首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract Extraordinary sequences of conspicuous, pervasive and laterally persistent varves characterize the Castile evaporites. They occur as singlets (calcite laminae), couplets (calcite laminae interstratified with anhydrite laminae), thick couplets (calcite laminae interstratified with thin anhydrite beds) and triplets (calcite and anhydrite laminae interstratified with thin halite beds). The varves accumulated in a deep (initially ≈ 550 m), persistently stratified, saline lake surrounded by an extinct reef. The lake had formed when the reef grew across a channel between an embayment and the ocean. Although located virtually on the palaeo-equator, the lake experienced negligible meteoric influx and extreme seasonality. During the season of high relative humidity, more marine groundwater entered the lake through the permeable reef barrier than exited as reflux and, secondarily, as evaporation. Consequently, the lake level rose by up to several metres to sea level. The ‘refreshening’ decreased salinity and replenished dissolved CO2– the critical nutrient limiting growth of indigenous phytoplankton. Algae proliferated, pH increased and CaCO3 precipitated. It mixed with organic matter to form a thin, dark lamina. During the season of low relative humidity, tens of cubic kilometres of water evaporated from and, secondarily, leaked out through the surrounding reef. More water exited than entered, brine level fell below sea level, and salinity of the upper brine layer increased. Gypsum usually precipitated and rained onto the basin floor forming a couplet; infrequently, halite also precipitated forming a triplet. Every few thousand years, for <50 to several hundred years, the lake became unstratified during the dry season, and wind-induced overturn allowed a layer of gypsum crystals up to ≈ 2 cm high to precipitate on the basin floor. Each layer, now thin beds of anhydrite nodules and anhydrite pseudomorphs after gypsum, and an underlying lamina of CaCO3 and admixed organic matter formed a thick couplet. The different varve types recur with a period of 1800–3000 years reflecting climatic changes on a millennial time scale.  相似文献   

2.
唐瞻文  韦恒叶 《现代地质》2020,34(1):166-176
二叠纪瓜德鲁普世是古海洋条件发生重大变化的转折期。瓜德鲁普世古海洋、古环境的演化对古生代底栖无脊椎动物灭绝的影响仍然是个谜。利用元素地球化学,分析瓜德鲁普统孤峰组的陆源碎屑供应、海洋表层水体的初级生产力以及底部水体的氧化还原条件。结果表明:瓜德鲁普世早期和晚期分别发生了一次陆源碎屑输入的高峰期。瓜德鲁普世早期海洋初级生产力最高,中期海水初级生产力较低,而晚期稍有升高。瓜德鲁普世古海水主要为缺氧至硫化环境。瓜德鲁普世早期以贫氧至缺氧环境为主,间歇性出现硫化环境;中晚期则以硫化环境为主,间歇性出现缺氧环境。这些氧化还原环境的演化主要受到水动力条件的影响。瓜德鲁普世深水环境水体的持续缺氧硫化引发浅水台地底部水体的持续贫氧甚至缺氧,造成海洋生态系统变得脆弱,引发生物危机事件。  相似文献   

3.
Three genera, known by dorsal finspine, are reported from conglomeratic sandstone at the base of the Lower Permian (Kungurian) Irati Formation (Paraná Basin) near Rio Claro, São Paulo State, Brazil, noteworthy for the great richness of vertebrate fossils. The fossils include: (1) the previously known Sphenacanthus with the species Sphenacanthus sanpauloensis and an indeterminate species; (2) the Permian – Carboniferous genus Amelacanthus; (3) a new indeterminate Chondrichthyes. These fossils are found together with: continental, fresh-water and salt-water vertebrates. The analysis of this assemblage allows inference about the origin of Paraná Basin Chondrichthyes as well as reconstruction of the paleoenvironment and the possible geographic isolation of these fishes during the Permian in Brazil.  相似文献   

