首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Anita L. Cochran 《Icarus》1985,62(1):82-96
A computer code to calculate the time-dependent nonequilibrium chemistry taking place within the coma of a comet has been developed. This code incorporates 1249 chemical reactions involving 128 species. Models were fit to data on Comet P/Stephan-Oterma (A. L. Cochran and E. S. Barker, 1985, Icarus62, 72–81). It was shown that (1) HCN is the parent for CN; (2) C2H2 is a parent for C2; (3) pure gas-phase chemistry with known species cannot adequately reproduce the observed C3 but a single step process can; and (4) at least prior to perihelion, the vaporization rate seems to have been controlled by water vaporization.  相似文献   

2.
J.R. Johnson  U. Fink  S.M. Larson 《Icarus》1984,60(2):351-372
Spectra of the four comets, Tuttle, Stephan-Oterma, Brooks 2, and Bowell, were taken with a prototype space telescope charge coupled device (CCD) camera using a 500 × 500 Texas Instruments chip. The spectra extended from 5600 to 10,400 Å at a resolution of ~25 A?. The spatial coverage along the slit was 180?; its resolution was defined by the seeing (2–3?). Both absolute flux scales and spectral albedos were determined with the data reduction procedure which included flat fielding and sky subtraction. Comet Tuttle displayed extensive emissions by NH2, the red system of CN, and the C2 Swan bands as well as emissions by the forbidden oxygen lines [OI] 1D at 6300 and 6364 Å, and the ionic species H2O+. A feature at 6851 Å has been tentatively identified as the 3-0 band of CS+. Notable is the absence of the C2 Phillips bands whose transitions are optimally placed in our spectrum. The much dustier comet, Stephan-Oterma showed emissions by CN, NH2, and [OI] while only [OI] could be discerned in the noisier Brooks 2 spectrum. The fresh comet Bowell exhibited an unusually extended coma with an albedo times cross section two orders of magnitude larger than the other comets, a very flat albedo spectrum, and no emission features. For Tuttle and Stephan-Oterma, CN and NH2 column densities using a number of bands were calculated. The CN band intensity ratios show good agreement with theoretical fluorescence models. The spatial profiles for CN and NH2 were compared to two step Haser model decay calculations. The scale lengths most consistent with the data were compared with values previously reported and with values expected for various photodissociation reactions. Production rates were calculated for CN and NH2. These should be less model dependent because of the simultaneous collection of spectral and spatial information. The production rate ratios of the parents of CN and NH2 to the parent of OH are several orders of magnitude smaller than the solar abundance ratios of C/O and N/O.  相似文献   

3.
The results of the photometric observations of comet C/2009 P1 (Garradd) performed at the 60-cm Zeiss-600 telescope of the Terskol observatory have been analyzed. During the observations, the comet was at the heliocentric and geocentric distances of 1.7 and 2.0 AU, respectively. The CCD images of the comet were obtained in the standard narrowband interference filters suggested by the International research program for comet Hale-Bopp and correspondingly designated the “Hale-Bopp (HB) set.” These filters were designed to isolate the BC (λ4450/67 Å), GC (λ5260/56 Å) and RC (λ7128/58 Å) continua and the emission bands of C2 (λ5141/118 Å), CN (λ3870/62 Å), and C3 (λ4062/62 Å). From the photometric data, the dust production rate of the comet and its color index and color excess were determined. The concentration of C2, CN, and C3 molecules and their production rates along the line of sight were estimated. The obtained results show that the physical parameters of the comet are close to the mean characteristics typical of the dynamically new comets.  相似文献   

4.
Interference filter photometry was taken of Comet Encke on June 14, 1974 (1.07 AU heliocentric distance, postperihelion) at the CTIO (Cerro Tololo Interamerican Observatory) 150-cm reflector. Production rates were calculated of 4.1 × 1023 mol sec?1 of CN, 5.3 × 1023 mol sec?1 of C3, and 4.3 × 1024 mol sec?1 of C2. These are about three times smaller than at comparable heliocentric distance preperihelion, assuming a value of 100 for the ratio H2O/ (C2 + C3 + CN). An upper limit was placed on the production of nonvolatiles at about one-third that of volatiles in mass by assuming a bulk density of 1 g cm?3, a particle geometric albedo of 0.1, and a phase function of 0.2.  相似文献   

