首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We conducted a study of the spatial distributions of seismicity and earthquake hazard parameters for Turkey and the adjacent areas, applying the maximum likelihood method. The procedure allows for the use of either historical or instrumental data, or even a combination of the two. By using this method, we can estimate the earthquake hazard parameters, which include the maximum regional magnitude max, the activity rate of seismic events and the well-known value, which is the slope of the frequency-magnitude Gutenberg-Richter relationship. These three parameters are determined simultaneously using an iterative scheme. The uncertainty in the determination of the magnitudes was also taken into consideration. The return periods (RP) of earthquakes with a magnitude M ≥ m are also evaluated. The whole examined area is divided into 24 seismic regions based on their seismotectonic regime. The homogeneity of the magnitudes is an essential factor in such studies. In order to achieve homogeneity of the magnitudes, formulas that convert any magnitude to an MS-surface scale are developed. New completeness cutoffs and their corresponding time intervals are also assessed for each of the 24 seismic regions. Each of the obtained parameters is distributed into its respective seismic region, allowing for an analysis of the localized seismicity parameters and a representation of their regional variation on a map. The earthquake hazard level is also calculated as a function of the form Θ = (max,RP6.0), and a relative hazard scale (defined as the index K) is defined for each seismic region. The investigated regions are then classified into five groups using these parameters. This classification is useful for theoretical and practical reasons and provides a picture of quantitative seismicity. An attempt is then made to relate these values to the local tectonics.  相似文献   

2.
The return periods and occurrence probabilities related to medium and large earthquakes (M w 4.0–7.0) in four seismic zones in northeast India and adjoining region (20°–32°N and 87°–100°E) have been estimated with the help of well-known extreme value theory using three methods given by Gumbel (1958), Knopoff and Kagan (1977) and Bury (1999). In the present analysis, the return periods, the most probable maximum magnitude in a specified time period and probabilities of occurrences of earthquakes of magnitude M ≥ 4.0 have been computed using a homogeneous and complete earthquake catalogue prepared for the period between 1897 and 2007. The analysis indicates that the most probable largest annual earthquakes are close to 4.6, 5.1, 5.2, 5.5 and 5.8 in the four seismic zones, namely, the Shillong Plateau Zone, the Eastern Syntaxis Zone, the Himalayan Thrusts Zone, the Arakan-Yoma subduction zone and the whole region, respectively. The most probable largest earthquakes that may occur within different time periods have been also estimated and reported. The study reveals that the estimated mean return periods for the earthquake of magnitude M w 6.5 are about 6–7 years, 9–10 years, 59–78 years, 72–115 years and 88–127 years in the whole region, the Arakan-Yoma subduction zone, the Himalayan Thrusts Zone, the Shillong Plateau Zone and the Eastern Syntaxis Zone, respectively. The study indicates that Arakan-Yoma subduction zone has the lowest mean return periods and high occurrence probability for the same earthquake magnitude in comparison to the other zones. The differences in the hazard parameters from zone to zone reveal the high crustal heterogeneity and seismotectonics complexity in northeast India and adjoining regions.  相似文献   

3.
Probabilistic seismic hazard of Pakistan, Azad-Jammu and Kashmir   总被引:2,自引:2,他引:0  
The seismic hazard study for Pakistan and Azad Jammu and Kashmir has been conducted by using probabilistic approach in terms of peak ground acceleration (PGA) in m/s2 and also seismic hazard response spectra for different cities. A new version of Ambraseys et al. (Bull Earthq Eng 3:1–53, 2005) ground acceleration model is used, and parameterization is based on most recent updated earthquake catalogs that consisted of 14,000 events. The threshold magnitude was fixed at M w 4.8, but seismic zones like northern Pakistan–Tajikistan, Hindukush and northern Afghanistan–Tajikistan border had M w 5.2. The average normalized ‘a’ and ‘b’ values for all zones are 6.15 and 0.95, respectively. Seismicity of study area was modeled, and ground motion was computed for eight frequencies (0.025, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5 s) for different annual exceedance rates of 0.02, 0.01, 0.005, 0.002 and 0.001 (return periods 50, 100, 200, 500 and 1,000 years) for stiff rocks at the gridding of 0.1° × 0.1°. Seismic hazard maps based on computed PGA for 0.02, 0.01 and 0.002 annual exceedance are prepared. These maps indicate the earthquake hazard of Pakistan and surrounding areas in the form of acceleration contour lines, which are in agreement with geological and seismotectonic characteristics of the study area. The maximum seismic hazard values are found at Muzaffarabad, Gilgit and Quetta areas.  相似文献   

