首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Absolute spectrophotometry of Neptune from 3390 to 7800 Å, with spectral resolution of 10 Å in the interval 3390–6055 and 20 Å in the interval 6055–7800 Å, is reported. The results are compared with filter photometry (Appleby, 1973; Wamsteker, 1973; Savage et al., 1980) and with synthetic spectra computed on the basis of a parameterization proposed by Podolak and Danielson (1977) for aerosol scattering and absorption. A CH4/H2 ratio of 1 × 10?2 < ?CH4 < 1 × 10?1 is derived for the convectively mixed part of Neptune's atmosphere, and constrains optical properties of hypothetical aerosol layers.  相似文献   

2.
Jack Wisdom 《Icarus》1983,56(1):51-74
The sudden eccentricity increases discovered by J. Wisdom (Astron J.87, 577–593, 1982) are reproduced in numerical integrations of the planar-elliptic restricted three-body problem, verifying that this phenomenon is real. Maximum Lyapunov characteristic exponents for trajectories near the 31 commensurability are computed both with the mappings presented in Wisdom (1982) and by numerical integration of the planar-elliptic problem. In all cases the agreement is excellent, indicating that the mappings accurately reflect whether trajectories are chaotic or quasiperiodic. The mappings are used to trace out the chaotic zone near the 31 commensurability, both in the planar-elliptic problem and to a more limited extent in the three-dimensional elliptic problem. The outer boundary of the chaotic zone coincides with the boundary of the 31 Kirkwood gap in the actual distribution of asteroids within the errors of the asteroid orbital elements.  相似文献   

3.
Ignacio R. Ferrín 《Icarus》1974,22(2):159-174
A photometric study of high-resolution (~0″.3) plates of Saturn taken at the Lowell Observatory in 1943 and 1945 is presented. N-S scans were taken over both the planet and rings. The excess brightness due to the planet seen through the rings is found by taking the difference between the central meridian (CM) scans and scans displaced by 5″.7. Adopting a value for the albedo of the planet, it is possible to obtain the optical thickness, τCM(r). In particular, for the regions of maximum brightness in rings A and B, we find τCM(IA max) = 0.38 ± 0.11 and τCM(IB max) = 0.61 ± 0.11. Observations by Barnard made in 1890 show evidence of ring D, recently discovered by Guerin (1969). The value for the optical thickness of this ring is τD(ID max) = 0.03 ± 0.01. Ring B exhibits a pronounced (7–10%) decrease in brightness from the extremity of the major axis to the CM. After considering several possible explanations, we conclude that the ring particles are nonspherical and are in synchronous rotation around the planet with their long axis toward it. The mean value for the ratio of major to minor axis for the particles at 15″ is (a/b) ? 1.08. Because of the shape and orientation of the particles, the optical thickness at the extremity of the major axis and at the CM are different for any saturnicentric latitude B ≠ 90°. Under these circumstances, only a minimum value for τ at the extremity can be derived.  相似文献   

4.
Absolute spectrophotometry of four regions on the visible disk of Saturn (north and south polar regions, equatorial band, south “temperate” region) from 3390 to 8080 Å is reported. Spectral resolution is 10 Å in the interval 3390–6055 Å, and 20 Å; aperture size is 1.92 arcsec. The explicit purpose of our observations was to provide ground-based photometric calibration for the Pioneer Saturn Imaging Photopolarimeter (IPP). We also compare our data with earlier spectrophotometric measurements of Saturn (R.L. Younkin and G. Munch, 1963,Mem. Soc. Roy. Sci. Liege7, 123–136; W.M. Irvine and A.P. Lane, 1971,Icarus16, 10–26; T.B. McCord, T.V. Johnson, and J.H. Elias, 1971,Astrophys. J.165, 413–424) and with the M. Podolak and R.EE. Danielson (1977)Icarus30, 479–492) parameterization of “Axel Dust.” The latter reproduces the broad features but not the details of the observed spectral reflectivity (I/F). We find that large depths of clear molecular hydrogen (>14 km-am in the temperate regions) are needed to match the observed upturn in reflectivity shortward of 3800 Å.  相似文献   