5.
We present the results of polarimetric and photometric observations of dynamically new comet C/2002 T7 (LINEAR) at phase angles from 6° to 26°. During the observations, the comet was at a distance of 2.7–1.3 AU from the Sun and 1.7–2.0 AU from the Earth. The aperture polarimetry was made with the 2.6-m Shain telescope and the 1.25-m AZT-11 telescope of the Crimean Astrophysical Observatory and with the 0.7-m telescope of the Astronomical Institute of the Kharkiv National University during the period from November 21, 2003, to February 21, 2004. The wideband UBVRI and WRC (λ7228/1142 Å) filters and the narrowband GC (λ5260/56 Å) filter were used. The photometric observations of the comet were carried out on February 21, 2004, with narrowband filters isolated the BC (λ4845/65 Å) and RC (λ6840/90 Å) continuum and the C2 emission (λ5140/90 Å). The phase-angle dependence of linear polarization of the comet has been obtained, and its parameters, such as the minimal polarization P min = ?1.63%, the phase angle of the minimal polarization αmin = 10.6°, the inversion angle αinv = 22.7°, and the slope of the phase curve at the inversion angle h = 0.24% per degree, were found. From the photometric observations, the following quantities have been obtained: the column density of molecules C2 in the line of sight logN (C2) = ?9.15 mol/cm2 and their production rate log Q (C2) = 27.11 mol/s, the spectral gradient of reflectivity for the dust S′(BC, RC) ≈ 3%/1000 Å, and the dust production parameter Afρ equal to 371 and 273 cm for the blue and red continuum ranges, respectively. According to these results, the physical parameters of comet C/2002 T7 are close to the average characteristics of typical dusty comets.  相似文献   

6.
Narrowband filter photometry observations of Comet Hyakutake (1996 B2) were used to investigate this comet's short-term variability as well as its behavior for the apparition as a whole. Utilizing measurements obtained on a total of 13 nights between February 9, 1996, and April 14, 1996, we find that the heliocentric distance (rH) dependence of the production rates of OH and NH were much shallower than those for either the carbon-bearing species or the visible dust. Based on the OH measurements, the derived water rH-dependence was also significantly less steep than expected from a basic water vaporization model and required an effective active surface area of about 29 km2 at rH=1.8 AU, 16 km2 at rH=1 AU, and only 13 km2 at rH=0.6 AU. This decrease in active area may be due to seasonally induced variations of a heterogeneous surface, or due to a decreasing contribution of gas from icy grains in the innermost coma. The relative abundances of the minor gas species place Hyakutake into the “typical” category of comets in the A'Hearn et al. (1995, Icarus118, 223-270) taxonomic classification system. The spectrum is generally redder at shorter wavelengths throughout the apparition; however, the dust color progressively changes from being significantly reddened (37%/1000 Å) at large rH to near-solar at small rH. This change of color with distance implies a significant change in grain sizes or a changing proportion between two or more grain populations.A major outburst was initiated near March 19.9, just prior to the comet's close approach to Earth. The characteristic recovery from the outburst differed among the observed species, with OH recovering most rapidly, essentially returning to its baseline values by March 25. The spatial radial fall-off of OH throughout this interval was consistent with the expected nominal spatial distribution, while CN and C2 displayed fall-offs consistent with a distributed source, and the dust fall-off was significantly less steep than 1/ρ, possibly due to fragmenting grains. Rotational lightcurve amplitudes were largest for the OH, NH, and dust, again consistent with the carbon-bearing species primarily originating from a distributed source. Significant variations were observed in the lightcurve amplitude and phase shifts as functions of aperture size. Finally, a refined value for the rotation period of 0.2614±0.0003 day was determined.  相似文献   

