首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we reconstruct the inverted metamorphic sequence in the western Arunachal Himalaya using combined structural and metamorphic analyses of rocks of the Lesser and Greater Himalayan Sequences. Four thrust-bounded stratigraphic units, which from the lower to higher structural heights are (a) the Gondwana rocks and relatively weakly deformed metasediments of the Bomdila Group, (b) the tectonically interleaved sequence of Bomdila gneiss and Bomdila Group, (c) the Dirang Formation and (d) the Se La Group are exposed along the transect, Jira–Rupa–Bomdila–Dirang–Se La Pass. The Main Central thrust, which coincides with intense strain localization and the first appearance of kyanite-grade partial melt is placed at the base of the Se La Group.Five metamorphic zones from garnet through kyanite, kyanite migmatite, kyanite-sillimanite migmatite to K-feldspar-kyanite-sillimanite migmatites are sequentially developed in the metamorphosed low-alumina pelites of Dirang and Se La Group, with increasing structural heights. Three phases of deformation, D1–D2–D3 and two groups of planar structures, S1 and S2 are recognized, and S2 is the most pervasive one. Mineral growths in all these zones are dominantly late-to post-D2, excepting in some garnet-zone rocks, where syn-D1 garnet growths are documented. Metamorphic isograds, which are aligned parallel to S2 were subsequently folded during D3. The deformation produced plane-non-cylindrical fold along NW–SE axis.In the garnet-zone, peak metamorphism is marked by garnet growth through the reaction biotite + plagioclase → garnet + muscovite. An even earlier phase of syn-D1 garnet growth occurred in the chlorite stability field with or without epidote. In the kyanite-zone metapelites, kyanite appeared via the pressure-sensitive reaction, garnet + muscovite → kyanite + biotite + quartz. Staurolite was produced in the same rock by retrograde replacement of kyanite following the reaction, garnet + kyanite + H2O → staurolite + quartz. These reactions depart from the classical kyanite- and staurolite-isograd reactions in low-alumina pelites, encountered in other segments of eastern Himalaya. In the metapelites, just above the kyanite-zone, melting begins in the kyanite field, through water-saturated and water-undersaturated melting of paragonite component in white mica. Leucosomes formed through these reactions are characteristically free of K-feldspar, with sodic plagioclase and quartz as the dominant constituents. With increasing structural height, the melting shifts to water-undersaturated melting of muscovite component of white mica, producing an early K-feldspar + kyanite and later K-feldspar + sillimanite assemblages and granitic leucosomes.Applications of conventional geothermobarometry and average PT method reveal near isobaric (at P  8 kbar) increase in peak metamorphic temperatures from 550 °C in the garnet-zone to >700 °C for K-feldspar-kyanite-sillimanite-zone rocks. The findings of near isobaric metamorphic field gradient and by the reconstruction of the reaction history, reveal that the described inverted metamorphic sequence in the western Arunachal Himalaya, deviates from the classical Barrovian-type metamorphism. The tectonic implication of such a metamorphic evolution is discussed.  相似文献   

2.
3.
Low to medium grade crystalline rocks locally known as Bomdila Group extensively covers the Lesser Himalayan region in Western Arunachal Himalaya. This Group consists dominantly of mylonitic gneisses of granitic composition of Palaeoproterozoic age, named as Bomdila mylonitic gneiss (BMG) and a small body of hornblende bearing granite of Mesoproterozoic age known as Salari granite (SG). The BMG is affinity to peraluminous (A/CNK > 1.1) with high content of SiO2, K2O/Na2O ratio, normative corundum, high ratio of FeOt/MgO in biotite (3.21–5.11) that shows characteristics of S-type granite whereas SG has granodiorite composition with high Na2O, low K2O, presence of hornblende, normative diopside, low A/CNK ratio (<1.1) and low FeOt/MgO ratio in biotite (1.58–1.60) indicates metaluminous I-type granite affinity. The SG has more fractionated nature of REE [(Ce/Yb)N = 9.06–18.53] and minor negative Eu anomalies [EuN/Eu* = 0.69–0.94] as compared to BMG which has less fractionation of REE [(Ce/Yb)N = 5.95–9.16] and strong negative Eu anomalies [EuN/Eu* = 0.37–0.43]. Geochemical and petrological studies suggest that the SG and BMG are not genetically related; SG appears to have derived from igneous source whereas the BMG have been derived from sedimentary source, however these granitoids might have produced during the same thermal event.  相似文献   

