首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a set of four Gemini-North Multi-Object Spectrograph/integral field unit (IFU) observations of the central disturbed regions of the dwarf irregular starburst galaxy NGC 1569, surrounding the well-known superstar clusters A and B. This continues on directly from a companion paper, in which we describe the data reduction and analysis techniques employed and present the analysis of one of the IFU pointings. By decomposing the emission-line profiles across the IFU fields, we map out the properties of each individual component identified and identify a number of relationships and correlations that allow us to investigate in detail the state of the ionized interstellar medium (ISM). Our observations support and expand on the main findings from the analysis of the first IFU position, where we conclude that a broad (≲400 km s−1) component underlying the bright nebular emission lines is produced in a turbulent mixing layer on the surface of cool gas knots, set up by the impact of the fast-flowing cluster winds. We discuss the kinematic, electron-density and excitation maps of each region in detail and compare our results to previous studies. Our analysis reveals a very complex environment with many overlapping and superimposed components, including dissolving gas knots, rapidly expanding shocked shells and embedded ionizing sources, but no evidence for organized bulk motions. We conclude that the four IFU positions presented here lie well within the starburst region where energy is injected, and, from the lack of substantial ordered gas flows, within the quasi-hydrostatic zone of the wind interior to the sonic point. The net outflow occurs at radii beyond 100–200 pc, but our data imply that mass-loading of the hot ISM is active even at the roots of the wind.  相似文献   

2.
We study, through 2D hydrodynamical simulations, the feedback of a starburst on the ISM of typical gas-rich dwarf galaxies. The main goal is to address the circulation of the ISM and metals following the starburst. We assume a single-phase rotating ISM in equilibrium in the galactic potential generated by a stellar disc and a spherical dark halo. The starburst is assumed to occur in a small volume in the centre of the galaxy, and it generates a mechanical power of 3.8×1039 or 3.8×1040 erg s−1 for 30 Myr. We find, in accordance with previous investigations, that the galactic wind is not very effective in removing the ISM. The metal-rich stellar ejecta, however, can be efficiently expelled from the galaxy and dispersed in the intergalactic medium.
Moreover, we find that the central region of the galaxy is always replenished with cold and dense gas a few 100 million years after the starburst, achieving the requisite for a new star formation event in ≈0.5–1 Gyr. The hydrodynamical evolution of galactic winds is thus consistent with the episodic star formation regime suggested by many chemical evolution studies.
We also discuss the X-ray emission of these galaxies and find that the observable (emission-averaged) abundance of the hot gas underestimates the real one if thermal conduction is effective. This could explain the very low hot-gas metallicities estimated in starburst galaxies.  相似文献   

3.
The molecular phase of the ISM constitutes the main source of fuel for the activity in starburst and AGNs. The physical conditions and chemical constitution of the molecular gas will change with, and respond to, the evolution of the activity. This paper includes a short discussion of the 12CO/13CO 1–0 line intensity ratio as a diagnostic tool of the molecular gas properties of luminous galaxies – paired with examples of high-resolution studies of how the line ratio varies within galaxies. A possible connection between the OH megamasers and galaxies with unusually high 12CO/13CO 1–0 line intensity ratios are also briefly discussed.The relative intensities of the dense gas tracers HNC, HCN, HCO+ and CN are a result of both chemistry and starburst evolution. The discussion on the interpretation of HNC 1–0 emission includes the importance of ion-neutral chemistry in a luminous starburst region. Finally, simple cartoon ISM models and how they can be applied to LIRGs and ULIRGs, are presented.  相似文献   

4.
We study the effect of a single, instantaneous starburst on the dynamical and chemical evolution of a gas-rich dwarf galaxy, the potential well of which is dominated by a dark matter halo. We follow the dynamical and chemical evolution of the interstellar medium (ISM) by means of an improved two-dimensional hydrodynamical code coupled with detailed chemical yields originating from type II SNe, type Ia SNe and single low- and intermediate-mass stars (IMS). In particular we follow the evolution of the abundances of H, He, C, N, O, Mg, Si and Fe. We find that for a galaxy resembling IZw18, a galactic wind develops as a consequence of the starburst and it carries out of the galaxy mostly the metal-enriched gas. In addition, we find that different metals are lost differentially in the sense that the elements produced by type Ia SNe are lost more efficiently than others. As a consequence of that, we predict larger [ α /Fe] ratios for the gas inside the galaxy than for the gas leaving the galaxy. A comparison of our predicted abundances of C, N, O and Si in the case of a burst occurring in a primordial gas shows a very good agreement with the observed abundances in IZw18 as long as the burst has an age of ∼31 Myr and IMS produce some primary nitrogen. However, we cannot exclude that a previous burst of star formation had occurred in IZw18, especially if the pre-enrichment produced by the older burst was lower than Z =0.01 Z. Finally, at variance with previous studies, we find that most of the metals reside in the cold gas phase already after a few Myr. This result is mainly caused by the assumed low SN II heating efficiency, and justifies the generally adopted homogeneous and instantaneous mixing of gas in chemical evolution models.  相似文献   