7.
《Icarus》1987,69(2):314-328
A one-dimensional heat-diffusion model was used to calculate internal temperatures in cometary nuclei composed of either crystalline or amorphous ice, and for a range of orbits. It was found that the final central temperature, Tc, was a complex function of the comet's orbital semimajor axis, a, and eccentricity, e, as well as the functional form of the thermal conductivity. For cometary nuclei with identical thermal properties, Tc was found to decrease with eccentricity for a short-period orbit with a = 3 AU. For an intermediate-period orbit with a = 20 AU, Tc initially increased with eccentricity but then declined at large values of e for a crystalline ice nucleus, while for amorphous ice Tc increased monotonically. In addition, it was found that for conductivities of similar magnitude, crystalline ice (for which the conductivity varies inversely proportional to temperature) reached the final central temperature twice as fast as amorphouslike ice (for which the conductivity is proportional to temperature). Tc also depended on the magnitude of the conductivity. A four- to fivefold decrease in the conductivity resulted in a 3–4°K decrease in Tc at large eccentricities, while at small eccentricities Tc was only weakly dependent on the conductivity. Finally, the numerical results are compared to the analytical solutions of J. Klinger (1981, Icarus 47, 320–324) and C. P. McKay, S. W. Squyres, and R. T. Reynolds (1986, Icarus, 66, 625–629), and a numerical correction factor is derived for the McKay et al. expression for the central temperature.  相似文献   

8.
We present observational data for Comet 9P/Tempel 1 taken from 1997 through 2010 in an international collaboration in support of the Deep Impact and Stardust-NExT missions. The data were obtained to characterize the nucleus prior to the Deep Impact 2005 encounter, and to enable us to understand the rotation state in order to make a time of arrival adjustment in February 2010 that would allow us to image at least 25% of the nucleus seen by the Deep Impact spacecraft to better than 80 m/pixel, and to image the crater made during the encounter, if possible. In total, ∼500 whole or partial nights were allocated to this project at 14 observatories worldwide, utilizing 25 telescopes. Seventy percent of these nights yielded useful data. The data were used to determine the linear phase coefficient for the comet in the R-band to be 0.045 ± 0.001 mag deg−1 from 1° to 16°. Cometary activity was observed to begin inbound near r ∼ 4.0 AU and the activity ended near r ∼ 4.6 AU as seen from the heliocentric secular light curves, water-sublimation models and from dust dynamical modeling. The light curve exhibits a significant pre- and post-perihelion brightness and activity asymmetry. There was a secular decrease in activity between the 2000 and 2005 perihelion passages of ∼20%. The post-perihelion light curve cannot be easily explained by a simple decrease in solar insolation or observing geometry. CN emission was detected in the comet at 2.43 AU pre-perihelion, and by r = 2.24 AU emission from C2 and C3 were evident. In December 2004 the production rate of CN increased from 1.8 × 1023 mol s−1 to QCN = 2.75 × 1023 mol s−1 in early January 2005 and 9.3 × 1024 mol s−1 on June 6, 2005 at r = 1.53 AU.  相似文献   

9.
Weaver  H. A.  Brooke  T. Y.  Chin  G.  Kim  S. J.  Bockelée-Morvan  D.  Davies  J. K. 《Earth, Moon, and Planets》1997,78(1-3):71-80
High resolution (λ/δλ ∼ 20,000) spectra of comet C/1995 O1 (Hale-Bopp) in the 2–5 μm region were obtained during UT 2–5 March 1997 using CSHELL at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea. The heliocentric and geocentric distances of the comet were ∼1.1 AU and ∼1.5 AU,respectively. We detected emission lines of the gas-phase molecules H2O, 4, C2H6, C2H2, HCN, and CO and derived absolute production rates and relative abundances for all species. We also used the 2-dimensional nature of the CSHELL data to investigate the spatial distribution of the molecules and find evidence that CO was derived at least partly from an extended source in the coma. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
T.Y Brooke  H.A Weaver  G Chin  S.J Kim 《Icarus》2003,166(1):167-187
High resolution infrared spectra of Comet C/1995 O1 (Hale-Bopp) were obtained during 2-5 March 1997 UT from the NASA Infrared Telescope Facility on Mauna Kea, Hawaii, when the comet was at r≈1.0 AU from the Sun pre-perihelion. Emission lines of CH4, C2H6, HCN, C2H2, CH3OH, H2O, CO, and OH were detected. The rotational temperature of CH4 in the inner coma was Trot=110±20 K. Spatial profiles of CH4, C2H6, and H2O were consistent with release solely from the nucleus. The centroid of the CO emission was offset from that of the dust continuum and H2O. Spatial profiles of the CO lines were much broader than those of the other molecules and asymmetric. We estimate the CO production rate using a simplified outflow model: constant, symmetric outflow from the peak position. A model of the excitation of CO that includes optical depth effects using an escape probability method is presented. Optical depth effects are not sufficient to explain the broad spatial extent. Using a parent+extended-source model, the broad extent of the CO lines can be explained by CO being produced mostly (∼90% on 5 March) from an extended source in the coma. The CO rotational temperature was near 100 K. Abundances relative to H2O (in percent) were 1.1±0.3 (CH4), 0.39±0.10 (C2H6), 0.18±0.04 (HCN), 0.17±0.04 (C2H2), 1.7±0.5 (CH3OH), and 37-41 (CO, parent+extended source). These are roughly comparable to those obtained for other long-period comets also observed in the infrared, though CO appears to vary.  相似文献   