4.
Normal faults on mesoscopic scale are observed in the Panjal Thrust Zone in the Dalhousie area of western Htmachal. The boundary between the southern margin of the Higher Himalaya Crystalline (HHC) of Zanskar and the Chamba syncline sequence is also described as a normal fault, referred to as Bhadarwah Normal Fault in the Bhadarwah area of Doda district on the basis of field mapping and shear sense criteria using S-C fabric and porphyroblast rotation. The occurrence of these normal faults suggests that the extensional tectonic regime was not restricted only to the Zanskar shear zone area but that it also occurs south of the Higher Himalayan range. This suggests NE-directed subhorizontal extension and exhumation of deeper level rocks of Higher Himalaya Crystallines.  相似文献   

5.
6.
To study neotectonics, the structural and morphotectonic aspects are studied along a part of mountain front region of Northeast Himalaya, Arunachal Pradesh, India. Unpaired river terraces are recognized near north of transverse Burai River exit, which is cut by an oblique fault. Across this fault, fluvial terraces are located at heights of 22.7 and 3 m, respectively, on the left and right banks. A water gap is formed along the river channel where the uplifted Middle Siwalik sandstone beds dipping 43° towards ENE direction, thrust over the Quaternary deposit consisting of boulders, cobbles, pebbles and sandy matrix. This river channel incised the bedrock across the intraformational Ramghat Thrust along which the rocks of the Middle Siwalik Formation thrust over the Upper Siwalik Formation. Recent reactivated fault activity is suggested north of the Himalayan Frontal Thrust that forms the youngest deforming front of the Himalaya. The uplifting along the stream channel is noticed extended for a distance of ~130 m and as a result the alluvial river channel became a bedrock river. The relative displacement of rocks is variable along the length of strike–slip faults developed later within the Ramghat Thrust zone. Longitudinal and Channel gradient profiles of Burai River exhibit knick points and increase in river gradient along the tapering ends of the profiles. The study suggests active out-of-sequence neotectonically active thrusting along the mountain front. Neotectonics combined with climatic factor during the Holocene times presents a virgin landscape environment for studying tectonic geomorphology.  相似文献   

7.
Major and trace element geochemistry of Proterozoic granitoids from the Dirang and Galensiniak Formations, of Lesser and Higher Himalayas, respectively, emplaced in and around Dirang and Tawang regions of the western Arunachal Himalaya, is discussed. In general, these granitoids are massive as well as foliated in nature and are characterized by granitic mineralogical compositions. Porphyritic and hypidiomorphic textures are common in massive type, whereas others show porphyroblastic and foliated textures. Augen structure is also observed in a number of samples. Geochemical and normative compositions together with petrographic features classify them as peraluminous granitoids. Major and trace element geochemistry of most of these granitoids shows granitic nature, while few samples also show monzonitic characteristics. Observed geochemical characters, such as their peraluminous and alkali-calcic/calcic-alkalic nature, crudely defined geochemical patterns, different multi-element and rare-earth element patterns, together with low Mg# (Mg number) of these granitoids suggest their derivation from lower crustal material rather than a mantle source. Multi-element and rare-earth element patterns corroborate their genesis from different crustal melts. It is difficult to explain variations observed in granitoid rocks by partial melting alone; definitely different other processes like migration of melts, magma mixing, assimilation and fractional crystallization also played important role in the genesis of these granitoids. These melts were likely generated at low temperature (730–760 °C) and low pressure (2–5 GPa). The chemical compositions suggest that most of these Paleoproterozoic granitoids are emplaced within the syn-collisional tectonic setting, while few granitoid samples also indicate their volcanic-arc nature. Probably, later group of granitoids are slightly younger to the syn-collisional type.  相似文献   

8.
In the Lesser Himalayan region of Garhwal, an elongate, NW-SE trending zone of mylonitic rocks is developed along the Singuni Thrust within the metasedimentary formation of the Deoban-Tejam Belt. Detailed petrography of various mylonitic rocks indicates that a quartz and felspar porphyry was emplaced along the Singuni Thrust. This was initially metamorphosed in the almandine-amphibolite facies before profound ruptural or cataclastic and crystalloblastic deformation evolved mylonitic rocks in the green schist facies. Southwesterly dipping foliation and an equally prominent mica lineation plunging in the same direction are developed in these mylonitic rocks. The quartzite is also intensely cataclastically deformed in the green schist facies and is highly schistose with a prominent mica lineation normal to the trace of Singuni Thrust, Uttarkashi Thrust and Main Central Thrust in the ‘a’ direction of tectonic transport. In quartzite and mylonitic rocks, a probable contemporaneous development of the metamorphic and structural elements has been postulated along the Singuni Thrust during large scale tectonic movements. Normally exposed Gamri Quartzite is more metamorphosed near its base along the Singuni Thrust and Uttarkashi Thrust while the intensity of deformation increases near the top of normally exposed quartzite along the Main Central Thrust and, thus, signifying the role of thrusting in cataclastically deforming the rocks and contributing to the phenomenon of widespread reversal of metamorphism in the Lesser Himalaya.  相似文献   