4.
The Miocene–Quaternary Jemez Mountains volcanic field(JMVF), the site of the Valles caldera, lies at the intersectionof the Jemez lineament, a Proterozoic suture, and the CenozoicRio Grande rift. Parental magmas are of two types: K-depletedsilica-undersaturated, derived from the partial melting of lithosphericmantle with residual amphibole, and tholeiitic, derived fromeither asthenospheric or lithospheric mantle. Variability insilica-undersaturated basalts reflects contributions of meltsderived from lherzolitic and pyroxenitic mantle, representingheterogeneous lithosphere associated with the suture. The Kdepletion is inherited by fractionated, crustally contaminatedderivatives (hawaiites and mugearites), leading to distinctiveincompatible trace element signatures, with Th/(Nb,Ta) and La/(Nb,Ta)greater than, but K/(Nb,Ta) similar to, Bulk Silicate Earth.These compositions dominate the mafic and intermediate lavas,and the JMVF is therefore derived largely, and perhaps entirely,from melting of fertile continental Jemez lineament lithosphereduring rift-related extension. Significant variations in Pband Nd isotope ratios (206Pb/204Pb = 17·20–18·93;143Nd/144Nd = 0·51244–0·51272) result fromcrustal contamination, whereas 87Sr/86Sr is low and relativelyuniform (0·7040–0·7048). We compare theeffects of contamination by low-87Sr/86Sr crust with assimilationof high-87Sr/86Sr granitoid by partial melting, with Sr retainedin a feldspathic residue. Both models satisfactorily reproducethe isotopic features of the rocks, but the lack of a measurableEu anomaly in most JMVF mafic lavas is difficult to reconcilewith a major role for residual plagioclase during petrogenesis. KEY WORDS: Jemez Mountains volcanic field; Rio Grande rift; lithospheric mantle; crustal contamination; trace elements; radiogenic isotopes  相似文献   

5.
Chert distribution in the Lake Valley rocks is selective to mud-supported facies; it is not related to proximity to unconformities. The facies selectivity of the chertification is believed to be a function of the depositional distribution of indigenous silica as sponge spicules, an interpretation that is supported by high positive qualitative correlation of chert with spiculitic rocks. Petrography indicates that the spicules were all originally siliceous, and that they all went through a moldic stage during which many molds were compactively destroyed and distorted. Remaining molds were subsequently cemented by calcite or chalcedony. Chert distribution and spicule petrography argue for an intraformational source for much of the silica. Chert micro-fabrics are dominated by microquartz, a replacement of grains and lime mud; length-fast chalcedony, a pore-filling cement; and megaquartz, a post-chalcedony pore-filling cement. Petrography of compaction features within chert masses indicates that chertification occurred after some burial. Based on stratigraphic reconstruction this burial depth was a maximum of about 215 m. and was most likely a few metres to a few tens of metres. Petrography of chert-calcite cement relationships indicates that chertification occurred before and during first generation, pre-Pennsylvanian non-ferroan calcite cementation, and was completed before late-stage, post-Mississippian ferroan calcite precipitation. Petrography of chert clasts in basal Rancheria (Meramecian) and basal Pennsylvanian conglomerates proves these clasts derived from the Lake Valley Formation and were chertified before redeposition. Thus, some cherts in the Lake Valley are pre-Meramecian in age, but all are pre-Pennsylvanian in age. Furthermore, association of the cherts with the non-ferroan cements indicates the cherts were probably precipitated in meteoric phreatic lens established beneath the pre-Meramecian and pre-Pennsylvanian subaerial unconformities.  相似文献   

6.
Abstract Portions of three Proterozoic tectonostratigraphic sequences are exposed in the Cimarron Mountains of New Mexico. The Cimarron River tectonic unit has affinities to a convergent margin plutonic/volcanic complex. Igneous hornblende from a quartz diorite stock records an emplacement pressure of 2–2.6 kbar. Rocks within this unit were subsequently deformed during a greenschist facies regional metamorphism at 4–5 kbar and 330 ± 50° C. The Tolby Meadow tectonic unit consists of quartzite and schist. Mineral assemblages are indicative of regional metamorphism at pressures near 4 kbar and temperatures of 520 ± 20° C. A low-angle ductile shear zone separates this succession from gneisses of the structurally underlying Eagle Nest tectonic unit. Gneissic granite yields hornblende pressures of 6–8 kbar. Pelitic gneiss records regional metamorphic conditions of 6–7 kbar and 705 ± 15° C, overprinted by retrogression at 4 kbar and 530 ± 10° C. Comparison of metamorphic and retrograde conditions indicates a P–T path dominated by decompression and cooling. The low-angle ductile shear zone represents an extensional structure which was active during metamorphism. This extension juxtaposed the Tolby Meadow and Eagle Nest units at 4 kbar and 520° C. Both units were later overprinted by folding and low-grade metamorphism, and then were emplaced against the Cimarron River tectonic unit by right-slip movement along the steeply dipping Fowler Pass shear zone. An argon isotope-correlation age obtained from igneous hornblende dates plutonism in the Cimarron River unit at 1678 Ma. Muscovite associated with the greenschist facies metamorphic overprint yields a 40 Ar/39 Ar plateau age of 1350 Ma. By contrast, rocks within the Tolby Meadow and Eagle Nest units yield significantly younger argon cooling ages. Hornblende isotope-correlation ages of 1394–1398 Ma are interpreted to date cooling during middle Proterozoic extension. Muscovite plateau ages of 1267–1257 Ma appear to date cooling from the low-grade metamorphic overprint. The latest ductile movement along the Fowler Pass shear zone post-dated these cooling ages. Argon released from muscovites of the Eagle Nest/Tolby Meadow composite unit, at low experimental temperatures, yields apparent ages of c. 1100 Ma. Similar ages are not obtained north-east of the Fowler Pass shear zone, suggesting movement more recently than 1100 Ma.  相似文献   