5.
Using multicomponent photoionization simulation, we investigated the impact of bubble-like structures around starbursts inside the low-metallicity H II regions on the ionization spectrum shape and emission line forming. Radial distribution of density values and other physical parameters of bubble-like structures were taken from Weaver et al. (Weaver et al., 1977, p. 377). The first and second inner components of such models describe the free expansion zone of superwind from the central starburst region and rarefied hot gas of the cavern thermalized by inverse shock wave, respectively. The gas density and electron temperature distributions into these components are obtained from the solution of the system of equations of continuity and energy transfer, including heat conductivity. The third component is a thin shell of high density gas formed from the gas surrounding a bubble and made by direct shock wind wave. The gas density in this component was obtained from isobaric condition at contact discontinuity between the second and third components. Input spectra of the ionizing radiation were obtained from the starburst evolutional models. The evolution grid of the multicomponent low-metallicity photoionization models with free parameters determining physical conditions inside the bubble-like structure was calculated. The impact of bubble-like structure on the change of ionization spectrum shape and the formation of fluxes of important emission lines in low-metallicity case was analyzed in detail.  相似文献   

6.
This paper presents two and three dimensional simulations of the interaction of shocks with media with large numbers of dense inclusions. An approximate model of the interaction of a starburst wind with the surrounding galactic ISM illustrates issues which must be addressed in global models of ISM dynamics. As a step towards developing the sub-grid model of multiphase turbulence, we define and study a form of ‘multiphase Riemann problem’. This allows us to develop macroscopic characteristics of the flows which may be compared to such subgrid models.  相似文献   

7.
《New Astronomy Reviews》2000,44(4-6):249-256
We are studying star formation effects on the properties of the ISM in low metallicity environments using mid-infrared (MIR) and far-infrared (FIR) observations of starbursting dwarf galaxies taken with the Infrared Space Observatory (ISO) and the Kuiper Airborne Observatory (KAO). Effects of the hard pervasive radiation field on the gas and dust due to the dust-poor environments are apparent in both the dust and gas components. From a 158 μm [CII] survey we find enhanced I[CII]/FIR ratios in dwarf galaxies and I[CII]/I(CO) ratios up to 10 times higher than those for normal metallicity starburst galaxies. We consider MIR observations in understanding the star formation properties of dwarf galaxies and constraints on the stellar SED. Notably, the strong MIR [NeIII]/[NeII] ratios reveal the presence of current massive stellar populations <5 My old in NGC 1569, NGC 1140 and IIZw40. The MIR unidentified infrared bands (UIBs) are weak, if present at all, as a general characteristic in low metallicity environments, revealing the destruction of the smallest carbon particles (e.g. PAHs) over large spatial scales. This is confirmed with our dust modeling: mass fractions of PAHs are almost negligible compared to the larger silicate grains emitting in the FIR as well as the small carbon grains emitting in the MIR, which appear to be the source of the photoelectric gas heating in these galaxies, in view of the [CII] cooling.  相似文献   

8.
Knowledge of the molecular component of the ISM is fundamental to understand star formation. The H2 component appears to dominate the gas mass in the inner parts of galaxies, while the HI component dominates in the outer parts. Observation of the CO and other lines in normal and starburst galaxies have questioned the CO-to-H2 conversion factor, and detection of CO in dwarfs have shown how sensitive the conversion factor is to metallicity. Our knowledge has made great progress in recent years, because of sensitivity and spatial resolution improvements. Large-scale CO maps of nearby galaxies are now available, which extend our knowledge on global properties, radial gradients, and spiral structure of the molecular ISM. Millimetric interferometers reveal high velocity gradients in galaxy nuclei, and formation of embedded structures, like bars within bars. Galaxy interactions are very effective to enhance gas concentrations and trigger starbursts. Nuclear disks or rings are frequently observed, that concentrate the star formation activity. Since the density of starbursting galaxies is strongly increasing with redshift, the CO lines and the mm dust emission are a privileged tool to follow evolution of galaxies and observe the ISM dynamics at high redshift: they could give an answer about the debated question of the star-formation history, since many massive remote starbursts could be dust-enshrouded.  相似文献   