9.
Summary The Palampur metavolcanics (PV) in the northwest Himalaya are part of the Late Archaean (2.5 Ga) Rampur flood basalt province (RFBP) which represents one of the oldest manifestation of worldwide mafic magmatism. The volcanics occur as mafic lava flows with evidence of two phases of deformation. The first phase resulted in recrystallisation which almost completely obliterated the primary mineralogy, and the second phase was of weak cataclasis. Immobile trace element ratios as well as cation percent Al - (Fe - Ti) - Mg indicate that the volcanics are tholeiitic in composition. The chemical characteristics, such as the decoupling between HFS and LIL elements i.e., distinct negative Sr, Nb and Ti anomalies in the double normalisation ratios spiderdiagram together with low Ti/Y and Zr/Y ratios, testify the rocks as low-Ti continental flood basalts. The chemical variations in the volcanics can be related to varying extents of partial melting of the mantle source(s), followed by fractional crystallisation (predominantly olivine and clinopyroxene over plagioclase). Positive correlation between LREE and Fe abundances, Ce-Nd and Y/Nd-Zr/Y data preclude any significant role of crustal contamination in the evolution of their bulk chemistry. The REE data and [Mg]-[Fe] relations rather suggest that the parental magma of the PV derived from non-pyrolitic source(s) which was heterogeneous with respect to enrichment in Zr, LREE and Fe/Mg ratios. Mantle metasomatism appears to be the main process of such source enrichment, possibly caused by the addition of a volatilerich silicate melt phase.[/ p]
Geochemie und Petrogenese der Palampur Metavulkanite, Lesser Himachal Himalaya, Indien
Zusammenfassung Die Palampur Metavulkanite (PV), im nordwestlichen Himalaya, gehören zur spätarchaiischen (2.5 Ga) Rampur Plateau-Basalt-Provinz (RFBP), die einen der ältesten, weltweiten Phasen von mafischem Magmatismus manifestiert. Die Vulkanite treten als mafische Lavaströme auf und zeigen zwei Phasen von Deformation. Die erste resultierte in einer Rekristallisation, die nahezu den gesamten primären Mineralbestand überprägt hat. Die zweite Phase ist durch schwache Kataklase repräsentiert. Immobile Spurenelementverhältnisse, wie auch die Kationenprozent von Al- (Fe- (-Ti) -Mg, deuten eine tholeiitische Zusammensetzung der Vulkanite an. Die chemischen Charakteristika, die im unterschiedlichen Verhalten der HFS und LIL Elemente deutlich werden, deutlich negative Sr, Nb und Ti Anomalien in den zweifach normalisierten Spiderdiagrammen, niedrige Ti/Y und Zr/Y Verhältnisse, bezeugen, dass es sich um Ti-arme, kontinentale Plateaubasalte handelt. Die chemischen Unterschiede innerhalb der Vulkanite können auf unterschiedliche Grade von Aufschmelzung des (der) Mantelmaterials(e), gefolgt von fraktionierter Kristallisation (vor allem Olivin und Klinopyroxen, untergeordnet Plagioklas), zurückgeführt werden. Positive Korrelation der LREE mit Fe, wie auch die Ce-Nd und Y/Nd-Zr/Y Daten schließen eine signifikante Rolle von Krustenkontamination in der Evolution der Gesteinschemie aus. Die REE Daten und die /Mg/-/Fe/ Verhältnisse lassen eher vermuten, dass das Ausgangsmagma der PV von einem nicht-pyrolitischen Material stammt, welches bezüglich Anreicherung an Zr, LREE und Fe/Mg Verhältnis heterogen gewesen ist. Mantelmetasomatose scheint der Hauptprozeß für diese Anreicherng des Ausgangsmaterials gewesen zu sein, die möglicherweise durch Zufuhr einer silikatischen Schmelzphase, reich an flüchtigen Bestandteilen, hervorgerufen wurde.[/ p]
  相似文献   