7.
The Upper Permian Castile Formation of the Delaware Basin in northwest Texas and New Mexico consists of up to 600 m of evaporites and is subdivided into units of anhydrite overlain by halite. The Castile Formation has commonly been interpreted as a deep-water, deep-basin deposit in which sediments were laid down in several hundred metres of water or brine. Recent textural observations within anhydrite units, in which the thick-bedded anhydrite horizons have been interpreted as being of shallow-water origin, have challenged this assumption. This geochemical study of the oldest anhydrite unit in the Castile Formation (the Anhydrite 1 Member) attempts to resolve some of the problems regarding brine depth and evolution in the basin. The Anhydrite 1 Member has been subdivided into five major cycles on the basis of the distribution of stratigraphic units of thick-bedded anhydrite.

Stable isotopic analyses of sulphur from anhydrite, and oxygen and carbon from calcite show that the basin waters were chemically homogeneous during precipitation of anhydrite, and do not indicate any significant input of meteoric, continental-derived waters. Throughout the section studied progressive enrichment of 18O upwards within cored intervals indicates continuous evaporation of the water body. Carbon isotopes appear to indicate fluctuations in organic activity within the cycles. Trace elemental analyses of Fe, Mg, Sr, Mn, Al, Ba, Zn, Pb and Cu from the sulphate fraction of the samples show a very high variability. There is a distinct increase in trace elemental abundances at the tops of cycles which may indicate variations in precipitation kinetics. Analyses of texturally defined cycles show that up-core trends for many of the trace elements correlate with changes in δ18O, indicating a progressive increase in the influence of evaporation. In addition, cyclical variations in trace elemental composition indicate changes in basin conditions with around a 350-year cyclicity. These changes are independent of δ18O values. The geochemical data do not provide conclusive proof of water depth during deposition of the Castile Formation. The data are interpreted as reflecting small-scale changes in conditions of deposition, despite the fact that water input remained essentially constant in terms of chemical composition.  相似文献   


8.
The Sacramento Mountains and the adjacent Roswell Artesian Basin, in south-central New Mexico (USA), comprise a regional hydrologic system, wherein recharge in the mountains ultimately supplies water to the confined basin aquifer. Geologic, hydrologic, geochemical, and climatologic data were used to delineate the area of recharge in the southern Sacramento Mountains. The water-table fluctuation and chloride mass-balance methods were used to quantify recharge over a range of spatial and temporal scales. Extrapolation of the quantitative recharge estimates to the entire Sacramento Mountains region allowed comparison with previous recharge estimates for the northern Sacramento Mountains and the Roswell Artesian Basin. Recharge in the Sacramento Mountains is estimated to range from 159.86?×?106 to 209.42?×?106 m3/year. Both the location of recharge and range in estimates is consistent with previous work that suggests that ~75 % of the recharge to the confined aquifer in the Roswell Artesian Basin has moved downgradient through the Yeso Formation from distal recharge areas in the Sacramento Mountains. A smaller recharge component is derived from infiltration of streamflow beneath the major drainages that cross the Pecos Slope, but in the southern Sacramento Mountains much of this water is ultimately derived from spring discharge. Direct recharge across the Pecos Slope between the mountains and the confined basin aquifer is much smaller than either of the other two components.  相似文献   