9.
Near-infrared (NIR) integral-field spectroscopy (IFS) of violent starburst environments at high spatial (and spectral) resolution has the potential to revolutionise our ideas regarding the local interactions between the newly formed massive stars and the interstellar medium (ISM) of their host galaxies. To illustrate this point, I present NIR IFS analysis of the central starburst region of NGC 1140, obtained with CIRPASS on Gemini-South. While strong [Feii] emission is found throughout the galaxy, higher-order Brackett emission is predominantly associated with the northern starburst region. Based on the spatial distributions of the [Feii] versus Brackett line emission, I conclude that a galaxy-wide starburst was induced several ×107 yr ago, with more recent starburst activity concentrated around the northern starburst region. I look forward and discuss the exciting prospects that IFS at higher spatial (and spectral) resolution will allow us trace (i) the massive outflows (“superwinds”) expected to originate in the dense, young massive star clusters commonly found in intense starburst environments, and (ii) their impact on the galaxy’s ISM.  相似文献   

10.
We present neutral hydrogen absorption observations of the luminous infrared merger NGC 6240 using MERLIN with a resolution of 0.2 arcsec. Broad absorption (a few hundred km s−1) has been found against two compact radio sources within the central kpc providing dynamical information about the neutral gas components in front of these sources. A narrow absorption component is also detected superimposed upon this broad absorption and additionally against some of the extended L -band continuum. From these results we deduce that the broad component is a result of absorption by a highly disturbed disc-like structure of neutral gas aligned along the position angle of the two compact radio sources, similar to the model previously proposed by Tacconi et al. at the end of the last century based on spectral CO emission data. The narrow component is likely to arise from absorption by less disturbed neutral gas at much larger scales within the system.
Continuum observations presented here at 1.4 and 5 GHz support the view that NGC 6240 contains a double nucleus resulting from a galactic merger event and show these as two compact radio sources separated by 1.52 arcsec. We have also applied luminosity and morphological considerations to the continuum results to determine the most feasible source of radio emission for this luminous merger galaxy. We conclude that the most likely source of the radio flux found in NGC 6240 is a combination of starburst emission from radio luminous supernova remnants, similar to those found in Arp 220, and emission from a weak AGN probably triggered by a merger event.  相似文献   

11.
We propose a multicomponent analysis of starburst galaxies, based on a model that takes into account the young and evolved stellar components and the gas emission, with their respective extinction, in the frame of a coherent dust distribution pattern. Near-IR signatures are preferentially investigated, in order to penetrate as deep as possible into the dusty starburst cores. We computed the 1.4-2.5 μm spectra of synthetic stellar populations evolving through strong, short timescale bursts of star formation (continuum and lines, R ? 500). The evolution model is specifically sensitive to cool stellar populations (AGB and red supergiant stars). It takes advantage of the stellar library of Lançon & Rocca-Volmerange (1992) [A&ASS, 96, 593], observed with the same instrument (FTS/CFHT) as the analysed galaxy sample, so that the instrumental effects are minimised. The main near-IR observable constraints are the molecular signatures of CO and H2O and the slope of the continuum, observed over a range exceptionally broad for spectroscopic data. The H - K colour determined from the spectra measures the intrinsic stellar energy distribution but also differential extinction, which is further constrained by optical emission line ratios. Other observational constraints are the near-IR emission lines (Brγ, He I 2.06 μm, [Fe II] 1.64 μm, H2 2.12 μm) and the far-IR luminosity. The coherence of the results relies on the interpretation in terms of stellar populations from which all observable properties are derived, so that the link between the various wavelength ranges is secured. The luminosity LK is used for the absolute calibration.We apply this approach to the typical spectrum of the core of NGC 1614. Consistent solutions for the starburst characteristics (star-formation rate, IMF, burst age, morphology) are found and the role of each observational constraint in deriving satisfactory models is extensively discussed. The acceptable contamination of the K band light by the underlying population amounts ≥ 15% even through a 5 arcsec aperture. The model leads to a limit on the direct absorption of Lyman continuum photons by dust situated inside the ionised areas, which in turn, with standard gas-to-dust ratios, translates into small characteristic sizes for the individual coexisting H II regions of the massive starburst area (clusters containing ∼ 102 ionising stars). We show that room is left for IMFs extending to 120 M, rather than truncated at ∼ 60 M as most conservative studies conclude. High internal velocity dispersions (≥ 20 km s−1) are then needed for the H II regions. An original feature of this work is to base the analysis of near-infrared spectral galaxy observations on a large wavelength range, using models constructed with spectral stellar data observed with the same instrument. However a broader use of this spectral evolution model on other spectral or photometric data samples is possible if the spectral resolution of the model is adapted to observations or if colours are derived from the energy distributions.Catherine J. Cesarsky  相似文献   

