首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iheya‐North‐Knoll is one of the small knolls covered with thick sediments in the Okinawa Trough back‐arc basin. At the east slope of Iheya‐North‐Knoll, nine hydrothermal vents with sulfide mounds are present. The Integrated Ocean Drilling Program (IODP) Expedition 331 studied Iheya‐North‐Knoll in September 2010. The expedition provided us with the opportunity to study clay minerals in deep sediments in Iheya‐North‐Knoll. To reveal characteristics of clay minerals in the deep sediments, samples from the drilling cores at three sites close to the most active hydrothermal vent were analyzed by X‐ray diffraction, scanning electron microscope and transmission electron microscope. The sediments are classified into Layer 0 (shallow), Layer 1 (deep), Layer 2 (deeper) and Layer 3 (deepest) on the basis of the assemblage of clay minerals. Layer 0 contains no clay minerals. Layer 1 contains smectite, kaolinite and illite/smectite mixed‐layer mineral. Layer 2 contains chlorite, corrensite and chlorite/smectite mixed‐layer mineral. Layer 3 is grouped into three sub‐layers, 3A, 3B and 3C; Sub‐layer 3A contains chlorite and illite/smectite mixed‐layer mineral, sub‐layer 3B contains chlorite/smectite and illite/smectite mixed‐layer minerals, and sub‐layer 3C contains chlorite and illite. Large amounts of di‐octahedral clay minerals such as smectite, kaolinite, illite and illite/smectite mixed‐layer mineral are found in Iheya‐North‐Knoll, which is rarely observed in hydrothermal fields in mid‐ocean ridges. Tri‐octahedral clay minerals such as chlorite, corrensite and chlorite/smectite mixed‐layer mineral in Iheya‐North‐Knoll have low Fe/(Fe + Mg) ratios compared with those in mid‐ocean ridges. In conclusion, the characteristics of clay minerals in Iheya‐North‐Knoll differ from those in mid‐ocean ridges; di‐octahedral clay minerals and Fe‐poor tri‐octahedral clay minerals occur in Iheya‐North‐Knoll but not in mid‐ocean ridges.  相似文献   

2.
Phyllosilicates occurring as replacements of olivine, clinopyroxene and interstitial materials and as veins or fracture-fillings in hydrothermally altered basalts from DSDP Hole 504B, Leg 83 have been studied using transmission and analytical electron microscopy. The parageneses of phyllosilicates generally change systematically with depth and with the degree of alteration, which in turn is related to permeability of basalts. Saponite and some mixed-layer chlorite/smectite are the dominant phyllosilicates at the top of the transition zone. Chlorite, corrensite, and mixed-layer chlorite/corrensite occur mainly in the lower transition zone and upper levels of the sheeted dike zone. Chlorite, talc, and mixed-layer talc/chlorite are the major phyllosilicates in the sheeted dike zone, although replacement of talc or ohvine by saponite is observed. The phyllosilicates consist of parallel or subparallel discrete packets of coherent layers with packet thicknesses generally ranging from< 100 Å to a few hundred Å. The packets of saponite layers are much smaller or less well defined than those of chlorite, corrensite and talc, indicating poorer crystal-linity of saponite. by contrast, chlorite and talc from the lower transition zone and the sheeted dike zone occur in packets up to thousands of Å thick. The Si/(Si+Al) ratio of these trioctahedral phyllosilicates increases and Fe/(Fe+Mg) decreases in the order chlorite, corrensite, saponite, and talc. These relations reflect optimal solid solution consistent with minimum misfit of articulated octahedral and tetrahedral sheets. Variations in composition of hydrothermal fluids and precursor minerals, especially in Si/(Si+Al) and Fe/(Fe+Mg) ratios, are thus important factors in controlling the parageneses of phyllosilicates. The phyllosilicates are generally well crystallized discrete phases, rather than mixed-layered phases, where they have been affected by relatively high fluid/rock ratios as in high-permeability basalts, in veins, or areas adjacent to veins. Intense alteration in basalts with high permeability (indicating high fluid/rock ratios) is characterized by pervasive albitization and zeolitization. Minimal alteration in the basalts without significant albitization and zeolitization is characterized by the occurrence of saponite±mixed-layer chlorite/smectite in the low-temperature alteration zone, and mixed-layer chlorite/corrensite or mixed-layer talc/chlorite in the high-temperature alteration zone. Textural non-equilibrium for phyllosilicates is represented by mixed layering and poorly defined packets of partially incoherent layers. The approach to textural equilibrium was controlled largely by the availability of fluid or permeability.Contribution No. 488 from the Mineralogical Laboratory, Department of Geological Sciences, The University of Michigan  相似文献   

