of - 1014 K with a Doppler factor of -30).  相似文献   

15.
Magnetized accretion flows around black holes which include standing or oscillating shock waves can produce very realistic spectrum till a few MeV. These shocks accelerate hot electrons which produce power-law spectrum. The post-shock region intercepts soft-photons from an external source, namely, a Keplerian disk and also from distributed sources such as the synchrotron photons emitted from thermal and non-thermal electrons originated in the pre-shock and post-shock flow. These photons are inverse Comptonized by the thermal and the non-thermal electrons present in the CENBOL region. Computations show that the emitted radiation is extended till a few MeV. We include the bulk motion Comptonization as well and discuss its importance vis-a-vis the power-law spectrum produced by non-thermal electrons.   相似文献   

16.
We estimate the power of relativistic, extragalactic jets by modelling the spectral energy distribution of a large number of blazars. We adopt a simple one-zone, homogeneous, leptonic synchrotron and inverse Compton model, taking into account seed photons originating both locally in the jet and externally. The blazars under study have an often dominant high-energy component which, if interpreted as due to inverse Compton radiation, limits the value of the magnetic field within the emission region. As a consequence, the corresponding Poynting flux cannot be energetically dominant. Also the bulk kinetic power in relativistic leptons is often smaller than the dissipated luminosity. This suggests that the typical jet should comprise an energetically dominant proton component. If there is one proton per relativistic electrons, jets radiate around 2–10 per cent of their power in high-power blazars and 3–30 per cent in less powerful BL Lacs.  相似文献   

17.
We study the structure of a stationary and axisymmetric charge-deficient region (or a potential gap) in the outer magnetosphere of a spinning neutron star. A large electric field along the magnetic field lines is created in this potential gap and accelerates migratory electrons (e) and/or positrons (e+) to ultrarelativistic energies. Assuming that the gap is immersed in a dense soft photon field, these relativistic e± radiate γ -ray photons via inverse Compton (IC) scattering. These γ -rays, in turn, produce yet more radiating particles by colliding with ambient soft photons, leading to a pair-production cascade in the gap. The replenished charges partially screen the longitudinal electric field, which is self-consistently solved together with the distribution of e± and γ -ray photons. It is demonstrated that the voltage drop in the gap is not more than 1010 V when the background X-ray radiation is as luminous as 1037 erg s−1. However, this value increases with decreasing X-ray luminosity and attains 1012 V when the X-ray radiation is 1036 erg s−1. In addition, we find useful expressions of the spatial distribution of the particle fluxes and longitudinal electric field, together with the relationship between the voltage drop and the current density. Amazingly, these expressions are valid not only when IC scattering dominates but also when curvature radiation dominates.  相似文献   

18.
A model is suggested which accounts for (i) the observed shape and angular variation of compact radio sources (especially the apparent superrelativistic velocities and the absence of contracting sources), (ii) the flux variation associated with the angular variation, and (iii) all the known cases of apparent occurence of surface brightness exceeding the theoretical upper limit provided by the inverse COMPTON effect, preserving the usual premises: cosmological origin of the redshift and incoherent synchrotron radiation of electrons. The model consists of a plasma ring expanding with moderate relativistic velocity. It provides two possibilities for estimating the distance of the sources by radio data: from the time dependence of the angular expansion and from the angular diameter and the shape of flux variation. In the context of cosmology this distances are „angular distances”︁ and therefore, if the redshift is also known, the HUBBLE constant or the acceleration parameter q0 may be obtained. The second method is applied to BL Lac yielding approximately 6 Mpc. So the underlying galaxy would be a dwarf system of M ≈︂–13. The active nucleus of M ≈︂ – 16 is rather below the normal quasars. This seems very satisfactory in view of the short time scale of variations in BL Lac compared to the quasars.  相似文献   

19.
We present a new explanation for the origin of the steep power-law(SPL) state of X-ray binaries.The power-law component of X-ray emission is the synchrotron radiation of relativistic electrons in highly magnetized compact spots orbiting near the inner stable circular orbit of a black hole.It has a hard spectrum that extends to above MeV energies,which is determined by the electron acceleration rate.These photons are then down-scattered by the surrounding plasma to form an observed steep spectrum.We discuss ...  相似文献   

20.
A significant new development in the study of Anomalous X-ray Pulsars (AXPs) has been the recent discovery by INTEGRAL and RXTE of flat, hard X-ray components in three AXPs. These non-thermal spectral components differ dramatically from the steeper quasi-power-law tails seen in the classic X-ray band in these sources. A prime candidate mechanism for generating this new component is resonant, magnetic Compton upscattering. This process is very efficient in the strong magnetic fields present in AXPs. Here an introductory exploration of an inner magnetospheric model for upscattering of surface thermal X-rays in AXPs is offered, preparing the way for an investigation of whether such resonant upscattering can explain the 20–150 keV spectra seen by INTEGRAL. Characteristically flat emission spectra produced by non-thermal electrons injected in the emission region are computed using collision integrals. A relativistic QED scattering cross section is employed so that Klein–Nishina reductions are influential in determining the photon spectra and fluxes. Spectral results depend strongly on the magnetospheric locale of the scattering and the observer’s orientation, which couple directly to the angular distributions of photons sampled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号