5.
As part of a continuing series of experiments on the production of dark reddish organic solids, called tholins, by irradiation of cosmically abundant reducing gases, the synthesis from a simulated Titanian atmosphere of a tholin with a visible reflection spectrum similar to that of the high altitude aerosols responsible for the albedo and reddish color of Titan has been reported Sagan and Khare, 1981, Sagan and Khare, 1982, Orig. Life. 12, 280) and [C. Sagan, B. N. Khare, and J. Lewis, in press. In Saturn (M. S. Matthews and T. Gehrels, Eds.), Univ. of Arizona Press, Tucson]. The determination of the real (n) and imaginary (k) parts of the complex refractive index of thin films of such tholin prepared by continuous D.C. discharge through a 0.9 N2/0.1 CH4 gas mixture at 0.2 mb are reported. For 250 A? ≤ γ ≤ 1000 μm, n and k have been determined from a combination of transmittance, specular reflectance, interferometric, Brewster angle, and ellipsometric polarization measurements; experimental uncertainties in n are estimated to be ±0.5, and in k ± 30%. Values of n(?1.65) and k (?0.004 to 0.08) in the visible range are consistent with deductions made by ground-based and spacecraft observations of Titan. Maximum values of k (?0.8) are near 1000 Å, and minimum values (?4 × 10?4) are near 1.5 μm. Many infrared absorption features are present in k(γ), including the 4.6-μm nitrile band.  相似文献   

6.
Kevin H. Baines 《Icarus》1983,56(3):543-559
High-resolution (0.1-Å) spectra of the 6818.9-Å methane feature obtained for Jupiter, Saturn, and Uranus by K. H. Baines, W. V. Schempp, and W. H. Smith ((1983). Icarus56, 534–542) are modeled using a doubling and adding code after J. H. Hansen ((1969). Astrophys. J.155, 565–573). The feature's rotational quantum number is estimated using the relatively homogeneous atmosphere of Saturn, with only J = 0 and J = 1 fitting the observational constraints. The aerosol content within Saturn's northern temperate region is shown to be substantially less than at the equator, indicating a haze only half as optically thick. Models of Jupiter's atmosphere are consistent with the rotational quantum-number assignment. Synthetic line profiles of the 6818.9-Å feature observed on Uranus reveal that a substantial haze exists at or above the methane condensation region with an optical depth eight times greater than previously reported. Seasonal effects are indicated. The methane column abundance is 5 ± 1 km-am. The mixing ratio of methane to hydrogen within the deep unsaturated region of the planet is 0.045 ± 0.025, based on an H2 column abundance of 240 ± 60 km-am (W. H. Smith, W. Macy, and C. B. Pilcher (1980). Icarus43, 153–160), thus indicating that the methane comprises between one-sixth and one-half of the planet's mass. However, proper reevaluation of H2 quadrupole features accounting for the haze reported here may significantly reduce the relative methane abundance.  相似文献   

7.
Observations of Saturn's satellites and external rings during the 1980 edge-on presentation were obtained with a focal coronograph. A faint satellite traveling in the orbit of Dione and leading it by 72° has been detected, together with the two inner satellites already suspected (cf. J. W. Fountain and S. M. Larson, 1978,Icarus36, 92–106). The external ring has been observed on both east and west sides; it may extend up to ?8.3 Saturn radii, and appears structured.  相似文献   

8.
Results are given for polarization measurements of both the entire Jupiter disk and its centre for seven wavelength regions in the 0.373–0.800 μm range. Interpretation of these observations is based on two model atmospheres: (A) The cloud layer particles and molecules are mixed with a constant ratio. (B) A gas layer with small optical thickness, τ0, is situated above the cloud layer which consists of aerosol particles. The aerosol particles are considered to be non-absorbing spheres, their size distribution being normal Gaussian. The index of refraction for the particles is considered to be independent of wavelength in the above spectral range. An approximate method is used for the determination of parameters of the Jovian atmosphere. This method was tested by evaluation of the parameters for the Venus cloud layer: The refractive index was found to be n = 1.435 ± 0.015, the square of the logarithmic dispersion of the radius of particles σ2 = 0.12 and the mean geometrical radius of particles r0 = 0.74 μm which agree well with exact values given by Hansen and Arking (1971). For the atmosphere of Jupiter it was found: n = 1.36 ± 0.01, σ2 ? 0.3, r0 ? 0.2 μm. This refractive index for the particles agrees well with the ammonia cloud layer hypothesis.  相似文献   