3.
During ODP Leg 193, 4 sites were drilled in the active PACMANUS hydrothermal field on the crest of the felsic Pual Ridge to examine the vertical and lateral variations in mineralization and alteration patterns. We present new data on clay mineral assemblages, clay and whole rock chemistry and clay mineral strontium and oxygen isotopic compositions of altered rocks from a site of diffuse low-temperature venting (Snowcap, Site 1188) and a site of high-temperature venting (Roman Ruins, Site 1189) in order to investigate the water-rock reactions and associated elemental exchanges.The volcanic succession at Snowcap has been hydrothermally altered, producing five alteration zones: (1) chlorite ± illite-cristobalite-plagioclase alteration apparently overprinted locally by pyrophyllite bleaching at temperatures of 260-310°C; (2) chlorite ± mixed-layer clay alteration at temperatures of 230°C; (3) chlorite and illite alteration; (4) illite and chlorite ± illite mixed-layer alteration at temperatures of 250-260°C; and (5) illite ± chlorite alteration at 290-300°C. Felsic rocks recovered from two holes (1189A and 1189B) at Roman Ruins, although very close together, show differing alteration features. Hole 1189A is characterized by a uniform chlorite-illite alteration formed at ∼250°C, overprinted by quartz veining at 350°C. In contrast, four alteration zones occur in Hole 1189B: (1) illite ± chlorite alteration formed at ∼300°C; (2) chlorite ± illite alteration at 235°C; (3) chlorite ± illite and mixed layer clay alteration; and (4) chlorite ± illite alteration at 220°C.Mass balance calculations indicate that the chloritization, illitization and bleaching (silica-pyrophyllite assemblages) alteration stages are accompanied by different chemical changes relative to a calculated pristine precursor lava. The element Cr appears to have a general enrichment in the altered samples from PACMANUS. The clay concentrate data show that Cr and Cu are predominantly present in the pyrophyllites. Illite shows a significant enrichment for Cs and Cu relative to the bulk altered samples.Considerations of mineral stability allow us to place some constraints on fluid chemistry. Hydrothermal fluid pH for the chloritization and illitization was neutral to slightly acidic and relatively acidic for the pyrophyllite alteration. In general the fluids, especially from Roman Ruins and at intermediate depths below Snowcap, show only a small proportion of seawater mixing (<10%). Fluids in shallow and deep parts of the Snowcap holes, in contrast, show stronger seawater influence.  相似文献   

4.
《Applied Geochemistry》2002,17(11):1381-1399
Geochemical and isotopic studies of pore fluids and solid phases recovered from the Dead Dog and Bent Hill hydrothermal sites in Middle Valley (Ocean Drilling Program Leg 169) have been compared with similar data obtained previously from these sites during Ocean Drilling Program Leg 139. Although generally the hydrothermal systems reflect non-steady state conditions, the data allow an assessment of the history of the hydrothermal processes. Sediment K/Al ratios as well as the distribution of anhydrite in the sediments suggest that the Dead Dog hydrothermal field has been, and still is, active. In contrast, similar data in the Bent Hill hydrothermal field indicate a waning of hydrothermal activity. Pore fluid and hydrothermal vent data in the Dead Dog hydrothermal field are similar in nature to the data collected during ODP Leg 139. In the area of the Bent Hill sulfide deposit, however, the pore water data indicate that recent wholesale flushing of the sediment column with relatively unaltered seawater has obliterated a previous record of hydrothermal activity in the pore fluids. Data from the deepest part of Hole 1035A in the Bent Hill locality show the presence of hydrothermal fluids at greater depths in this area. This suggests the origin of the hydrothermal fluids found to be emanating from Hole 1035F, which constitutes one of the first man made hydrothermal vents in the Middle Valley hydrothermal system. Similarly, CORKed Hole 858G, because of seal failures, has acted as a hydrothermal vent, with sulfide deposits forming inside the CORK.  相似文献   

5.
Abstract The hydrothermal metamorphism of a sequence of Pliocene-aged seamount extrusive and volcanoclastic rocks on La Palma includes a relatively complete low-P-T facies series encompassing the zeolite, prehnite-pumpellyite, and greenschist facies. The observed mineral zonations imply metamorphic gradients of 200–300° C km-1. The transition from smectite to chlorite in the La Palma seamount series is characterized by discontinuous steps between discrete smectite, corrensite and chlorite, which occur ubiquitously as vesicles and, to a much lesser extent, vein in-fillings. Trioctahedral smectites [(Mg/(Fe + Mg) = 0.4–0.75] occur with palagonite and Na-Ca zeolites such as analcime and a thompsonite/natrolite solid solution. Corrensite [(Mg/(Fe + Mg) = 0.5–0.65] first appears at stratigraphic depths closely corresponding to the disappearance of analcime and first appearance of pumpellyite. Discrete chlorite [(Mg/(Fe + Mg) = 0.4–0.6] becomes the dominant layer silicate mineral coincident with the appearance of epidote and andraditic garnet. Within the stratigraphic section there is some overlap in the distribution of the three discrete layer silicate phases, although random interstratifications of these phases have not been observed. Although smectite occurs as both low- and high-charge forms, the La Palma corrensite is a compositionally restricted, 1:1 mixture of low-charge, trioctahedral smectite and chlorite. Electron microprobe analyses of coarse-grained corrensite yield structural formulae close to ideal values based on 50 negative charge recalculations. Calcium (average 0.20 cations/formula unit) is the dominant interlayer cation, with lesser Mg, K and Na. The absence of randomly interlayered chlorite/smectite in the La Palma seamount series may reflect high, time-integrated fluid fluxes through the seamount sequence. This is consistent with the ubiquity of high-variance metamorphic mineral assemblages and the general absence of relict igneous minerals in these samples.  相似文献   