12.
Preliminary results from a detailed spectrophotometric analysis of the blue compact dwarf galaxy (BCD) Mrk 35 are presented. We have performed deep UBVRI broad-band and Hα narrow-band optical observations, near-infrared (JHK s) imaging and long-slit spectroscopy of the galaxy. Mrk 35 is composed of a very young starburst population distributed in a bar-like structure, placed on top of an underlying, older stellar host galaxy. Using predictions of evolutionary synthesis models, we estimate the ages of both the starburst regions and the underlying stellar component. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Starbursts are the most efficient producers of metals in the Universe at low redshifts. They produce enough energy to driveoutflows of material from their disks.This makes them important objects to study in order to understand the chemical evolution not only of the interstellar medium (ISM) in the starburst galaxies themselves, but also of the intergalactic medium (IGM) in their vicinity. However, several key quantities of starbursts that are neededas input to models of their ISM are still ill-constrained. Some of these critical parameters are e.g. the metalabundances of hot ionized gas, the ionization state ofwarm ionized gas, the amount of energy deposited intothe ambient by a starburst, the efficiency of itsconversion into mechanical energy and thus the totalkinetic energy of the star formation-driven outflowsand their kinematics. The latter are important when considering under whichcircumstances matter energized by a starburst will reach the so-called ‘blowout’ condition, i.e. supersede the threshold energy starting at which local energy injection into the ISM can drive an outflow first into the halo (where metal re-distribution might be very efficient) and eventually out into intergalactic space. I will discuss here a few of these quantities, how we canmeasure them better than in the past, and in which way some of our observing techniques need to be improved in order toobtain better constraints from the data.  相似文献   

14.
The influence of a bubble-like structure around a starburst within the H II regions on the shape of the ionizing spectrum and the generation of the observed emission lines was studied using multicomponent photoionization modeling. The distributions of density and other physical parameters in such bubble-like structures were determined by Weaver et al. in 1977. The first two components represent the region of the stellar wind from the central starburst region. The gas density and electron temperature distributions in these components were described by the solution of the system of equations of continuity and energy transfer with account for the heat conductivity. The third component represents a thin layer of gas with a high density that emerges due to the passage of a normal shock wave of the stellar wind. The fourth component represents a “typical” H II region. The ionizing radiation spectra were set from the calculated evolutionary models whose free parameters determine the physical conditions within the “bubble.” The influence of the stellar wind bubble on the shape of the ionizing radiation spectrum and the generation of fluxes in important emission lines was analyzed.  相似文献   

15.
We present preliminary results of long-slit spectroscopic observations of the extended emission line region (hereafter, EELR) in NGC 4388. We detect broad emission lines in the line complexes Hα+[NII] and [SII] which can be modelled by the superposition of several narrow components. Multicomponent line profiles appear at positions very close to the ionization cone axis. There is also some correspondence with the radio emission, which suggests that there is interaction between the radio jets and the ionized gas. We do not confirm the claim of a broad Hα component (FWZI=4000 km/s) by Shields and Filippenko (1996). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
This paper describes submm, 12CO (J = 2–1) observations of the interacting pair of galaxies NGC 4490 and 4485, and together with high resolution H  i and multifrequency radio continuum data we investigate the evolution of the ISM in this system. We find the following. (i) The smaller member of the pair, NGC 4485, has had the atomic, molecular and dust components of its ISM stripped via ram pressure during its recent passage through the extended H  i distribution of NGC 4490. A bow-shock is identified in the H  i ahead of the stripped gas. (ii) Within the disc of NGC 4490 we find a very low H2-to-H  i ratio as well as a strong correlation between thermal emission and mass of H2 suggesting that the star formation rate is limited in this case by the conversion of H  i to H2. (iii) 12CO emission from an H  i and radio-continuum bridge between the two galaxies is detected.  相似文献   