4.
This study presents shear wave splitting analysis results observed at ISP (Isparta) broadband station in the Isparta Angle, southwestern Turkey. We selected 21 good quality seismic events out of nearly 357 earthquakes and calculated splitting parameters (polarization direction of fast wave, ϕ and delay time between fast and slow waves, δt) from mainly SKS and a few SKKS phases of the selected 21 seismic events. Then, we compared calculated splitting parameters at ISP station (56° ≤ ϕ ≤ 205°; 0.37 s ≤ δt ≤ 4 s) with those previously calculated at ANTO (Ankara) and ISK (İstanbul) stations (27° ≤ ϕ ≤ 59°; 0.6 s ≤ δt ≤ 2.4 s and 26° ≤ ϕ ≤ 54°; 0.6 s ≤ δt ≤ 1.5 s) which are located at 230 and 379 km away from ISP station in central and northwestern Turkey, respectively. The backazimuthal variations of the splitting parameters at ISP station indicate a different and complex mantle polarization anisotropy for the Isparta Angle in southwestern Turkey compared to those obtained for Ankara and İstanbul stations.  相似文献   

5.
Seismic hazard in terms of peak ground acceleration (PGA) has been evaluated in northern Algeria using spatially smoothed seismicity data. We present here a preliminary seismic zoning in northern Algeria as derived from the obtained results.Initially, we have compiled an earthquake catalog of the region taking data from several agencies. Afterwards, we have delimited seismic areas where the b and mmax parameters are different. Finally, by applying the methodology proposed by Frankel [Seismol. Res. Lett. 66 (1995) 8], and using four complete and Poissonian seismicity models, we are able to compute the seismic hazard maps in terms of PGA with 39.3% and 10% probability of exceedance in 50 years.A significant result of this work is the observation of mean PGA values of the order of 0.20 and 0.45 g, for return periods of 100 and 475 years, respectively, in the central area of the Tell Atlas.  相似文献   

6.
The study deals spatial mapping of earthquake hazard parameters like annual and 100-years mode along with their 90% probability of not being exceeded (NBE) in the Hindukush–Pamir Himalaya and adjoining regions. For this purpose, we applied a straightforward and most robust method known as Gumbel’s third asymptotic distribution of extreme values (GIII). A homogeneous and complete earthquake catalogue during the period 1900–2010 with magnitude MW  4.0 is utilized to estimate these earthquake hazard parameters. An equal grid point mesh, of 1° longitude X 1° latitude, is chosen to produce detailed earthquake hazard maps. This performance allows analysis of the localized seismicity parameters and representation of their regional variations as contour maps. The estimated result of annual mode with 90% probability of NBE is expected to exceed the values of MW 6.0 in the Sulaiman–Kirthar ranges of Pakistan and northwestern part of the Nepal and surroundings in the examined region. The 100-years mode with 90% probability of NBE is expected to exceed the value of MW 8.0 in the Hindukush–Pamir Himalaya with Caucasus mountain belt, the Sulaiman–Kirthar ranges of Pakistan, northwestern part of the Nepal and surroundings, the Kangra–Himanchal Pradesh and Kashmir of India. The estimated high values of earthquake hazard parameters are mostly correlated with the main tectonic regimes of the examined region. The spatial variations of earthquake hazard parameters reveal that the examined region exhibits more complexity and has high crustal heterogeneity. The spatial maps provide a brief atlas of the earthquake hazard in the region.  相似文献   