10.
The detailed hydro-chemical study of meltwater draining from Khangri glacier Arunachal Pradesh has been carried out to evaluate the major ion chemistry and weathering processes in the drainage basin. The investigative results shows that the meltwater is almost neutral to slightly acidic in nature with Mg–HCO3-dominated hydro-chemical facies. In glacial meltwater, Ca+?2 is the most dominated cation followed by Mg+2, Na+, and K+, while HCO3? is the most dominant anion followed by SO42?, NO3?, and Cl?. The dominant cations such as Ca+2 and Mg+2 show a good relation with the minerals abundance of the rocks. Calcite (CaCO3) and biotite [K(Mg,Fe)3AlSi3O10(F,OH)2] are the most abundant minerals in the deformed carbonate-rich metasedimentary rocks near to the snout with some K feldspar (KAlSi3O8) and quartz (SiO2). This suggests Ca+2 have definitely entered into the water due to the dissolution of calcite and Ca feldspar (CaAl2Si2O8), while one of the source of Mg+2 is biotite. Na feldspar (NaAlSi3O8) has contributed towards the availability of sodium ion, while potassium ion is derived from the chemical weathering of K feldspar and biotite. The chemical weathering is the foremost mechanism controlling the hydro-chemistry of the Khangri glacier because of the least anthropogenic interferences. The mineralogy of surrounding rocks is studied to understand better, the rock–water interaction processes, and their contribution towards ionic concentration of meltwater. The meltwater discharge and individual ion flux of the catchment area have also been calculated, to determine the ionic denudation rate for the ablation season. The high elemental ratio of (Ca?+?Mg)/(Na?+?K) (7.91?±?0.39 mg/l) and low elemental ratio of (Na?+?K)/total cations (0.11?±?0.004) indicate that the chemical composition of meltwater is mainly controlled by carbonate weathering and moderately by silicate weathering. The scatter plot result between (Ca?+?Mg) and total cations confirms that carbonate weathering is a major source of dissolved ions in Khangri glacier meltwater. In addition, the statistical analysis was also used to determine the correlation between physical parameters of glacier meltwater which controlled the solute dynamics.  相似文献   

11.
The folds generally initiate at several discrete points along a layer or multilayer undergoing compressional forces. These compressional forces often lead to rotation of fold segments and in all such regimes, folds are strongly asymmetrical and are in complete agreement with the direction in which the force is applied and also with the related thrust sheet movement. This paper illustrates the progressive change in fold geometry with increasing compression and ductile shearing using natural example as studied in the Almora Crystalline Zone (ACZ).  相似文献   

12.
Understanding deformation mechanisms in Himalayan rocks is a challenging proposition due to the complex nature of the deformed rocks and their genesis. Crustal deformation in the Himalayan thrust belt typically occurs in elastico-frictional (EF) or quasi-plastic (QP) regimes at depths controlled mainly by regional strain-rate and geothermal gradient. However, material property, grain-size and their progressive changes during deformation are also important controlling factors. We present evidence of EF deformation from Gondwana rocks developed during the emplacement of one of the frontal horses (Jorthang horse) in the Lesser Himalayan Duplex (LHD) structure associated with Lesser Himalayan rocks in the footwall of the Ramgarh thrust in the Rangit window near Jorthang in the Sikkim Himalaya. The rocks in the horse exhibit systematic changes in microand meso-structures from an undeformed protolith to cataclasite suggesting that it was emplaced under elastico-frictional conditions. Meso- to micro-scale shear fractures are seen developed in Gondwana sandstone and slate while intercalated fine-grained shale-coal-carbonates are deformed by cataclastic flow suggesting that material property and grain-size have played an important role in the deformation of the Jorthang horse. In contrast, the hanging wall schists and quartzites of the Ramgarh thrust exhibit quasi-plastic deformation structures. This suggests that the Jorthang horse was emplaced under shallower crustal conditions than the antiformally folded Ramgarh thrust sheet even though the Ramgarh sheet presently overlies the Jorthang horse.  相似文献   