11.
We present the analysis of the photometric and spectroscopic data obtained for comet C/2010 X1 (Elenin) when it was at a distance of 2.92 AU from the Sun. The observations were made at the prime focus of the 6-m BTA telescope with the SCORPIO focal reducer. The magnitude of the comet, measured in the R c -band with an 9?? aperture radius amounted to 16?8 ± 0?1. The computed dust production rate was estimated to be about 6 kg/s. The cometary coma manifested the emissions in the (0?C0) band of the CN molecule violet system, and a number of emission band heads of the C3 molecule. The gas production rate of the molecules is determined using the Haser model and amounts to 1.41 × 1024 and 4.20 × 1023 molecules per second for CN and C3, respectively. The ratio of gas production rates log[Q(C3)/Q(CN)] is equal to ?0.85, which is close to the mean value, determined for a significant number of comets. A normalized gradient of the cometary dust reflectivity, calculated for the 4430?C6840 ? spectral range amounts to 14.3 ± 1.2%.  相似文献   

12.
The results of the multiaperture photometry of Comet Shoemaker-Levy 1991 T2 in the pre-perihelion and P/deVico in the post-perihelion period with the narrowband CN, C2 and Blue Continuum (BC) IHW filters are presented. A Haser model of the molecular coma was used for the determination of the parent and daughter scale-lengths and production rates of the radicals. The comets showed some substantial differences between their parent scale-lengths. The CN parent scale-length (at 1.0 AU) was 16×103 km for Comet Shoemaker-Levy and 39×103 for P/deVico, the C2 parent scale-lengths were respectively 29×103 and 54×103 km. Such divergences could be interpreted in the frame of different scenarios of emission of cometary parents, either from a nucleus or from a volume source. The daughter scale-lengths for these comets were quite similar, namely: 306×103 and 318×103 km for CN and 69×103 and 66×103 km for C2. We determined the Afρ parameter for apertures of different radii. A Monte Carlo model of the dust coma was used to obtain the dust ejection velocity. It was of the order of 0.1 km s−1 for both comets. The power index of the distribution of the β-parameter of dust particles (ratio of light pressure to the solar gravitation) was of the order of 3 for C/Shoemaker-Levy and close to 2 for P/deVico. The dependence on heliocentric distance (rh) of the radical and dust production rates for P/deVico in the range of 0.7-1.0 AU was described by the power law function with a power index equal to: 5.55±0.14 for CN, 5.70±0.24 for C2 and 5.22±0.19 for dust. Relative abundances of the dynamically new Comet Shoemaker-Levy and short-period P/deVico were quite similar with an enhancement of C2 comparing with standard values taken from A'Hearn et al. (1995).  相似文献   

13.
Martha S. Hanner 《Icarus》1980,43(3):373-380
The zodiacal light brightness and measured spatial density of the interplanetary dust lead to a mean geometric albedo of 0.24 for the dust particles near 1 AU; whereas the composition of collected micrometeroids suggests a geometric albedo ?0.1. The data do not support the very low albedo (?0.01) proposed by A. F. Cook [Icarus33 (1978), 349–360]. The evidence is against a change in the mean particle albedo between 0.1 and 2 AU. Beyond 2 AU the data are unclear and a change in albedo is not ruled out.  相似文献   