6.
The smectite-to-chlorite conversion is investigated through long-duration experiments (up to 9 years) conducted at 300 °C. The starting products were the Wyoming bentonite MX80 (79 % smectite), metallic iron and magnetite in contact with a Na–Ca chloride solution. The predominant minerals in the run products were an iron-rich chlorite (chamosite like) and interstratified clays interpreted to be chlorite/smectite and/or corrensite/smectite, accompanied by euhedral crystals of quartz, albite and zeolite. The formation of pure corrensite was not observed in the long-duration experiments. The conversion of smectite into chlorite over time appears to take place in several steps and through several successive mechanisms: a solid-state transformation, significant dissolution of the smectite and direct precipitation from the solution, which is over-saturated with respect to chlorite, allowing the formation of a chamosite-like mineral. The reaction mechanisms are confirmed by X-ray patterns and data obtained on the experimental solutions (pH, contents of Si, Mg, Na and Ca). Because of the availability of some nutrients in the solution, total dissolution of the starting smectite does not lead to 100 % crystallization of chlorite but to a mixture of two dominant clays: chamosite and interstratified chlorite/smectite and/or corrensite/smectite poor in smectite. The role of Fe/(Fe + Mg) in the experimental medium is highlighted by chemical data obtained on newly formed clay particles alongside previously published data. The newly formed iron-rich chlorite has the same composition as that predicted by the geothermometer for diagenetic to low-grade metamorphic conditions, and the quartz + Fe-chlorite + albite experimental assemblage in the 9-year experiment is close to that fixed by water–rock equilibrium.  相似文献   

7.
Aluminous, high-temperature clay minerals form from alteration of tholeiitic basaltic glass and calcic plagioclase during hydrothermal venting on the crest of the East Pacific Rise at 21°N. The clay alteration assemblages are layered crusts (up to 1 mm thick) completely replacing glass and calcic plagioclase adjacent to surfaces exposed to hydrothermal fluids. The interiors of the affected basalt samples have unaltered appearances and oxygen isotopic compositions just slightly heavier than that of MORB. The surficial alteration crusts are mixtures of beidellitic smectite (aluminous, dioctahedral), randomly interstratified mixed-layer Al-rich chlorite/smectite, minor chlorite, an x-ray amorphous aluminosilicate material, and possible minor serpentine (amesite). A δ18O value of +4.1 ± 0.2%. (SMOW) is determined for the beidellitic smectite. Assuming that this smectite equilibrated with hydrothermal fluid having an oxygen isotope value between that of seawater (0%.) and 350°C hydrothermal fluid from EPR, 21°N vents (+1.6%.), an equilibration temperature between 290°C and 360°C is calculated for the beidellitic smectite. This is substantially higher than any previously reported temperature for an oceanic smectite. The mixed-layer Al-rich chlorite/smectite has a δ18O value of +3.5%., which corresponds to equilibration at 295°–360°C. The aluminous composition of the alteration assemblage is uncommon for clay minerals produced by submarine hydrothermal basalt alteration. We suggest that this assemblage is largely the product of high-temperature interaction between basalt glass + plagioclase and Mg-poor, acidic hydrothermal fluids, with possibly some contribution of Mg from bottom seawater, and that the aluminous clays either incorporate Al3+ remobilized from basalt by lowpH hydrothermal fluids, or are residual phases remaining after intense alteration of basaltic glass + plagioclase.  相似文献   