9.
Nine stratigraphic sections, each ≈5 m thick, were sampled from the Alamogordo Member limestones of the Lake Valley Formation, Sacramento Mountains, New Mexico, USA. Four stratigraphic sections consist entirely of lime mudstone and wackestone, whereas the other five sections have a prominent layer of crinoidal packstone about 1 m thick at their base. Stable isotopic analyses reveal that the lime muds in the sections with basal packstone layers show a downward decrease in δ18O and constant δ13C values, whereas those in the sections solely composed of lime mudstone and wackestone have, in general, relatively uniform δ18O and δ13C values. The diagenesis of the Alamogordo Member limestones was previously believed to have been governed by the downward percolation of meteoric water from a regional pre-Pennsylvanian exposure surface ≈100 m above this unit. However, the uniform δ13C and downward decrease in δ18O values in the lime muds in the sections with basal packstones indicate that the meteoric water ascended within the Alamogordo Member, rather than descended from the overlying exposure surface. This indicates that the basal packstones were probably a conduit for meteoric water. This is further supported indirectly by the relatively uniform δ18O and δ13C values of the lime mud in the sections without basal packstones. The implications are that the oxygen isotopic gradients may be used to identify palaeoaquifers, flow directions within these aquifers and that meteoric diagenesis below an exposure surface could be governed by flow through a palaeoaquifer.  相似文献   

10.
Climate change in the SW USA is likely to involve drier conditions and higher surface temperatures. In order to better understand the evolution of water chemistry and the sources of aqueous SO4 in these semi-arid settings, chemical and S isotope compositions were determined of springs, groundwater, and bedrock associated with a Permian fractured carbonate aquifer located in the southern Sacramento Mountains, New Mexico, USA. The results suggest that the evolution of water chemistry in the semi-arid carbonate aquifer is mainly controlled by dedolomitization of bedrock, which was magnified by increasing temperature and increasing dissolution of gypsum/anhydrite along the groundwater flow path. The δ34S of dissolved SO4 in spring and groundwater samples varied from +9.0‰ to +12.8‰, reflecting the mixing of SO4 from the dissolution of Permian gypsum/anhydrite (+12.3‰ to +13.4‰) and oxidation of sulfide minerals (−24.5‰ to −4.2‰). According to S isotope mass balance constraints, the contribution of sulfide-derived SO4 was considerable in the High Mountain recharge areas, accounting for up to ∼10% of the total SO4 load. However, sulfide weathering decreased in importance in the lower reaches of the watershed. A smaller SO4 input of ∼2–4% was contributed by atmospheric wet deposition. This study implies that the δ34S variation of SO4 in semi-arid environments can be complex, but that S isotopes can be used to distinguish among the different sources of weathering. Here it was found that H2SO4 dissolution due to sulfide oxidation contributes up to 5% of the total carbonate weathering budget, while most of the SO4 is released from bedrock sources during dedolomitization.  相似文献   

11.
The relationship between palaeosols and sequence stratigraphy is tested in the Lower Permian Abo Member, south‐central New Mexico, by comparing interfluve and fluvial‐terrace palaeosols with palaeosols that developed within lowstand‐fluvial deposits. Interfluve and fluvial‐terrace palaeosols consist of primary pedogenic features, including vertical root traces, vertic structures, Stage II and III pedogenic calcite and translocated clay (argillans), which are cross‐cut or replaced by low‐aluminium goethite, gley colour mottling, sparry calcite veins and ankerite. The polygenetic character of the palaeosols is consistent with initial development for several thousand to tens of thousands of years on well‐drained interfluves or fluvial terraces, followed by waterlogging due to invasion by a rising water table that locally may have been brackish. In contrast, lowstand‐fluvial sediment that filled incised valleys contains only rooted and vertic palaeosols, whose immaturity resulted from high aggradation rates. Palaeosols similar to those in the Abo Member have been recognized in other ancient strata and, when combined with high‐resolution correlation, provide evidence for interpretation of sequence‐stratigraphic surfaces and systems tracts.  相似文献   