14.
We present the results of a program of comet long-slit spectroscopy with the Kast Dual Spectrograph on the 3-m Shane Telescope at Lick Observatory. A total of 26 comets, from a variety of dynamical families, were observed on 39 different nights from 1996 to 2007. A new statistical method extracted the twilight sky from comet frames, because traditional sky subtraction techniques were inadequate. Because previously published Haser model parent and daughter scale lengths did not fit the data well, unbiased ranges of scale lengths were searched for the best-fitting pairs. Coma gas production rates for OH, CN, C2, C3, NH, NH2, and OH confirmed the widely reported carbon-chain depletion for a sub-class of comets, most notably high-perihelion Jupiter-family comets observed at rh > 1.5 AU, with different behaviors for C2 and C3. Our long-slit spectroscopy data was also adapted for the A(θ) dust production parameter. The assumption that A(θ) is constant throughout the nucleus was not upheld. High dust-to-gas ratios for comets with large perihelia were not a selection effect, and suggest that the dust was released earlier in the formation of the coma than the gas. The dust-to-gas ratio did not exhibit any evolutionary traces between different comet dynamical families. The comet survey illuminates the diversity among comets, including the unusually carbon poor Comet 96P/Machholz.  相似文献   

15.
This paper pursues former studies of the coronal structures that are associated with radio type III bursts by taking advantage of the new capabilities of STEREO/SECCHI. The data analysis has been performed for 02 and 03 June 2007. During these two days several type III bursts, which were detected in the corona and in the interplanetary medium, occurred during the observing time of the Nançay radioheliograph. Electron beams accelerated in the same active region and producing type III emissions almost at the same time, can propagate in different well defined coronal structures below 15 R. Then, these structures become imbedded in the same plasma sheet which can be tracked up to 0.25 AU. Inhomogeneities travel along these structures; their velocities measured between 15 and 35 R are typical of those of a slow solar wind. Comparison with PFSS magnetic field extrapolation shows that its connection with the IP magnetic field is different from what is suggested by the present observations. These results are consistent with those obtained in the IP medium formerly by Buttighoffer (Astron. Astrophys. 335, 295, 1998) who identified by in situ measurements at 1 AU and beyond, the sites where Langmuir waves, associated with local type III emissions, are excited.  相似文献   

16.
We reduced ultraviolet spectra of Saturn from the IUE satellite to produce a geometric albedo of the planet from 1500 to 3000 Å. By matching computer models to the albedo we determined a chemical composition consistent with the data. This model includes C2H2 and C2H6 with mixing ratios and distributions of (9 ± 3) × 10?8 in the top 20 mbar of the atmosphere with none below for C2H2 and (6 ± 1) × 10?6 also in the top 20 mbar with none below for C2H6. The C2H2 and C2H6 distributions and the C2H6 mixing ratio are taken directly from the Voyager IRIS model [R. Courtin et al., Bull. Amer. Astron. Soc.13, 722 (1981), and private communication]. The Voyager IRIS model also includes PH3, which is not consistent with the uv albedo from 1800 to 2400 Å. Our model requires a previously unidentified absorber to explain the albedo near 1600 Å. After considering several candidates, we find that the best fit to the data is obtained with H2O, having a column density of (6 ± 1) × 10?3 cm-am.  相似文献   

17.
We have presented an alternative interpretation for the absence of correlation in the relationship between the core radio power (P C) and core-dominance parameter (R) for a sample of BL Lacs and radio galaxies found in Fan & Zhang (Astron. Astrophys. 407, 899 (2003)). This is contrary to the predictions of the relativistic beaming and radio source orientation models in which the core luminosity is expected to be Doppler-boosted relative to the extended luminosity which is generally assumed to be isotropic. Our analysis of the P C???R data indicates a strong luminosity selection effect (reminiscent of bright source samples due to Malmquist bias) in the sample. In particular, we showed that a strong P C???R correlation exists above some redshift cut-off which may correspond to the flux limit of the sample used.  相似文献   