7.
Seismic hazard analysis is based on data and models, which both are imprecise and uncertain. Especially the interpretation of historical information into earthquake parameters, e.g. earthquake size and location, yields ambiguous and imprecise data. Models based on probability distributions have been developed in order to quantify and represent these uncertainties. Nevertheless, the majority of the procedures applied in seismic hazard assessment do not take into account these uncertainties, nor do they show the variance of the results. Therefore, a procedure based on Bayesian statistics was developed to estimate return periods for different ground motion intensities (MSK scale).Bayesian techniques provide a mathematical model to estimate the distribution of random variables in presence of uncertainties. The developed method estimates the probability distribution of the number of occurrences in a Poisson process described by the parameter . The input data are the historical occurrences of intensities for a particular site, represented by a discrete probability distribution for each earthquake. The calculation of these historical occurrences requires a careful preparation of all input parameters, i.e. a modelling of their uncertainties. The obtained results show that the variance of the recurrence rate is smaller in regions with higher seismic activity than in less active regions. It can also be demonstrated that long return periods cannot be estimated with confidence, because the time period of observation is too short. This indicates that the long return periods obtained by seismic source methods only reflects the delineated seismic sources and the chosen earthquake size distribution law.  相似文献   

8.
The new procedure of earthquake hazard evaluation developed by Kijko and Sellevoll is tested and applied for the border region of Czechoslovakia and Poland. The new method differs from the conventional approach. It incorporates the uncertainty of earthquake magnitudes, and accepts mixed data containing only large historical events and recent, complete catalogues. Seismic hazard has been calculated for nine regions determined in the border area. In the investigated area, data of historical catalogues are uncertain or, in many cases, the epicentral intensities are unknown. Thus, a number of assumptions have to be adopted in data preparation of catalogues since the year 1200. The calculated values of parameters b in the Gutenberg-Richter frequency-intensity relation as well as the return periods, seem to be reasonable and are generally confirmed by the results obtained from catalogues for the last 80–130 years.  相似文献   

9.
A semi-probabilistic approach to the seismic hazard assessment of Greece is presented. For this reason, a recent seismotectonic model for shallow and intermediate depth earthquake sources, based on historical as well as on instrumental data, was used. Different attenuation formulae were proposed for the macroseismic intensity and the strong ground motion parameters for the shallow and the intermediate focal depth shocks. The data were elaborated in terms of McGuire's computer program, which is based on the Cornell's method.A grid of equally spaced points at 20 km distance was made and the seismic hazard recurrence curves for various parameters of the seismic intensity was estimated for each point. Finally, seismic hazard maps for the area of Greece were compiled utilizing the entire range of recurrence curves. These maps depict areas of equal seismic hazard and for every area the analytical relations of the typeSI =f(Tm), whereSI is a seismic intensity parameter andTm is the mean return period, were determined.  相似文献   

10.
We present the results of a systematic search for the identification of accelerating seismic crustal deformation in the broader northern Aegean area and in northwestern Turkey. We found that accelerating seismic deformation release, expressed by the generation of intermediate magnitude earthquakes, is currently observed in NW Turkey. On the basis of the critical earthquake model and by applying certain constraints which hold between the basic quantities involved in this phenomenon, it can be expected that this accelerating seismic activity may culminate in the generation of two strong earthquakes in this area during the next few years.The estimated epicenter coordinates of the larger of these probably impending earthquakes are 39.7°N–28.8°E, its magnitude is 7.0 and its occurrence time tc=2003.5. The second strong event is expected to occur at tc=2002.5 with a magnitude equal to 6.4 and epicenter coordinates 40.0°N–27.4°E. The uncertainties in the calculated focal parameters for these expected events are of the order of 100 km for the epicenter, ±0.5 for their magnitude and ±1.5 years for their occurrence time.  相似文献   