12.
Abstract Interpretation of seepage reflux dolomitization is commonly restricted to intervals containing evaporites even though several workers have modelled reflux of mesosaline brines. This study looked at the partially dolomitized forereef facies of the Capitan Formation to test the extent of reflux dolomitization and evaluate the possible role of the near‐backreef mesosaline carbonate lagoon as an alternative source of dolomitizing fluids. The Capitan Formation forereef facies ranges from 10% to 90% dolomite. Most of the dolomite is fabric preserving and formed during early burial after marine cementation, before and/or during evaporite cementation and before stylolitization. Within the forereef facies, dolomite follows depositional units, with debris‐flow and grain‐flow deposits the most dolomitized and turbidity‐current deposits the least. The amount of dolomite increases with stratigraphic age and decreases downslope. Within the reef facies, dolomite is restricted to haloes around fractures and primary cavities except where the reef facies lacks marine cements and, in contrast, is completely dolomitized. This dolomite distribution supports dolomitization by sinking fluids. Oxygen isotopic values for fabric‐preserving dolomite (δ18O = 0·9 ± 1·0‰, N = 101) support dolomitization by sea water to isotopically enriched sea water. These values are closer to the near‐backreef dolomite (δ18O = 2·1 ± 0·7‰, N = 48) than the hypersaline backreef dolomite (δ18O = 3·6 ± 0·9‰, N = 11). Therefore, the fabric‐preserving dolomite is consistent with dolomitization during seepage reflux of mainly mesosaline brines derived from the near‐backreef carbonate lagoon. The occurrence of mesosaline brine reflux in the Capitan Formation has important implications for dolomitization in forereef facies and elsewhere. First, any area with a restricted carbonate lagoon may be dolomitized by refluxing brines even if there are no evaporite facies present. Secondly, such brines may travel significant distances vertically provided permeable pathways (such as fractures) are present. Therefore, the absence of immediately overlying evaporite or restricted facies is not sufficient cause to eliminate reflux dolomitization from consideration.  相似文献   

13.
In the southwestern United States, precipitation in the high mountains is a primary source of groundwater recharge. Precipitation patterns, soil properties and vegetation largely control the rate and timing of groundwater recharge. The interactions between climate, soil and mountain vegetation thus have important implications for the groundwater supply. This study took place in the Sacramento Mountains, which is the recharge area for multiple regional aquifers in southern New Mexico. The stable isotopes of oxygen and hydrogen were used to determine whether infiltration of precipitation is homogeneously distributed in the soil or whether it is partitioned among soil-water ‘compartments’, from which trees extract water for transpiration as a function of the season. The results indicate that “immobile” or “slow” soil water, which is derived primarily from snowmelt, infiltrates soils in a relatively uniform fashion, filling small pores in the shallow soils. “Mobile” or “fast” soil water, which is mostly associated with summer thunderstorms, infiltrates very quickly through macropores and along preferential flow paths, evading evaporative loss. It was found that throughout the entire year, trees principally use immobile water derived from snowmelt mixed to differing degrees with seasonally available mobile-water sources. The replenishment of these different water pools in soils appears to depend on initial soil-water content, the manner in which the water was introduced to the soil (snowmelt versus intense thunderstorms), and the seasonal variability of the precipitation and evapotranspiration. These results have important implications for the effect of climate change on recharge mechanisms in the Sacramento Mountains.  相似文献   

14.
Analysis of groundwater chemistry can yield important insights about subsurface conditions, and provide an alternative and complementary method for characterizing basin hydrogeology, especially in areas where hydraulic data are limited. More specifically, hydrochemical facies have been used for decades to help understand basin flow and transport, and a set of facies were developed for the Roswell Artesian Basin (RAB) in a semi-arid part of New Mexico, USA. The RAB is an important agricultural water source, and is an excellent example of a rechargeable artesian system. However, substantial uncertainties about the RAB hydrogeology and groundwater chemistry exist. The RAB was a great opportunity to explore hydrochemcial facies definition. A set of facies, derived from fingerprint diagrams (graphical approach), existed as a basis for testing and for comparison to principal components, factor analysis, and cluster analyses (statistical approaches). Geochemical data from over 300 RAB wells in the central basin were examined. The statistical testing of fingerprint-diagram-based facies was useful in terms of quantitatively evaluating differences between facies, and for understanding potential controls on basin groundwater chemistry. This study suggests the presence of three hydrochemical facies in the shallower part of the RAB (mostly unconfined conditions) and three in the deeper artesian system of the RAB. These facies reflect significant spatial differences in chemistry in the basin that are associated with specific stratigraphic intervals as well as structural features. Substantial chemical variability across faults and within fault blocks was also observed.  相似文献   