8.
The Morrón de Mateo bentonite deposit is being studied as a natural analogue of the thermal and geochemical effects on a bentonite barrier in a deep geological repository of high level radioactive wastes. This bentonite deposit and its host rocks were intruded by a rhyodacitic volcanic dome that induced a hydrothermal metasomatic process affecting the biocalcarenite beds close to the dome. In this work, the mineralogical and chemical features of the clay minerals of the hydrothermally altered pyroclastic (white tuffs) and epiclastic rocks (mass flow), located in the NE sector of the Morrón de Mateo deposit are described. White tuffs have a high content of phyllosilicates, mainly composed of dioctahedral smectites, while mass flow have a higher proportion of inherited minerals, the neoformed phyllosilicates are dioctahedral smectites and an interlayer chlorite/smectite mineral of corrensite type. The chemical composition of smectites reflects the different nature of the parent rocks, in such a way that smectites from white tuffs have a quite homogeneous chemical composition and their structural formulae correspond to montmorillonite type, while smectites from mass flow show more chemical variability, higher Fe and Mg contents and a mean structural formulae corresponding to Fe-Mg-rich beidellite and/or to an intermediate smectite member between beidellite and saponite. In addition, chemical composition and textural features of corrensite-like clay minerals in relation to Fe-Mg-rich smectites in the samples have also been studied, suggesting that the former seems to be formed from Fe-Mg-rich smectites. The presence of corrensite in the epiclastic rocks suggests that in the Morrón de Mateo area a hydrothermal alteration process occurred after bentonite formation, which transformed Fe-Mg-rich smectites into corrensite. This transformation was probably favoured by the intrusion of the Morrón de Mateo volcanic dome, which produced a temperature increase in the geological media and a supply of Fe-Mg-rich solutions. These physicochemical conditions were also responsible for the metasomatic transformations observed in the biocalcarenite beds located on the top of the bentonite deposit. All these data suggest that the Morrón de Mateo natural system could be a good natural analogue of both thermal and chemical effects on a bentonite barrier related to the radioactive decay of fission products and the interaction between the corrosion products of steel over-packs and the bentonite. These circumstances would favour the transformation of the candidate Al-rich smectites into Fe-Mg-rich smectites and corrensite, as steps prior to formation of chlorite. In this case, all the physicochemical and mechanical properties of Al-rich smectites would disappear and the clayey barrier would fail.  相似文献   

9.
Many chloritic minerals in low-grade metamorphic or hydrothermally altered mafic rocks exhibit abnormal optical properties, expand slightly upon glycolation (expandable chlorite) and/or have excess AlVI relative to AlIV, as well as significant Ca, K and Na contents. Chloritic minerals with these properties fill vesicles and interstitial void space in low-grade metabasalt from northern Taiwan and have been studied with a combination of TEM/AEM, EMPA, XRD, and optical microscopy. The chloritic minerals include corrensite, which is an ordered 1:1 mixed-layer chlorite/smectite, and expandable chlorite, which is shown to be a mixed-layer chlorite/corrensite. Corrensite and some mixed-layer chlorite/corrensite occur as rims of vesicles and other cavities, while later-formed mixed-layer chlorite/corrensite occupies the vesicle cores. The TEM observations show that the mixed-layer chlorite/corrensite has ca. 20%, and the corrensite has ca. 50% expandable smectite-like layers, consistent with XRD observations and with their abnormal optical properties. The AEM analyses show that high Si and Ca contents, high AlVI/AlIV and low FeVI/(Fe+Mg)VI ratios of chlorites are correlated with interstratification of corrensite (or smectite-like) layers in chlorite. The AEM analyses obtained from 200–500 Å thick packets of nearly pure corrensite or chlorite layers always show that corrensite has low AlIV/SiIV and low FeVI/(Fe+Mg)VI, while chlorite has high AlIV/SiIV and high FeVI/(Fe+Mg)VI. This implies that the trioctahedral smectite-like component of corrensite has significantly lower AlIV/SiIV and FeVI/(Fe+Mg)VI. The ratios of FeVI/(Fe+Mg)VI and AlIV/SiIV thus decrease in the order chlorite, corrensite, smectite. The proportions of corrensite (or smectite-like) layers relative to chlorite layers in low-grade rocks are inferred to be controlled principally by Fe/Mg ratio in the fluid or the bulk rock and by temperature. Compositional variations of chlorites in low-grade rocks, which appear to correlate with temperature or metamorphic grade, more likely reflect variable proportions of mixed-layered components. The assemblages of trioctahedral phyllosilicates tend to occur as intergrown discrete phases, such as chlorite-corrensite, corrensite-smectite, or chlorite-corrensite-smectite. A model for the corrensite crystal structure suggests that corrensite should be treated as a unique phase rather than as a 1:1 ordered mixed-layer chlorite/smectite.  相似文献   

