首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In addition to Massive Astrophysical Compact Halo Objects (MACHOs), as detected by microlensing, cold molecular clouds (mainly ofH 2) may well contribute substantially to the galactic halo dark matter. Here, we argue that the existence of such halo clouds can be inferred from the observation of absorption lines (due to heavy molecules located in the clouds themselves) towards stars of the Large Magellanic Cloud, which lie very close, within 1, to a previously microlensed one.The possibility of clusters of MACHOs has been investigated by several authors (see e.g. Carr and Lacey, 1987; Ashman, 1990; Eichler and Silk, 1992 and Wasserman and Salpeter, 1994).  相似文献   

2.
In this paper the gravitational collapse of cosmic gas clouds and formation of star clusters has been considered. Hoyle's view of successive fragmentation has been taken as the basic mechanim in the present work. The initial masses of protostars have been estimated as the function of their distances from the centre of the cluster and the intensity of the magnetic field of the medium. It has been shown that the fragmentation process is greatly inhibited by the presence of a strong magnetic field. A model has been constructed showing how a protostar grows in mass by accretion from the surrounding medium, on the basis of the assumption that as the star moves at random in the cluster it picks up a fraction of the material through which it passes. It has been estimated that a protostar of initial mass of about 0.1M grows to one of 1.0M in a time period which ranges from a few multiples of 105 to a few multiples of 107 yr, depending on the parameters involved in the accretion process. The number of stars per unit mass range has also been estimated; it is found to be proportional tom –3.3,m being the mass of the star.  相似文献   

3.
4.
Kinematical distances are estimated for six open star clusters. They agree fairly well with the photometric distances. The kinematical distances cannot, at present, be estimated better than the photometric distances. When more accurate proper motion measurements become available the kinematical distances will improve considerably and may then be used to calibrate the cosmic distance scale.  相似文献   

5.
6.
We discuss a possible generation of radio bursts preceding final stages of binary neutron star mergings which can be accompanied by short gamma-ray bursts. Detection of such bursts appear to be advantageous in the low-frequency radio band due to a time delay of ten to several hundred seconds required for radio signal to propagate in the ionized intergalactic medium. This delay makes it possible to use short gamma-ray burst alerts to promptly monitor specific regions on the sky by low-frequency radio facilities, especially by LOFAR. To estimate the strength of the radio signal, we assume a power-law dependence of the radio luminosity on the total energy release in a magnetically dominated outflow, as found in millisecond pulsars. Based on the planned LOFAR sensitivity at 120 MHz, we estimate that the LOFAR detection rate of such radio transients could be about several events per month from redshifts up to z∼1.3 in the most optimistic scenario. The LOFAR ability to detect such events would crucially depend on exact efficiency of low-frequency radio emission mechanism.  相似文献   

7.
We consider global and gravitational lensing properties of the recently suggested Einstein clusters of weakly interacting massive particles (WIMPs) as galactic dark matter haloes. Being tangential pressure dominated, Einstein clusters are strongly anisotropic systems which can describe any galactic rotation curve by specifying the anisotropy. Due to this property, Einstein clusters may be considered as dark matter candidates. We analyse the stability of the Einstein clusters against both radial and non-radial pulsations, and we show that the Einstein clusters are dynamically stable. With the use of the Buchdahl type inequalities for anisotropic bodies, we derive upper limits on the velocity of the particles defining the cluster. These limits are consistent with those obtained from stability considerations. The study of light deflection shows that the gravitational lensing effect is slightly smaller for the Einstein clusters as compared to the singular isothermal density sphere model for dark matter. Therefore, lensing observations may discriminate, at least, in principle, between Einstein cluster and the other dark matter models.  相似文献   

8.
Two independent sets of arguments lead us to conclude that the progenitors of superintense bursts (with an energy yield larger than that for ordinary supernovae by one or two orders of magnitude) are born in massive dense star clusters, but generally flare up only after they have left the cluster; these are the same objects that are the progenitors of gamma-ray bursts (GRBs). Each of the giant stellar arcs which are grouped into multiple systems of stellar complexes in the LMC and NGC 6946 could only be produced by a single powerful energy release near its center. The progenitors of these systems of arc-shaped stellar complexes must have had a common source nearby, and it could only be a massive star cluster. Such clusters are actually known near both systems. On the other hand, calculations of the dynamical evolution of star clusters show that close binary systems of compact objects are formed in the dense central parts of the clusters and are then ejected from them during triple encounters. Mergers of the components of such systems are believed to be responsible for GRBs. Since their progenitors are ejected from the cluster before merging, the arc-shaped stellar complexes produced by GRBs are observed near (but not around) the parent clusters. If a considerable fraction of the GRB progenitors are formed as a result star encounters in massive star clusters, and if the GRBs themselves trigger star formation near the parent clusters, then observations of GRBs in star-forming regions are consistent with their origin during mergers of pairs of compact objects.  相似文献   

9.
The recent analysis of MiniBooNE experiment suggests that a better fit of the data arises if there are 2 types of sterile neutrinos. If the sterile neutrinos were produced during the early epoch of the Big Bang, they would be slightly degenerate. I show that the existence of 2 types slightly degenerate sterile neutrinos can fully explain the dark matter problem, the cusp problem, the hot gas density profile in clusters and the rotation curves of galaxies.  相似文献   