11.
Modeling of seismic hazard for Turkey using the recent neotectonic data   总被引:1,自引:0,他引:1  
Kamil Kayabali   《Engineering Geology》2002,63(3-4):221-232
Recent developments in the neotectonic framework of Turkey introduced new tectonic elements necessitating the reconstruction of Turkey's seismic hazard map. In this regard, 14 seismic source zones were delineated. Maximum earthquake magnitudes for each seismic zones were determined using the fault rupture length approximation. Regression coefficients of the earthquake magnitude–frequency relationships for the seismic zones were compiled mostly from earlier works. Along with these data, a strong ground motion attenuation relationship developed by Joyner and Boore [Joyner, W.B., Boore, D.M., 1988. Measurement, characterization, and prediction of strong ground motion. Earthquake Engineering and Soil Dynamics, 2. Recent Advances Ground Motion Evaluation, pp. 43–102.] was utilized to model the seismic hazard for Turkey using the probabilistic approach. For the modeling, the “earthquake location uncertainty” concept was employed. A grid of 5106 points with 0.2° intervals was constituted for the area encompassed by the 25–46°E longitudes and 35–43°N latitudes. For the return periods of 100 and 475 years, the peak horizontal ground acceleration (pga) in bedrock was computed for each grid point. Isoacceleration maps for the return periods of 100 and 475 years were constructed by contouring the pga values at each node.  相似文献   

12.
We investigate the time dependence of the number of deaths reported through Internet after earthquakes and/or earthquake-generated tsunami. An approximate relation N(t) = N 0 [1 − exp(−αt)] is used to describe such temporal variation, in which N(t) is the number of deaths reported at time t, N 0 is the final number of deaths, and α is the coefficient reflecting the rescue process. We considered 12 earthquake cases since 2001 using the information from the web, which shows that the N-t relation approximates the data, and the logarithm of α is reversely proportional to the magnitude of earthquake, albeit with significant uncertainties. Quick and rough estimate of the final death toll can be made using this simple and approximate relation, with the empirical α-M relation as a reference. For the 12 cases under consideration, quick and rough estimate of fatalities can be obtained 2 days after the earthquake, fitting the real situation in the order of magnitudes. Although being very rough, this estimate can assist the emergency decision-making and can be revised as time lapses. When more and more data becomes available, curve fitting can provide both N 0 and α at the same time. The method is tested against the data of the recent Yushu earthquake on April 14, 2010.  相似文献   

13.
Statistics of ultimate strain of the earth's crust are obtained on the basis of levelling and triangulation data over earthquake areas. The mean value of ultimate strain e0 is obtained as 5.3 · 10?5 with a standard deviation σ amounting to 3.3 · 10?5 on the assumption that the deviation from the mean value is described by a Gaussian distribution.Assuming that crustal strain increases linearly with time t from an approximately zero value immediately after a large earthquake, which occurred at t = 0, the probability of having a crustal rupture or an earthquake occurrence during a time-interval from 0 to t can be calculated from e0 and a along with the data for strain accumulation over the area concerned as brought out by repetitions of geodetic survey.Applying the above theory to an area southwest of Tokyo, where an earthquake of magnitude 7.9 took place in 1923, the probabilities for repetition of an earthquake there are estimated as 0.2, 0.5 and 0.8 respectively for periods 1925–1980, 1925–2030, and 1925–2080.Similar studies are made for the areas off eastern Hokkaido and the Tokai district in Central Japan. No geodetic data over focal regions are available in these cases because observations are made only on land more than 100 km distant from epicentral area off the coast. In the circumstances theoretical land deformations caused by a plate subduction, which is believed to be taking place at the trench axis, are compared to the deforma tions actually detected by repeated surveys. Although the reliability of probability calculated on the basis of such processes may be substantially lower than that based on data taken in an area immediately covering a focal region, it is striking that the probabilities of reoccurrence of a large earthquake for a time-interval from the last shock to the present are so high that they exceed 0.8 ~ 0.9 for reasonable values of parameters involved.  相似文献   