13.
Neoproterozoic evaporites occurring in the western part of the Lesser Himalaya in India, coeval to Pakistan, Iran and Oman evaporites, were investigated in order to understand the degree of metamorphism in them and in associated carbonates. The evaporite-bearing succession occurs in association of phyllite, quartzite and carbonate near the Main boundary Thrust. In order to learn the details about the burial history of these evaporite rocks, the Kübler illite crystallinity index (KI) was measured from the illite peaks of the clay minerals separated from the evaporite rocks and it indicated that this section has reached a maximum temperature up to ~300°C. Microthermometric measurements on fluid inclusions present in the associated dolomite show range of homogenization temperatures (Th), from 220 to 280°C, well within the temperature range of anchizone metamorphism. Additionally, dolomite shows a highly negative δ18O signature (mean, −15.5‰PDB), which is more likely related to diagenetic overprint from deep burial conditions rather than original precipitation from 18O-depleted seawater. The evaporites (sulfates and chloride) probably were transformed many times after their precipitation, but they have retained only the features developed during last one or two phases of alteration and deformation as they are continuously susceptible to minor changes in temperatures and stresses. The final temperature range of 42–78°C in sulfates and chloride gives thermal approximation estimate that is not in concordance with the thermal history of the basin and are likely related to conversion of anhydrite into gypsum and recrystallization of halite during exhumation. Highly negative oxygen isotopic composition, homogenization temperatures and KI values equivalent to a high anchizone metamorphism suggest a burial depth of ~10 km for these terminal Neoproterozoic evaporite-bearing sequences of the Lesser Himalaya.  相似文献   

14.
We report the measurements of thermal conductivity for some Higher Himalayan Crystalline rocks from Joshimath and Uttarkashi areas of the Garhwal Himalaya. Seventy-three rock samples including gneiss, metabasic rock and quartzite were measured. Gneissic rocks, which include augen gneiss, banded gneiss, felsic gneiss and fine-grained gneiss, exhibit a wide range in conductivity, from 1.5 to 3.6 Wm− 1K− 1 for individual samples, and 2.1 to 2.7 Wm− 1K− 1 for the means. Among these, augen gneisses and banded gneisses show the largest variability. Of all the rock types, quartzites (mean 5.4 Wm− 1K− 1) and metabasic rocks (mean 2.1 Wm− 1K− 1) represent the highest and lowest mean values respectively. The range in conductivity observed for gneissic rocks is significantly higher than that generally found in similar rock types in cratonic areas. The rock samples have very low porosity and exhibit feeble anisotropy, indicating that they do not contribute to the variability in thermal conductivity. Besides variations in mineralogical composition, the heterogeneous banding as well as intercalations with metabasic rocks and quartz veins, a common occurrence in structurally complex areas, appears to cause the variability in conductivity. The study therefore brings out the need for systematic characterization of thermophysical properties of major rock types comprising the Himalayan region for lithospheric thermal modeling, assessment of geothermal energy and geo-engineering applications in an area. The dataset constitutes the first systematic measurements on the Higher Himalayan Crystalline rocks.  相似文献   

15.
The nature and genesis of fossiliferous inorganic concretions present within the coal and carbonaceous beds of Garu Formation, Arunachal Pradesh have been studied in detail. These concretionary bodies are described here as “coal balls” due to their close similarity with the true coal balls reported from European and American coals. Further, the presence of coal balls in this area also indicates that the sediments of the Garu Formation were deposited in shallow marginal swamps subjected to marine incursions during the Lower Permian.  相似文献   

16.
The present study aims to understand evolution of the Lesser Himalaya, which consists of (meta) sedimentary and crystalline rocks. Field studies, microscopic and rock magnetic investigations have been carried out on the rocks near the South Almora Thrust (SAT) and the North Almora Thrust (NAT), which separates the Almora Crystalline Zone (ACZ) from the Lesser Himalayan sequences (LHS). The results show that along the South Almora Thrust, the deformation is persistent; however, near the NAT deformation pattern is complex and implies overprinting of original shear sense by a younger deformational event. We attribute this overprinting to late stage back-thrusting along NAT, active after the emplacement of ACZ. During this late stage back-thrusting, rocks of the ACZ and LHS were coupled. Back-thrusts originated below the Lesser Himalayan rocks, probably from the Main Boundary Thrust, and propagated across the sedimentary and crystalline rocks. This study provides new results from multiple investigations, and enhances our understanding of the evolution of the ACZ.  相似文献   

17.
Uphalda gneisses (UG) is a crystalline klippe located near Srinagar in Garhwal Himalaya. These gneisses are compared with Debguru porphyroids (DP) (≈Ramgarh group) of Garhwal–Kumaun Himalaya and Baragaon mylonitic gneisses (BMG) of Himachal Himalaya. Petrographic study reveals that the deformation of UG was initiated at higher temperature (above 350°C) and continued till lowering of temperature and deformation led to the mylonitization.  相似文献   