9.
The 5ν1 absorption band of NH3 is displayed from 6418 to 6550 Å. The total band intensity has been measured: SB = 0.66 cm?1m?1amagat?1. Line intensities and self-broadening coefficients have been measured for some of the prominent lines. Our line intensities are in good agreement with those of Rank et al. (1966), but are about 2 times greater than those of Mason (1970). The spectrum displayed was obtained photoelectrically at a pressure of 0.061 atm, and shows many more lines than the spectrum obtained by McBride and Nicholls (1972a) at a pressure of 0.39 atm. Therefore, our new measurements can provide the basis for making a more complete rotational analysis than those of McBride and Nicholls (1972a).Since the total band absorption has previously been measured by others on moderate resolution photoelectric scans of the spectra of Jupiter and Saturn, we can use the band intensity to derive the NH3 abundance in the atmospheres of these two planets. The NH3 abundances in a single vertical path obtained by this method are about 10m amagat for Jupiter and 2m amagat for Saturn. These results are in agreement with previous results obtained from higher resolution photographic spectra.  相似文献   

10.
We have obtained measurements of Venus' reflection spectrum in the 1.2 to 4.1-μm spectral region from a NASA-Ames operated Lear jet. This was accomplished by observing both Venus and the sun with a spectrometer that contained a circular, variable interference filter, whose effective spectral resolution was 2%. The aircraft results were compared with computer generated spectra of a number of cloud candidates. The only substance which gave an acceptable match to the profile of Venus' strong 3-μm absorption feature, was a water solution of sulfuric acid, that had a concentration of 75% or more H2SO4 by weight. However, our spectra also show a modest decline in reflectivity from 2.3 μm towards 1.2-μm wavekength, which is inconsistent with the flat spectrum of sulfuric acid in this spectral region. We hypothesize that this decline is due to impurities in the sulfuric acid droplets.We also compared our list of cloud candidates with several other observed properties of the Venus clouds. While this comparison does not provide as unique an answer as did our analysis of the 3-μm band, we find that, in agreement with the results of Young (1973) and Sill (1973), concentrated sulfuric acid solutions are compatible with these additional observed properties of the Venus clouds. We conclude that the visible cloud layer of Venus is composed of sulfuric acid solution droplets, whose concentration is 75% H2SO4, or greater, by weight.  相似文献   

11.
A contradiction in the sulfuric acid cloud hypothesis of Venus, i.e., nondetection of 4.8 μm polarization by Landau (1975), is examined on the basis of the multiple scattering calculations for the cloud model of Hansen and Hovenier (1974) including an internal heat source. Results show that the polarized thermal component cannot depolarize the scattered sunlight, and therefore a large polarization of about 13% is expected at a phase angle of 110° and wavelength of 4.8 μm, in contrast with Landau's measurements. Our computations are, however, in agreement with the measurements by S. Sato et al. (in “Proceedings, 10th Lunar and Planetary Symposium,” pp. 179–182. Institute of Space and Aeronautical Science, University of Tokyo, July 11–13, 1977).  相似文献   

12.
Dale P. Cruikshank 《Icarus》1980,41(2):246-258
New JHK photometry and spectrometry (1.4–2.6 μm) are presented for Enceladus, Hyperion, Phoebe, Umbriel, Titania, and Oberon. From spectral signatures, mainly in the 2-μm region, water ice is verified on Enceladus and identified on Hyperion and the three Uranian satellites. The JHK photometry shows that Phoebe is different from all other satellites and asteroids observed thus far. The new photometry corroborates the earlier conclusion by Cruikshank et al. (1977) Astrophys. J217, 1006–1010] that the Uranian satellites, as a class, have overall surface reflectances different from other water-ice-covered satellites, and the reason for the difference remains unclear. The diameters and the masses of the Uranian satellites are reviewed in light of the probable high albedo representative of ice-covered surfaces and the new dynamical studies by Greenberg, 1975, Greenberg, 1976, Greenberg, 1978.  相似文献   