10.
The Igarapé Bahia gold deposit has developed from weathering of a near-vertical hydrothermal Cu (Au) mineralization zone. The unweathered bedrock composed of chlorite schists is mainly metamorphosed basalts, pyroclastic and clastic sedimentary rocks and iron formation. Contents and Fe/(Fe + Mg) ratios of chlorites increase from distal country rock towards the mineralization zone, which can be attributed to different water/rock ratios and locations in a hydrothermal system. In the hydrothermal system high salinity fluids convected through basin-floor rocks, stripping metals from the recharge zones with precipitation in discharge zones. The chlorite with lower Fe/(Fe + Mg) ratios indicates alteration by relatively unreacted Mg-rich fluids, occurring within recharge zones. By contrast, the chlorite with higher Fe/(Fe + Mg) ratios in the mineralization zone formed from solutions rich in Fe, Mn, Au, Cu, H2S and SiO2 within a discharge zone. The iron formation could also be formed within the discharge zone or on the basin floor from the Fe-rich fluids. The distal country rock with less chlorite content is a hydrothermal product at low water/rock ratios whereas the proximal country rock and the host rock with more chlorite content formed at high water/rock ratio conditions. The Al(IV) contents of chlorites indicate that the formation temperatures of these rocks range from 204 to 266 °C, with temperatures slightly increasing from distal country rock towards the mineralization zone.  相似文献   

11.
对伊豆-小笠原海脊(ODP 782A孔)上新世以来沉积物中黏土矿物的组成、含量及矿物学特征进行了分析,结果表明:黏土矿物以伊利石(42%)和蒙皂石(42%)为主,绿泥石的平均含量为14%,高岭石的含量最低,平均仅为2%。伊利石的结晶度较好,平均为0.25°Δ2θ;化学指数较低,平均为0.31;表明伊利石主要形成于干冷的气候环境。通过将ODP 782A孔黏土矿物组合特征和含量与周边可能源区对比,并结合伊利石和蒙皂石的矿物学参数特征,我们认为蒙皂石主要来源于伊豆-小笠原海脊周边岛弧火山物质;伊利石、绿泥石和高岭石主要来自亚洲大陆风尘。上新世以来(伊利石+绿泥石)/蒙皂石比值总体上呈增加的趋势,并且在5.3~3.6、3.6~1.6、1.6~0 Ma的三个阶段表现出不同的变化特征,该比值与全球深海δ18O值所记录的全球变冷、北太平洋ODP 885/886孔风尘通量和灵台黄土沉积速率,以及日本海U1430站伊利石/蒙皂石比值所指示的亚洲内陆干旱变化的总体变化趋势和阶段性变化的时间点大致同步,表明该比值敏感地响应了全球变冷和亚洲内陆的干旱。上新世以来(伊利石+绿泥石)/高岭石比值表现为高/低交替变化,分别与中国灵台黄土磁化率高/低变化相对应,由于黄土磁化率记录了亚洲内陆干/湿变化,因此该黏土矿物比值敏感地响应了亚洲内陆的古气候变化,因而可以作为可靠的亚洲大陆干/湿变化示踪指标。  相似文献   

12.
The Bamble sector of southern Norway comprises metagabbros and metasediments that were metasomatically altered to various extents during a late stage of the Sveconorwegian orogeny (~1.06 Ga). The infiltration of highly saline brines along veins led to penetrative scapolitization and albitization on a regional scale and the local deposition of Fe–Ti oxides. Typical secondary mineral assemblages include either scapolite + apatite + amphibole + phlogopite + tourmaline, or albite + epidote + calcite + chlorite + white mica, indicating that the fluids introduced large amounts of Na, Cl, Mg, Ca, K, P, and B to the system. Metasomatic tourmalines associated with different alteration stages as identified by variations in major-element composition and initial 87Sr/86Sr were analyzed for B isotopic compositions to constrain possible sources and the evolution of the hydrothermal fluid(s). Measured δ11B values range from ?5 to +27 ‰ relative to SRM-951, suggesting marine evaporites interlayered with various amounts of continental detritus and pelagic clay as a possible B source reservoir. The influence of a seawater-derived component is clearly indicated by the heavy B isotope signature of tourmaline related to Al–Mg-rich metapelites. In contrast, negative δ11B values can be explained by the influence of pneumatolytic fluids associated with granitic pegmatites. On a regional scale (i.e., several km), δ11B values in tourmaline vary widely, whereas variations within a single outcrop (tens of m) are typically small and can be ascribed to different generations of tourmaline related to several fluid pulses.  相似文献   