18.
We have elaborated an evolutionary turbulent model of the subnebula of Saturn derived from that of Dubrulle (1993, Icarus106, 59-76) for the solar nebula, which is valid for a geometrically thin disk. We demonstrate that if carbon and nitrogen were in the form of CO and N2, respectively, in the early subnebula, these molecules were not subsequently converted into CH4 and NH3 during the evolution of the disk, contrary to the current scenario initially proposed by Prinn and Fegley (1981, Astrophys. J., 249, 308-317). However, if the early subnebula contained some CH4 and NH3, these gases were not subsequently converted into CO and N2. We argue that Titan must have been formed from planetesimals migrating from the outer part of the subnebula to the present orbit of the satellite. These planetesimals were relics of those embedded in the feeding zone of Saturn prior to the completion of the planet and contained hydrates of NH3 and clathrate hydrates of CH4. It is shown that, for plausible abundances of CH4 and NH3 in the solar nebula at 10 AU, the masses of methane and nitrogen trapped in Titan were higher than the estimate of masses of these components in the primitive atmosphere of the satellite. If our scenario is valid and if our turbulent model properly describes the structure and the evolution of the actual subnebula of Saturn, the Xe/C ratio should be six times higher in Titan's atmosphere today than in the Sun, while the current scenario would probably result in a quasi solar Xe/C ratio. The mass spectrometer and gas chromatograph instrument aboard the Huygens Titan probe of the Cassini mission has the capability of measuring this ratio in 2004, thus permitting us to discriminate between the current scenario and the one proposed in this report.  相似文献   

19.
We present results from 44 simulations of late stage planetary accretion, focusing on the delivery of volatiles (primarily water) to the terrestrial planets. Our simulations include both planetary “embryos” (defined as Moon to Mars sized protoplanets) and planetesimals, assuming that the embryos formed via oligarchic growth. We investigate volatile delivery as a function of Jupiter's mass, position and eccentricity, the position of the snow line, and the density (in solids) of the solar nebula. In all simulations, we form 1-4 terrestrial planets inside 2 AU, which vary in mass and volatile content. In 44 simulations we have formed 43 planets between 0.8 and 1.5 AU, including 11 “habitable” planets between 0.9 and 1.1 AU. These planets range from dry worlds to “water worlds” with 100+oceans of water (1 ocean=1.5×1024 g), and vary in mass between 0.23M and 3.85M. There is a good deal of stochastic noise in these simulations, but the most important parameter is the planetesimal mass we choose, which reflects the surface density in solids past the snow line. A high density in this region results in the formation of a smaller number of terrestrial planets with larger masses and higher water content, as compared with planets which form in systems with lower densities. We find that an eccentric Jupiter produces drier terrestrial planets with higher eccentricities than a circular one. In cases with Jupiter at 7 AU, we form what we call “super embryos,” 1-2M protoplanets which can serve as the accretion seeds for 2+M planets with large water contents.  相似文献   

20.
Flux ropes ejected from the Sun may change their geometrical orientation during their evolution, which directly affects their geoeffectiveness. Therefore, it is crucial to understand how solar flux ropes evolve in the heliosphere to improve our space-weather forecasting tools. We present a follow-up study of the concepts described by Isavnin, Vourlidas, and Kilpua (Solar Phys. 284, 203, 2013). We analyze 14 coronal mass ejections (CMEs), with clear flux-rope signatures, observed during the decay of Solar Cycle 23 and rise of Solar Cycle 24. First, we estimate initial orientations of the flux ropes at the origin using extreme-ultraviolet observations of post-eruption arcades and/or eruptive prominences. Then we reconstruct multi-viewpoint coronagraph observations of the CMEs from ≈?2 to 30 R with a three-dimensional geometric representation of a flux rope to determine their geometrical parameters. Finally, we propagate the flux ropes from ≈?30 R to 1 AU through MHD-simulated background solar wind while using in-situ measurements at 1 AU of the associated magnetic cloud as a constraint for the propagation technique. This methodology allows us to estimate the flux-rope orientation all the way from the Sun to 1 AU. We find that while the flux-ropes’ deflection occurs predominantly below 30 R, a significant amount of deflection and rotation happens between 30 R and 1 AU. We compare the flux-rope orientation to the local orientation of the heliospheric current sheet (HCS). We find that slow flux ropes tend to align with the streams of slow solar wind in the inner heliosphere. During the solar-cycle minimum the slow solar-wind channel as well as the HCS usually occupy the area in the vicinity of the solar equatorial plane, which in the past led researchers to the hypothesis that flux ropes align with the HCS. Our results show that exceptions from this rule are explained by interaction with the Parker-spiraled background magnetic field, which dominates over the magnetic interaction with the HCS in the inner heliosphere at least during solar-minimum conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号