13.
M. Podolak  E. Podolak 《Icarus》1980,43(1):73-84
We present a simple model for the formation and growth of photochemical aerosols in the atmosphere of Titan. We show that, in general, an optically thick layer of particles in the size range required by models of Titan cannot be obtained at pressures less than about 2 mbar. Since the thin model of Titan's atmosphere requires that the inversion not extend below pressures of 0.11 mbar (D. M. Hunten and J. J. Caldwell, 1978, preprint), it seems to be ruled out by the calculations.  相似文献   

14.
The Tunguska event on 30 June 1908 has been subjected to much speculation within different fields of research. Publication of the results of the 1961 expedition to the Tunguska area (Florensky, 1963) supports that a cometary impact caused the event. Based on this interpretation, calculations of the impactor energy release and explosion height have been reported by Ben-Menahem (1975), and velocity, mass, and density of the impactor by Petrov and Stulov (1975). Park (1978) and Turco et al., 1981, Turco et al., 1982, used these numbers to calculate a production of ca. 30 × 106 tons of NO during atmospheric transit. This paper presents a high-resolution study of nitrate concentration in the Greenland ice sheet in ca. 10 years covering the Tunguska event. No signs of excess nitrate are found in three ice cores from two different sites in Greenland in the years following the Tunguska event. By comparing these results with results for other aerosols generally found in the ice, the lack of excess NO3? following the Tunguska event can be interpreted as indicating that the impactor nitrate production calculated by Park (1978) and Turco et al., 1981, Turco et al., 1982 are 1–2 orders of magnitude too high. To explain this it is suggested, from other lines of reasoning, that the impactor density determined by Petrov and Stulov (1975) probably is too low.  相似文献   

15.
John Caldwell 《Icarus》1975,25(3):384-396
Broadband filter photometry from 2100 to 4300 Å has been obtained by OAO-2 for the following objects: The Galilean satellites; Titan; the rings of Saturn; and three asteroids. Agreement with independent ground-based photometry in the region of overlap is good. The previously known decrease in reflectivity from visual to ground-based ultraviolet wavelengths continues to 2590 Å for all these objects. Europa's reflectivity continues to decline towards 2110 Å, and the rings' reflectivity levels off from 2590 to 2110 Å. Other targets were too faint at 2110 Å to be measured reliably by OAO-2.The low ultraviolet albedo of Titan has important implications for that planet's atmospheric structure (Caldwell, Larach, and Danielson, 1973; Danielson, Caldwell, and Larach, 1973; Caldwell, 1974b). The ultraviolet reflectivity of Saturn's rings is suggestive of a two-component system, one being pure H2O particles. The ultraviolet albedos of the Galilean satellites are consistent with existing upper limits for atmospheric abundances, but require either that former estimates of the fractional coverage of H2O frost are too high, an unlikely circumstance, or that the frost has been darkened by some external agent in the space environment.  相似文献   

16.
The Galilean satellite eclipse technique for measuring the aerosol distribution in the upper Jovian atmosphere is described and applied using 30 color observations of the 13 May 1972 eclipse of Ganymede obtained with the 5-m Hale telescope. This event probes the South Temperate Zone. The observed aerosol lies above the visible cloud tops, is very tenuous and varies with altitude, increasing rapidly with downward passage through the tropopause. The aerosol extinction coefficient, κa (λ1.05 μm), is ~1.1 × 10?9 cm?1 in the lower stratosphere and ~1.1 × 10?8 cm?1 at the tropopause. The 1σ uncertainty in these values does not exceed 50% The observations require some aerosol above the tropopause but do not clearly determine its structure. The present analysis emphasizes an extended haze distribution, but the alternate possibility is not excluded that the stratospheric aerosol resides in a thin layer. The aerosol extinction increases with decreasing wavelength and indicates the particle radius to be ?0.2 μm. Larger radii are impossible. These overall results confirm Axel's (1972) suggestion of a small quantity of dust above the Jovian cloud tops and the optical depths are consistent with those required to explain the low uv albedo.  相似文献   