14.
The problem of assessing seismic hazard in low-seismicity areas becomes obvious in many practical applications. A typical low-seismicity area, which experienced damaging earthquakes in historical times, is the North German Plain, for which a case study is presented. It is shown how seismic hazard assessments are influenced by different interpretations of historical key earthquakes, changes in b-value as well as variations of the upper bound magnitude assumed for the seismic source regions. The latter strongly influences the hazard results in the case of very low b-values for long return periods.  相似文献   

15.
It is well accepted that the parent distribution for individual ocean wave heights follows the Weibull model. However this model does not simulate significant wave height which is the average of the highest one-third of some ‘n’ (n- varies) wave heights in a wave record. It is now proposed to redefine significant wave height as average of the highest one-third of a constant number (n-constant, say,n = 100) of consecutive individual wave heights. The Weibull model is suggested for simulating redefined significant wave height distribution by the method of characteristic function. An empirical support of 100.00% is established by Χ2-test at 0.05 level of significance for 3 sets of data at 0900, 1200 and 1500 hrs at Valiathura, Kerala coast. Parametric relations have been derived for the redefined significant wave height parameters such as mean, maximum one-third average, extreme wave heights, return periods of an extreme wave height and the probability of realising an extreme wave height in a time less than the designated return period.  相似文献   

16.
Turkey has been divided into eight different seismic regions taking into consideration the tectonic environments and epicenters of the earthquakes to examine relationships of the modal values (a/b), the expected maximum magnitudes (Mmax) and the maximum intensities (Imax). For this purpose, the earthquakes for the time period 1900–1992 from the Global Hypocenter Data Base CD-ROM prepared by USGS, and for the time period 1993–2001 from the PDE data and IRIS data are used. Concerning the relationships developed between different magnitude scales and between surface wave magnitudes (MS) and intensity for different source regions in Turkey, we have constructed a uniform catalog of MS. We have estimated the values of Mmax and Imax using the Gumbel III asymptotic distribution. Highest a-values are observed in the Aegean region and the lowest b-values are estimated for the North Anatolian Fault. Maximum values of a/b, Mmax and Imax are related to the eastern and western part of the North Anatolian Fault and the Aegean Arc. The lowest values of all parameters are observed near the Mid Anatolian Fault system. Linear relationships have been calculated between a/b, Mmax and Imax using orthogonal regression. If one of the three parameters is computed, two other parameters can be calculated empirically using these linear relationships. Hazard maps of Mmax and Imax values are produced using these relationships for a grid of equally spaced points at 1°. It is observed that the maps produced empirically may be used as a measure of seismic hazard in Turkey.  相似文献   

17.
Magnitude conversion problem for the Turkish earthquake data   总被引:1,自引:0,他引:1  
Earthquake catalogues which form the main input in seismic hazard analysis generally report earthquake magnitudes in different scales. Magnitudes reported in different scales have to be converted to a common scale while compiling a seismic data base to be utilized in seismic hazard analysis. This study aims at developing empirical relationships to convert earthquake magnitudes reported in different scales, namely, surface wave magnitude, M S, local magnitude, M L, body wave magnitude, m b and duration magnitude, M d, to the moment magnitude (M w). For this purpose, an earthquake data catalogue is compiled from domestic and international data bases for the earthquakes occurred in Turkey. The earthquake reporting differences of various data sources are assessed. Conversion relationships are established between the same earthquake magnitude scale of different data sources and different earthquake magnitude scales. Appropriate statistical methods are employed iteratively, considering the random errors both in the independent and dependent variables. The results are found to be sensitive to the choice of the analysis methods.  相似文献   