15.
Numerical, experimental and theoretical models of fluvial architecture and palaeosol development are tested with outcrops of Upper Pliocene-Lower Pleistocene sediment in the southern Rio Grande rift, New Mexico. The sediment was deposited and subsequently exhumed in the Jornada del Muerto basin, a westward-tilted half graben whose footwall corresponds to the Rincon Hills and San Diego Mountain fault blocks. The axial river, the ancestral Rio Grande, shared time between the Jornada del Muerto basin and the adjacent Corralitos basin. The ancestral Rio Grande entered the Jornada del Muerto basin via a gap between the footwall blocks, periodically flowing southward towards San Diego Mountain, or making a broad northward sweep into the northern fluvial salient towards the Rincon Hills fault block and unfaulted northern edge of the basin. Ten logged sections up to 35 m thick are correlated using the top of the formation (La Mesa surface), a 1·59 Ma pumice conglomerate, and a ground-water carbonate/opal bed. Additionally, one of the sections is dated by reversal magnetostratigraphy. Consistent with the model of Bridge & Leeder (1979 ) and Bridge & Mackey (1993a ), differential tilting of the Jornada del Muerto half graben resulted in sections directly adjacent to the faults that consist almost exclusively of multistorey channel sands/sandstones, whereas more distal sections contain a greater proportion of crevasse-splay fine sand and overbank mudstone and calcic palaeosols. Along the axis of the northern fluvial salient, a northward decrease in channel/floodplain ratio, a decrease in channel recurrence interval from 171 kyr to 685 kyr, and an increase in the maturity of calcic palaeosols are consistent with southward tilt of the unfaulted northern edge of the basin. An upsection decrease in sediment accumulation rate in the northern fluvial salient from 0·036 mm/ yr to 0·017 mm/ yr corresponds to an increase in the ratio of channel/floodplain facies and in the number of multistorey channel sands/sandstones, and is consistent with the model of Bridge & Leeder (1979 ) in which avulsion frequency is independent of sediment accumulation rate. Stage II and III calcic palaeosols indicate 103−105 year of landscape stability and soil formation between periods of floodplain deposition in response not only to basin tilting but also because the ancestral Rio Grande had multiple paths within the Jornada del Muerto basin and shared time between the Corralitos and Jornada del Muerto basins.  相似文献   

16.
The recognition of terminal fluvial systems, otherwise termed 'terminal fans' or 'distributary fluvial fan systems', preserved in the ancient rock record is based primarily on the recognition of facies characteristics indicative of a progressive downstream decrease in: (i) fluvial discharge; (ii) channel depth and width; (iii) lateral and vertical connectivity of channel-fill elements; and (iv) evidence for channellized flow and a systematic increase in: (i) evidence for sheetflood deposition; (ii) aeolian and/or playa deposits; and (iii) channel bifurcation. However, despite these criteria having been applied previously to a variety of outcrop successions, there is still no unifying facies model that adequately accounts for the complex stratigraphic architectural relationships expected for such systems, based on the varied styles of fluvial activity and system interaction known from modern examples. Moreover, few previous studies have given significant consideration to the long-term temporal evolution of terminal fluvial fans. These issues are addressed by this study of the Permian (Leonardian/Artinskian) Organ Rock Formation of the Paradox Basin, South-east Utah. A detailed stratigraphic framework based on 84 sedimentary logs demonstrates proximal to distal variations in sedimentary style. Integration of these data with high-resolution architectural panels depicting the geometry and facies characteristics of individual fluvial elements has enabled the development of a series of depositional models that account for both the spatial and temporal evolution of the system and which are representative of: (i) initial progradation of the fluvial system into the Paradox foreland basin; (ii) retreat of the fluvial system and expansion of a distal aeolian dune system; (iii) the final phase of fluvial progradation following aeolian dune deflation; and (iv) the final retrogradation of the fluvial system back towards the hinterland.  相似文献   