17.
In an effort better to calibrate the supernova rate of starburst galaxies as determined from near-infrared [Fe  ii ] features, we report on a [Fe  ii ] λ 1.644 μm line-imaging survey of a sample of 42 optically selected supernova remnants (SNRs) in M33. A wide range of [Fe  ii ] luminosities are observed within our sample (from less than 6 to 695 L). Our data suggest that the bright [Fe  ii ] SNRs are entering the radiative phase and that the density of the local interstellar medium (ISM) largely controls the amount of [Fe  ii ] emission. We derive the following relation between the [Fe  ii ] λ 1.644 μm line luminosity of radiative SNRs and the electronic density of the post-shock gas, n e: L [Fe  ii ]     (cm−3). We also find a correlation in our data between L [Fe  ii ] and the metallicity of the shock-heated gas, but the physical interpretation of this result remains inconclusive, as our data also show a correlation between the metallicity and n e. The dramatically higher level of [Fe  ii ] emission from SNRs in the central regions of starburst galaxies is most likely due to their dense environments, although metallicity effects might also be important. The typical [Fe  ii ]-emitting lifetime of a SNR in the central regions of starburst galaxies is found to be of the order of 104 yr. On the basis of these results, we provide a new empirical relation allowing the determination of the current supernova rate of starburst galaxies from their integrated near-infrared [Fe  ii ] luminosity.  相似文献   

18.
Galactic winds and mass outflows are observed both in nearby starburst galaxies and in high-redshift star-forming galaxies. We develop a simple analytic model to understand the observed superwind phenomenon with a discussion of the model uncertainties. Our model is built upon the model of McKee & Ostriker for the interstellar medium. It allows one to predict how properties of a superwind, such as wind velocity and mass outflow rate, are related to properties of its starforming host galaxy, such as size, gas density and star formation rate. The model predicts a threshold of star formation rate density for the generation of observable galactic winds. Galaxies with more concentrated star formation activities produce superwinds with higher velocities. The predicted mass outflow rates are comparable to (or slightly larger than) the corresponding star formation rates. We apply our model to both local starburst galaxies and high-redshift Lyman break galaxies, and find its predictions to be in good agreement with current observations. Our model is simple and so can be easily incorporated into numerical simulations and semi-analytical models of galaxy formation.  相似文献   

19.
We have used MERLIN to observe neutral hydrogen absorption against the central region of the ultraluminous infrared galaxy (ULIRG) galaxy Mrk 273 with an angular resolution of 0.2 arcsec. This represents a factor of 5 increase in resolution compared with previous work. Absorption has been resolved against two of three radio continuum components. A Hubble Space Telescope ( HST ) image reveals a complex central region composed of clumpy emission obscured by dust lanes. We find that the northern and south-eastern radio components are associated with two optical components. The alignment supports the idea that Mrk 273 has a double nucleus due to a recent galactic merger event.
Broad, strong and spatially varying absorption is seen against the northern radio component with a velocity gradient of 1990±50 km s−1 kpc−1. The absorption resolves into six discrete components with an average column density of 1.7×1022 atom cm−2. We propose that the absorption is due to a clumpy ring or disc of neutral gas of radius ∼250 pc rotating around a central starburst. In addition to the broad component, narrow absorption (<100 km s−1) is detected against the northern and south-eastern components. Absorption is not detected against the weak (2 mJy) south-western component. We propose that the narrow absorption is due to quiescent gas in a large-scale dust lane that coincides with these regions of narrow absorption.  相似文献   

20.
We investigate the environments and clustering properties of starburst galaxies selected from the 2dF Galaxy Redshift Survey (2dFGRS) in order to determine which, if any, environmental factors play a role in triggering a starburst. We quantify the local environments, clustering properties and luminosity functions of our starburst galaxies and compare to random control samples. The starburst galaxies are also classified morphologically in terms of their broad Hubble type and evidence of tidal merger/interaction signatures. We find the starburst galaxies to be much less clustered on large (5–15 Mpc) scales compared to the overall 2dFGRS galaxy population. In terms of their environments, we find just over half of the starburst galaxies to reside in low to intermediate luminosity groups, and a further ∼30 per cent residing in the outskirts and infall regions of rich clusters. Their luminosity functions also differ significantly from that of the overall 2dFGRS galaxy population, with the sense of the difference being critically dependent on the way their star formation rates are measured. In terms of pin-pointing what might trigger the starburst, it would appear that factors relating to their local environment are most germane. Specifically, we find clear evidence that the presence of a near neighbour of comparable luminosity/mass within 20 kpc is likely to be important in triggering a starburst. We also find that a significant fraction (20–30 per cent) of the galaxies in our starburst samples have morphologies indicative of either an ongoing or a recent tidal interaction and/or merger. These findings notwithstanding, there remain a significant portion of starburst galaxies where such local environmental influences are not in any obvious way playing a triggering role, leading us to conclude that starbursts can also be internally driven.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号