13.
The Rainbow hydrothermal field is located at 36°13.8′N-33°54.15′W at 2300 m depth on the western flank of a non-volcanic ridge between the South AMAR and AMAR segments of the Mid-Atlantic Ridge. The hydrothermal field consists of 10-15 active chimneys that emit high-temperature (∼365 °C) fluid. In July 2008, vent fluids were sampled during cruise KNOX18RR, providing a rich dataset that extends in time information on subseafloor chemical and physical processes controlling vent fluid chemistry at Rainbow. Data suggest that the Mg concentration of the hydrothermal end-member is not zero, but rather 1.5-2 mmol/kg. This surprising result may be caused by a combination of factors including moderately low dissolved silica, low pH, and elevated chloride of the hydrothermal fluid. Combining end-member Mg data with analogous data for dissolved Fe, Si, Al, Ca, and H2, permits calculation of mineral saturation states for minerals thought appropriate for ultramafic-hosted hydrothermal systems at temperatures and pressures in keeping with constraints imposed by field observations. These data indicate that chlorite solid solution, talc, and magnetite achieve saturation in Rainbow vent fluid at a similar pH(T,P) (400 °C, 500 bar) of approximately 4.95, while higher pH values are indicated for serpentine, suggesting that serpentine may not coexist with the former assemblage at depth at Rainbow. The high Fe/Mg ratio of the Rainbow vent fluid notwithstanding, the mole fraction of clinochlore and chamosite components of chlorite solid solution at depth are predicted to be 0.78 and 0.22, respectively. In situ pH measurements made at Rainbow vents are in good agreement with pH(T,P) values estimated from mineral solubility calculations, when the in situ pH data are adjusted for temperature and pressure. Calculations further indicate that pH(T,P) and dissolved H2 are extremely sensitive to changes in dissolved silica owing to constraints imposed by chlorite solid solution-fluid equilibria. Indeed, the predicted correlation between dissolved silica and H2 defines a trend that is in good agreement with vent fluid data from Rainbow and other high-temperature ultramafic-hosted hydrothermal systems. We speculate that the moderate concentrations of dissolved silica in vent fluids from these systems result from hydrothermal alteration of plagioclase and olivine in the form of subsurface gabbroic intrusions, which, in turn are variably replaced by chlorite + magnetite + talc ± tremolite, with important implications for pH lowering, dissolved sulfide concentrations, and metal mobility.  相似文献   

14.
Magnesite, siderite and dolomite are characteristic alteration minerals occurring in Miocene hanging wall rocks of dacitic composition which host the Kuroko orebodies. These carbonates generally occur in a more stratigraphically upper horizon than chlorite alteration zone surrounding the orebodies. The Mg/(Mg+Fe) ratios of the carbonates decrease from the central alteration zone to marginal zone. The Mg/(Mg+Fe) ratios of carbonates and chlorite positively correlate. The δ18O and δ13C values of magnesite, siderite and dolomite positively correlate with each other and lie between the igneous and marine carbonate values. The petrographic, isotopic and fluid inclusion characteristics and thermochemical modelling calculations indicate that magnesite and dolomite formed in the central zone close to the orebodies due to the interaction of hydrothermal solutions with the biogenic marine carbonates. Calcite formed further from the orebodies from hydrothermal fluids which did not contain a biogenic marine carbon component. The compositional and textural relationships indicate that superimposed alterations (chlorite alteration and carbonate alteration) occurred in hanging wall rocks. The mode of occurrences and the Mg/(Mg+Fe) ratios of magnesite and dolomite occurring in hanging wallrocks are useful in the exploration for concealed volcanogenic massive sulfide-sulfate deposits. Received: 9 September 1997 / Accepted: 23 September 1997  相似文献   

15.
Abstract: Crystalline limestone of the Sako-nishi area in the Kamioka Zn-Pb mine, central Japan, is depleted in 18O and 13C toward the center of mineralization due to interaction with hydrothermal fluids with a dominant meteoric water component. The relationship between isotopic composition and mineral assemblage, texture, the chemical composition of the minerals, and the bulk chemical composition in the limestone was examined. A decrease in the δ18OSMOW value correlated with: (1) increase of fine-grained calcite which is enriched in Mn and exhibits a bright cathodoluminescence, (2) progressive hy-drothermal alteration of clinopyroxene in the original limestone into tremolite within the weakly-altered zone, and into chlorite and actinolite within the strongly-altered zone, (3) dominance of hydrothermal chlorite in altered limestone having δ18O values of less than 10%. This chlorite was enriched in Fe compared to mafic minerals in the unaltered limestone. The enrichment of Fe and Mn was more conspicuous in calcite and chlorite in skarn deposits. The occurrence and chemical composition of hydrothermal minerals in the limestone, skarn, and ore indicate that the 18O–depleted zones were formed in the later stage from fluids, which were responsible for mineralization and skarnization, and for Fe and Mn enrichment. The Al, Mn, and Fe contents, and the ratios of Mg/(Mg+Mn+Fe), Al/Mg, and Mn/Sr in the hydrochloric acid leachate of limestone varied with decreasing δ18O and δ13C values, reflecting increases in high-Mn calcite and high-Fe chlorite. These indexes were useful for the identification of hydrothermally altered limestone. Furthermore, the potential score weighted by each index was more effective and accurate means of detecting promising mineralization zones. An anomalous potential score due to the presence of hydrothermal minerals in the outcropping limestone occurred along the Atotsu–1GO fault. This structure indicates that the skarn deposits of the Sako-nishi area belong to Mozumi-type Zn–Pb skarn deposits, in which fissures and faults served as major passages for the hydrothermal fluid. High-Mn carbonate and high-Fe chlorite widely occur in base-metal vein deposits and Zn-Pb type skarn deposits. Leaching of altered rock with hydrochloric acid in addition to stable isotope composition and cathodoluminescence imaging is effective for geochemical exploration for hydrothermal deposits because it makes possible the detection of the elemental composition of hydrothermal minerals such as chlorite and carbonate and because of the rapidity and convenience of analysis.  相似文献   