10.
How dark is it inside a dark cloud? If—as is currently believed-interstellar extinction at UV wavelengths is mainly due to scattering with a strongly forward throwing phase-function, the interior of a dark cloud may be much better illuminated at UV wavelengths than its measured extinction would suggest. We consider the penetration of radiation into a dark cloud against scattering and absorption by grains; and we define a new group property for interstellar grains, the exclusion optical depth τd. τd is a measure of the ability of the grains to exclude radiation from the interior of an externally illuminated cloud. Radiation—as measured by the radiation energy density-penetrates the cloud approximately as if against pure absorption only, with effective optical depth τd. Thus τd is a conceptually and numerically useful quantity when estimating the role of UV radiation in the thermal and chemical balance within a dark cloud. Computations are made of the radiation fields in (1200, 4500) Å, at the centres of dark clouds with measured visual extinctions. It is found that even in very dark clouds, the radiation energy density in (1200, 1800) Å may be significant, due to the high grain albedo at these short wavelengths.  相似文献   

11.
We have used the catalogue of dark nebulae compiled by Lynds (1962) to investigate the geometrical nature of the darkest, opacity class 5 to 6, clouds. There would appear to be some evidence that these objects are fractals of dimensionD=1.4.  相似文献   

12.
We report the first detection of interstellar nitrogen sulfide (NS) in cold dark clouds. Several components of the 2 pi 1/2, J = 3/2 --> 1/2 and J = 5/2 --> 3/2 transitions were observed in TMC-1 and L134N. The inferred column density for TMC-1 is NNS approximately 8 x 10(12)cm-2 toward the NH3 peak in that cloud, and in L134N is NNS approximately 3 x 10(12)cm-2 toward the position of peak NH3 emission. These values correspond to fractional abundances relative to molecular hydrogen of fNS approximately 8 x 10(-10) for TMC-1, and fNS approximately 6 x 10(-10) for L134N. The NS emission is extended along the TMC-1 ridge and is also extended in L134N. The measured abundances are significantly higher than those predicted by some recent gas phase ion-molecule models.  相似文献   

13.
14.
15.
G. A. Saiyan 《Astrophysics》1991,34(3):248-251
Byurakan Astrophysical Observatory. Translated from Astrofizika, Vol. 34, No. 3, pp. 459–465, May–June, 1991.  相似文献   

16.
The existence of older stars within a young star cluster can be interpreted to imply that star formation occurs on time-scales longer than a free-fall time of a pre-cluster cloud core. Here, the idea is explored that these older stars are not related to the star formation process forming the young star cluster but rather that the orbits of older field stars are focused by the collapsing pre-cluster cloud core. Two effects appear: the focusing of stellar orbits leads to an enhancement of the density of field stars in the vicinity of the centre of the young star cluster; and due to the time-dependent potential of the forming cluster some of these stars can get bound gravitationally to the cluster. These stars exhibit similar kinematical properties to the newly formed stars and cannot be distinguished from them on the basis of radial velocity or proper motion surveys. Such contaminations may lead to a wrong apparent star formation history of a young cluster. In the case of the ONC, the theoretical number of gravitationally bound older low-mass field stars agrees with the number of observed older low-mass stars.  相似文献   

17.
Evidence relating to the value ofR=A V/EB-V appropriate to discrete dark clouds in the interstellar medium is discussed. The polarimetric method of evaluatingR recently proposed by Serkowski, Mathewson and Ford gives results consistent with extinction curve determinations. A value ofR~4.4 appears to apply to the most reddened stars in the ? Oph complex, suggesting the existence of an upper size limit for the grains. If the grains grow by accretion of the heavier elements from the surrounding gas, as suggested by Carrasco, Strom and Strom, then the availability of material sets a limitation on mantle growth consistent with the observed increase inR.  相似文献   

18.
19.
Stellar populations contain the most important information about star cluster formation and evolution. Until several decades ago, star clusters were believed to be ideal laboratories for studies of simple stellar populations(SSPs). However, discoveries of multiple stellar populations in Galactic globular clusters have expanded our view on stellar populations in star clusters. They have simultaneously generated a number of controversies, particularly as to whether young star clusters may have the same origin as old globular clusters. In addition, extensive studies have revealed that the SSP scenario does not seem to hold for some intermediate-age and young star clusters either, thus making the origin of multiple stellar populations in star clusters even more complicated. Stellar population anomalies in numerous star clusters are well-documented, implying that the notion of star clusters as true SSPs faces serious challenges. In this review, we focus on stellar populations in massive clusters with different ages. We present the history and progress of research in this active field, as well as some of the most recent improvements, including observational results and scenarios that have been proposed to explain the observations. Although our current ability to determine the origin of multiple stellar populations in star clusters is unsatisfactory, we propose a number of promising projects that may contribute to a significantly improved understanding of this subject.  相似文献   

20.
Gravitational settling of dust grains in dark clouds has been considered. It has been shown that such a process gives rise to a modification of the grain size distribution. Starting with a simple model of uniform spherical cloud and normal interstellar grain size distribution for the dust we derive expressions for the modified grain size distribution function, average grain size and extinction as functions of distance from the cloud's center and the age of the cloud. The mean grain size increases towards the center of the cloud as does the extinction. Results of the numerical evaluation of these quantities have been discussed with their implications for the observations of anomalous reddening and polarization within dark clouds and Bok globules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号