18.
Assessment of seismic hazard in Panama is made using a seismotectonic regionalization model. The coefficients of Gumbel's Type-I distribution are calculated and return periods for several magnitudes are found. From these coefficients intensities, peak ground acceleration and earthquake hazard for a set of return periods and epicentral distances are estimated and substantial variations in the probability of occurrence are noted. The Panama Fracture Zone (PFZ) and the Panama-South America Suture Zone (PSZ) provinces are the most active in producing earthquakes with a magnitude of about 7.0 in less than 16 yr. Magnitude 7.0 earthquakes in the Azuero province have a return period of about 160 yr, whereas in the Panama Deformed Belt (PDB) province the return period for magnitude 7.5 events is about 175 yr.  相似文献   

19.
Methodology for preliminary assessment of Natech risk in urban areas   总被引:1,自引:0,他引:1  
Concern for natural hazard-triggered technological disasters (Natech disasters) in densely populated and industrialized areas is growing. Residents living in urban areas subject to high natural hazard risk are often unaware of the potential for secondary disasters such as hazardous materials releases from neighboring industrial facilities, chemical storage warehouses or other establishments housing hazardous materials. Lessons from previous disasters, such as the Natech disaster during the Kocaeli earthquake in Turkey in 1999 call for the need to manage low frequency/high consequence events, particularly in today’s densely populated areas. However, there is little guidance available on how local governments and communities can assess Natech risk. To add to the problem, local governments often do not have the human or economic resources or expertise to carry out detailed risk assessments. In this article, we propose a methodology for preliminary assessment of Natech risk in urban areas. The proposed methodology is intended for use by local government officials in consultation with the public. The methodology considers possible interactions between the various systems in the urban environment: the physical infrastructure (e.g., industrial plants, lifeline systems, critical facilities), the community (e.g., population exposed), the natural environment (e.g., delicate ecosystems, river basins), and the risk and emergency management systems (e.g., structural and nonstructural measures). Factors related to vulnerability and hazard are analyzed and qualitative measures are recommended. Data from hazardous materials releases during the Kocaeli, Turkey earthquake of August 17, 1999 are used as a case study to demonstrate the applicability of the methodology. Limitations of the proposed methodology are discussed as well as future research needs.
Norio OkadaEmail:
  相似文献   

20.
A regional time and magnitude predictable model has been applied to estimate the recurrence intervals for large earthquakes in the vicinity of 8 October 2005 Kashmir Himalaya earthquake (25°–40°N and 65°–85°E), which includes India, Pakistan, Afghanistan, Hindukush, Pamirs, Mangolia and Tien-Shan. This region has been divided into 17 seismogenic sources on the basis of certain seismotectonics and geomorphological criteria. A complete earthquake catalogue (historical and instrumental) of magnitude Ms ≥ 5.5 during the period 1853–2005 has been used in the analysis. According to this model, the magnitude of preceding earthquake governs the time of occurrence and magnitude of future mainshock in the sequence. The interevent time between successive mainshocks with magnitude equal to or greater than a minimum magnitude threshold were considered and used for long-term earthquake prediction in each of seismogenic sources. The interevent times and magnitudes of mainshocks have been used to determine the following predictive relations: logT t = 0.05 M min + 0.09 M p − 0.01 log M 0 + 01.14; and M f = 0.21 M min − 0.01 M p + 0.03 log M 0 + 7.21 where, T t is the interevent time of successive mainshocks, M min is minimum magnitude threshold considered, M p is magnitude of preceding mainshock, M f is magnitude of following mainshock and M 0 is the seismic moment released per year in each seismogenic source. It was found that the magnitude of following mainshock (M f) does not depend on the interevent time (T t), which indicates the ability to predict the time of occurrence of future mainshock. A negative correlation between magnitude of following mainshock (M f) and preceding mainshock (M p) indicates that the larger earthquake is followed by smaller one and vice versa. The above equations have been used for the seismic hazard assessment in the considered region. Based on the model applicability in the studied region and taking into account the occurrence time and magnitude of last mainshock in each seismogenic source, the time-dependent conditional probabilities (PC) for the occurrence of next shallow large mainshocks (Ms ≥ 6.5), during next 20 years as well as the expected magnitudes have been estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号