18.
The Garhwal Lesser Himalayan Krol Belt contains two well developed diamictite horizons in the Late Palaeozoic Blaini Formation. Structureless and massive diamictites contain clasts of different shape, roundness and lithologies comprising mainly shale, slate, phyllite, quartzite, vein quartz and limestone dispersed in fine sandy argillaceous and calcareous matrix.Clast composition and petrography of the diamictites and other lithologies of the Blaini Formation reveal the presence of sedimentary and low grade metamorphic rocks in the provenance of the Blaini. The provenance seems to be the Lesser Himalayan terrain of the Simla Slate, Jaunsar and Shali-Deoban carbonates which had probably undergone structural deformation prior to the Late Palaeozoic. Two glacier advances deposited the diamictites near the shoreline of the Krol Basin during Late Palaeozoic.
Zusammenfassung Im Krol Belt des Kleinen Himalaya sind in der jungpaläozoischen Blaini-Formation zwei Horizonte mit sedimentären Diamictiten enthalten. Die strukturlosen und massiven Diamictite enthalten Klastika verschiedener Form, Rundung und Lithologie. So findet man Schiefer, Phyllite, Quarzite, Gangquarze und Kalke in einer feinsandigen, tonigen Matrix mit Karbonatanteilen. Die Zusammensetzung der Klaste und die Petrographie der Diamictite sowie der übrigen Gesteine der Blaini-Formation zeigen die Anwesenheit von Sedimentgesteinen und schwach metamorphisierten Gesteinen im Einzugsbereich der Blaini-Formation. Dieser Bereich kann die Simla-Schiefer und die Jaunsar- und Shali-Deoban-Karbonate des Kleinen Himalaya mit umfassen, die vermutlich vorjungpaläozoisch metamorphisiert wurden. Während zweier Gletschervorstöße sind die Diamictite randlich im Krol-Becken während des Jungpaläozoikums abgelagert worden.

Résumé Dans la ceinture de Krol de l'Himalaya mineur, la Formation de Blaini, d'âge Paléozoique supérieur, renferme deux horizons à diamictites sédimentaires. Celles-ci, massives et sans structure interne, contiennent des éléments clastiques de forme arrondi et lithologie différents; ce sont des schistes métamorphiques, des phyllites, des quartzites, du quartz-filonien et des calcaires disposés dans une matrice fine, argilosableuse avec participation carbonatée. La composition des éléments clastiques et la pétrographie des diamictites, comme celles des autres roches de la Formation de Blaini, montrent la présence de roches sédimentaires et de roches faiblement métamorphiques de même provenance que la formation de Blaini; cette provenance peut comprendre les schistes de Simla et les roches carbonatées de Jaunsar et de Shali-Deoban qui furent métamorphisées probablement avant le Paléozoique supérieur. C'est au cours de deux avancées glaciaires que les diamictites ont été déposées en bordure du bassin de Krol pendant le Paléozoique supérieur.

, — — . , , , , , , , , - . . , -, . , , .
  相似文献   

19.
The fractionation of P in Pandoh Lake surface sediments has been investigated for the first time in order to understand its environmental availability and sources, and the eutrophication status of this lake. Inorganic-P is present mainly as authigenic-P (step-III). The authigenic P concentration is higher in winter relative to the summer and monsoon seasons and ranged from 35.9 to 46.9 μg/g. The loosely sorbed or exchangeable-P (step-I), Fe(III)-bound-P (step-II) and detrital inorganic-P (step-IV) were higher in the monsoon season and varied from 3.70 to 11.1 μg/g, 16.9 to 32.0 μg/g and 9.89 to 17.0 μg/g, respectively. Organic-P reached a maximum in the summer season and ranged from 8.00 to 14.9 μg/g. Authigenic-P and detrital inorganic-P show seasonal changes, as pH influences the interaction between P and CaCO3 in the water column. In the winter season, phosphate is precipitated out of the water column and fixed in the sediments as a result of an increase in pH. Calcite-bound-P in the sediments may be redissolved by decreasing pH in the summer season. Relatively high rates of mineralization during the monsoon results in the seasonal pattern of organic-P fractionation to sediment as follows: monsoon = winter < summer. Iron, Ca, organic matter and silt and clay contents seem to play a significant role in regulating the seasonal P budget. Principal component analysis (PCA) was used to identify the factors which influence sedimentary P in the different seasons.  相似文献   

20.
正The mafic dykes from the Paleoproterozoic Bomdila Group of metasedimentary rocks,Arunachal Pradesh,NE Lesser Himalaya,India have been analyzed for major and trace elements geochemistry essentially to understand their  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号