17.
The four entry probes of the Pioneer Venus mission measured the radiative net flux in the atmosphere of Venus at latitudes of 60°N, 31°S, 27°S, and 4°N. The three higher latitude probes carried instruments (small probe net flux radiometers; SNFR) with external sensors. The measured SNFR net fluxes are too large below the clouds, but an error source and correction scheme have been found (H. E. Revercomb, L. A. Sromovsky, and V. E. Suomi, 1982, Icarus52, 279–300). The near-equatorial probe carried an infrared radiometer (LIR) which viewed the atmosphere through a window in the probe. The LIR measurements are reasonable in the clouds, but increase to physically unreasonable levels shortly below the clouds. The probable error source and a correction procedure are identified. Three main conclusions can be drawn from comparisons of the four corrected flux profiles with radiative transfer calculations: (1) thermal net fluxes for the sounder probe do not require a reduction in the Mode 3 number density as has been suggested by O. B. Toon, B. Ragent, D. Colburn, J. Blamont, and C. Cot (1984, Icarus57, 143–160), but the probe measurements as a whole are most consistent with a significantly reduced mode 3 contribution to the cloud opacity; (2) at all probe sites, the fluxes imply that the upper cloud contains a yet undetected source of IR opacity; and (3) beneath the clouds the fluxes at a given altitude increase with latitude, suggesting greater IR cooling below the clouds at high latitudes and water vapor mixing ratios of about 2–5 × 10?5 near 60°, 2–5 × 10?4 near 30°, and 5 × 10?4 near the equator. The suggested latitudinal variation of IR cooling is consistent with descending motions at high latitudes, and it is speculated that it could provide an important additional drive for the general circulation.  相似文献   

18.
L.H. Wasserman 《Icarus》1974,22(1):105-110
The nightime cooling of the Jovian atmosphere near the occulation level of 1014cm?3 is calculated using the models of Strobel (1973) and Strobel and Smith (1973). The amount of cooling is found to depend on χ, the methane mixing ratio; μ the mean molecular weight; and the sunrise temperature. Using the range of sunrise (emersion) temperatures observed by Veverka et al. (1974), the overnight cooling is calculated to be 1.5–5.5°K, if reasonable assumptions are made for χ and μ. The argument may be reversed to show that the agreement in measured sunrise and sunset temperatures obtained by other observers of the β Sco occulation implies that χ cannot be significantly greater than the generally accepted value of 7 ×10?4.  相似文献   

19.
Olav L. Hansen 《Icarus》1977,31(4):456-482
A new radiometric model for disk-integrated photometry of asteroids is presented. With empirical support from photometry of Mercury and the Moon, the model assumes that observed sunward beaming of the infrared emission is due to craters. In contrast to earlier theoretical studies of the lunar emission, the observable flux ratio between a cratered sphere and a smooth sphere is calculated for large ranges in wavelength, temperature, and phase angle. Revised diameters and albedos based on the crater model are given for 84 asteroids. The revised values are in good agreement with Morrison's (1977) radiometric results. It is shown that the systematic discrepancy between radiometric and polarimetric albedos (Zellner and Gradie, 1976) is probably a double-valued function of albedo. Some typical geometric albedos from this paper, Morrison (1977), and Zellner and Gradie (1976), respectively, are: Ceres (0.050 ± 0.005, 0.053 ± 0.004, 0.068), Vesta (0.235 ± 0.032, 0235 ± 0.11, 0.271), mean C type (0.031 ± 0.009, 0.035 ± 0.009, 0.061 ± 0.005), mean S type (0.117 ± 0.030, 0.136 ± 0.032, 0.181 ± 0.23), and mean M type (0.105 ± 0.037, 0.115 ± 0.033, 0.157 ± 0.079). Areas of disagreement between radiometry and polarimetry are underscored, and research to resolve them is suggested.  相似文献   

20.
Ronald C. Taylor 《Icarus》1985,61(3):490-496
Refinements to the pole-determination method photometric astrometry (PA) were completed in 1983 (R. C. Taylor and E. F. Tedesco, 1983, Icarus54, 13–22). A goal is to redo the pole analysis for every asteroid whose pole had been determined from earlier versions of PA: Previous PA poles are reviewed in this paper. Asteroid 433 Eros is in that collection and has redone. The result are prograde rotation; a sidereal period of 0.219588 ± 0.000005 day; and a north pole at 22° longitude, +9° latitude. The uncertainty of the pole is 10°. The pole position of Eros determined by C.D. Vesely (1971, In Physical Studies of Minor Planets (T. Gehrels, Ed.), pp. 133–140, NASA SP-267) and Dunlap (1976, Icarus28, 69–78), using earlier versions of photometric astrometry, were within 21 and 7°, respectively, of the present result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号