16.
鄂尔多斯盆地纳岭沟铀矿床绿泥石特征及地质意义   总被引:3,自引:0,他引:3  
夏菲  孟华  聂逢君  严兆彬  张成勇  李满根 《地质学报》2016,90(12):3473-3482
纳岭沟铀矿床位于鄂尔多斯盆地北部,具有明显的后期热液作用的特征,矿体空间展布主要受控于绿色-灰色砂岩的过渡界面,与绿泥石化的蚀变砂岩关系密切。通过对纳岭沟铀矿床不同颜色砂岩中的绿泥石进行详细的岩相学研究和电子探针化学成分分析,依据绿泥石的成因与共生矿物的关系,识别出绿泥石主要的3种类型:填隙物型绿泥石,片状与黄铁矿共生型绿泥石以及黑云母蚀变型绿泥石;同时通过绿泥石的Fe-Si图解确定了纳岭沟铀矿床不同颜色砂岩中的绿泥石主要为铁镁绿泥石和密绿泥石。根据Al/(Fe+Mg+Al)-Mg/(Fe+Mg)的关系图解确定出不同颜色砂岩中的绿泥石具有铁镁质流体和泥质两种来源,通过绿泥石中主要阳离子与镁的关系图解和计算得出的绿泥石形成温度共同确定出绿泥石是多期次的中低温热液流体作用的产物。综合研究表明,纳岭沟铀矿床的绿泥石形成至少经历了温度稍高的还原性流体和温度稍低的氧化性流体等两个期次的流体作用,稍高温的还原性流体与成矿关系更为重要。与绿泥石形成有关的热液流体作用不仅带入了部分铀,还促进了铀的活化和运移。  相似文献   

17.
This report presents mineralogical, geochemical and isotopic data on samples obtained using the Benthic Multi‐coring System (BMS) to drill a submarine hydrothermal deposit developed in a caldera on the summit of the Suiyo Seamount in the Izu–Bonin Island Arc, south of Japan. This deposit is regarded as the first example of Kuroko‐type sulfide mineralization on a volcano at the volcanic front of an island arc. The mineralization and hydrothermal alteration below the 300 × 150‐m area of active venting was investigated to depths of 2–9 m below the sea floor. Drilling beneath the area of active venting recovered a sequence of altered volcanic rocks (dacite lavas, pyroclastic rocks of dacite–rhyolite compositions and pumice) associated with sulfide veining and patches/veins of anhydrite. No massive sulfide was found, however, and the subsea‐floor mineralization to 10 m depth is dominated by anhydrite and clay minerals with some sulfides. Sulfide‐bearing samples contained high Au (up to 42 ppm), Ag (up to 263 ppm), As (up to 1550 ppm), Hg (up to 55 ppm), Sb (up to 772 ppm), and Se (up to 24 ppm). Electron probe microanalyzer indicated that realgar, orpiment, and mimetite were major As‐bearing minerals. The sulfides were also characterized by high Zn (>10%) compared to Cu (<6.3%) and Pb (<0.6%). The δ202Hg/198Hg, δ202Hg/199Hg and δ202Hg/200Hg of the sulfide‐bearing dacite samples and a sulfide chimney decreased with increasing Hg/Zn concentration ratio. The variation of the δ202Hg/198Hg ranged from ?2.8 to +0.5‰ to relative to S‐HG02027. The large range of these δ202Hg/198Hg was greater than might be expected for such a heavy element and may be due to a predominance of kinetic effects. The variation of δ202Hg/198Hg of sulfide‐bearing dacite samples suggested that light Hg isotope in the vapor mixed with oxygenated seawater near sea floor during mineralization. Lead isotope ratios of the sulfide were very similar to those of the dacite lava, suggesting that lead is of magmatic origin. The 87Sr/86Sr ratio (0.70872) of anhydrite was different from that of the dacite lava, and suggests an Sr derivation predominantly from seawater. Hydrothermal alteration of the dacite in the Suiyo hydrothermal field was characterized by Fe‐sulfides, anhydrite, barite, montmorillonite, chlorite/montmorillonite mixed‐layer minerals, mica, and chlorite with little or no feldspar or cristobalite. Hydrothermal clay minerals changed with depth from montmorillonite to chlorite/montmorillonite mixed‐layer minerals to chlorite and mica. Hydrogen isotope ratios of chlorite/montmorillonite and mixed‐layer, mica‐chlorite composites obtained below the active venting sites ranged from ?49 to ?24‰, suggesting seawater as the dominant fluid causing alteration. Oxygen isotope ratios of anhydrite ranged from 9.2 to 10.4‰ and anhydrite formation temperatures were calculated to be 188–207°C. Oxygen isotope ratios ranged from +5.2 to +9.2‰ for montmorillonite, +3.2 to +4.5‰ for chlorite/montmorillonite mixed‐layer minerals, and +2.8 to +3.8‰ in mixtures of chlorite and mica. The formation temperatures of montmorillonite and of the chlorite–mica mixture were 160–250°C and 230–270°C, respectively. The isotope temperatures for clay minerals (220–270°C) and anhydrite (188°C) were significantly lower than the borehole temperature (308.3°C) measured just after the drilling, suggesting that temperature at this site is now higher than when clay minerals and anhydrite were formed.  相似文献   