17.
An area of reef margin collapse, gully formation and gully fill sedimentation has been identified and mapped within Left Hand Tunnel, Carlsbad Caverns. It demonstrates that the Capitan Reef did not, at all times, form an unbroken border to the Delaware Basin. Geopetally arranged sediments within cavities from sponge–algal framestones of the reef show that the in situ reef today has a 10° basinwards structural dip. Similar dips in adjacent back-reef sediments, previously considered depositional, probably also have a structural origin. Reoriented geopetal structures have also allowed the identification of a 200-m-wide, 25-m-deep gully within the reef, which has been filled by large (some  >15 m), randomly orientated and, in places, overturned blocks and boulders, surrounded by finer reef rubble, breccias and grainstones. Block supply continued throughout gully filling, implying that spalling of reef blocks was a longer term process and was not a by-product of the formation of the gully. Gully initiation was probably the result of a reef front collapse, with a continued instability of the gully bordering reef facies demonstrated by their incipient brecciation and by faults containing synsedimentary fills. Gully filling probably occurred during reef growth, and younger reef has prograded over the gully fill. Blocks contain truncated former aragonite botryoidal cements, indicating early aragonite growth within the in situ reef. In contrast, former high-magnesian calcite rind cements post-date sedimentation within the gully. The morphology of cavern passages is controlled by reef facies variation, with narrower passages cut into the in situ reef and wider passages within the gully fill. Gully fills may also constitute more permeable zones in the subsurface.  相似文献   

18.
A total of 17 brachiopod species belonging to 15 genera are recorded from a limestone block of about 3×4 km2 in the Indus–Tsangbo suture zone at Xiukang in Lhaze County of Tibet. The brachiopod fauna generally indicates a Late Guadalupian age (late Wordian–Capitanian, late Middle Permian) based on its association with the Timorites-bearing ammonoid fauna and the presence of the brachiopod Urushtenoidea crenulata. Palaeobiogeographically, the fauna exhibits transitional/mixed characters between the warm-water Cathaysian and cold to temperate Gondwanan faunas and may have developed on a carbonate build-up or seamount on the oceanic crust.  相似文献   

19.
Oxygen isotopic compositions of chert and calcite cements in the Lake Valley Formation indicate that these diagenetic features cannot be equilibrium co-precipitates in spite of their coexistence in the same interstices. Petrography of megaquartz and non-ferroan calcite cements indicates that both are original precipitates that formed during pre-Pennsylvanian time at shallow burial depths (< 215m) implying precipitation temperatures less than 30°C. Under these constraints the δ18Os of megaquartz (mean =+27.00/00 SMOW; range =+ 24.8 to + 28.90/00) and calcite (mean =+ 28.00/00 SMOW; range =+ 27.3 to + 28.40/00) are best interpreted as unaltered since precipitation; thus, they must reflect the oxygen isotopic composition of pre-Pennsylvanian pore waters. Microquartz and chalcedony are interpreted to have formed from recrystallization of pre-Pennsylvanian opal-CT precursors, and therefore probably re-equilibrated during recrystallization in late or post-Mississippian time. We propose a model integrating the isotopic data with regional petrographic and sedimentological data that explains the greater consistency and generally greater δ18Os values of the calcites compared to those of the cherts. This model is one of chertification and calcite cementation in a regional meteoric phreatic ground-water system, the seaward terminus of which moved southward during lowering of pre-Pennsylvanian sea level. The calcite cements and some of the opal-CT precursor to microquartz and chalcedony are interpreted to have formed in the more seaward portions of the groundwater system. The megaquartz precipitated in the more inland parts of the phreatic groundwater system where rainfall was isotopically lighter and more variable. As such, the δ18Os of the megaquartz reflect the isotopic composition of groundwaters in areas undersaturated with respect to calcite.  相似文献   

20.
Groundwater of the southern Jornada del Muerto Basin, an intermontane basin structure associated with the Rio Grande rift located in south-central New Mexico, USA, was analyzed chemically and microbially. A microbial phospholipid fatty acids (PLFA) analysis revealed a sparse microbial population consisting of relatively simple microorganisms with no major population changes along the flow system. A nucleic acid (DNA) analysis of the groundwater resulted in the identification of ten eubacterial and one archeal species. Chemical analyses revealed that sulfate along with calcium, magnesium, iron, and manganese is removed by about an order of magnitude in concentration from the recharge area to the discharge area. The removal of iron, manganese, magnesium, and to some extent calcium can be explained by oxidation reactions and the precipitation of dolomite. Sulfate and additional calcium are most likely removed by the precipitation of gypsum. Thiobacillus spp. are oxidizing metal sulfides that occur as subsurface sulfide mineral deposits to sulfuric acid, which subsequently reacts with calcium carbonate and water to precipitate gypsum. The presence of these sulfide deposits exposed to oxygenated water in the deep groundwater flow system significantly alters its chemical and bacteriological composition. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号