18.
Thermal and hydrothermal effects of Triassic–Liassic basalt flow deposition on sedimentary series of the Argana Basin are responsible for major modifications in detrital clays, until 20 m in depth. It expressed by transformation of detrital smectite to corrensite and moreover to chlorite, and by increasing illite crystallinity. On the 2 m of sediments located immediately under the flow, magnesium-rich hydrothermal fluids have caused precipitation of new mineral phases. To cite this article: L. Daoudi, J.-L. Pot de Vin, C. R. Geoscience 334 (2002) 463–468.  相似文献   

19.
Hydrothermal sediment mineralogy and geochemistry can provide insights into seafloor mineralization processes and changes through time. We report a geochemical investigation of a short (22 cm) near-vent hydrothermal metalliferous sediment core from the Lucky Strike site (LS), on the Mid-Atlantic Ridge (MAR). The sediment was collected from the base of an active white smoker vent and comprises pure hydrothermal precipitates, mainly chalcopyrite, sphalerite, pyrite and barite, with negligible detrital and biogenic inputs. Geochemically, the core is enriched in elements derived from high-temperature hydrothermalism (Fe, Cu, Zn and Ba) and depleted in elements derived from low-temperature hydrothermalism (Mn), and metasomatism (Mg). The U/Fe content ratio is elevated, particularly in the deeper parts of the core, consistent with uptake from seawater associated with sulphide alteration. Rare earth elements (REE) concentrations are low and chondrite-normalized patterns are characteristic of high-temperature vent fluids with an enrichment in light REE and a pronounced positive Eu anomaly. A stronger positive Eu anomaly associated with higher Lan/Smn at the core top is controlled by barite precipitation. The hydrothermal influence on the REE decreases downcore with some evidence for a stronger seawater influence at depth. Nd isotopes also exhibit an increased detrital/seawater influence downcore. Pb isotope ratios are uniform and plot on the Northern Hemisphere Reference Line in a small domain defined by LS basalts and exhibit no detrital or seawater influence. Lucky Strike sediments are derived from high-temperature mineralization and are overprinted by a weak seawater–sediment interaction when compared with other Atlantic hydrothermal sites such as TAG. The larger seawater input and/or a larger detrital contribution in deeper layers can be explained by variable hydrothermal activity during sediment formation, suggesting different pulses in activity of the LS hydrothermal system.  相似文献   

20.
 Petrological and chemical variations, as well as oxygen and strontium isotopic data are presented for metagabbros from the Romanche and Vema fracture zones. These rocks were affected by several types and degrees of alterations ranging from slight hydrothermal alteration to complete amphibolitization. Five major kinds of alteration processes ranging from late-magmatic deuteric alteration (stage I) to low temperature (<150 °C) alteration (stage V) were identified. Water-rock interactions between 300 and 650 °C are the most dominant interactions resulting in the most prevailing secondary mineralogical assemblages which characterize the amphibolite and/or greenschist facies (amphibole ± plagioclase ± epidote ± titanite ± chlorite ± prehnite). Hydrothermal alteration of these gabbroic rocks results in isotopic exchanges between rocks and seawater-derived fluids. These exchanges lead to decrease of gabbroic δ18O toward values as low as +3.9‰, and larger Sr isotopic variations than other oceanic gabbroic rocks (87Sr/86Sr ratios shift to 0.7029–0.7051). Calculation of a chemical budget indicates that metagabbros are hydrated and enriched in Fe and probably in Mg and Cl, while Si, Ca and Ti are released to the hydrothermal fluids. In addition to metamorphic recrystallization and geochemical transformation, hydrothermal alteration of oceanic gabbros contributes to the control of the global ocean geochemistry. Received: 8 March 1999 / Accepted: 12 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号