首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vast expanses of arid, saline soils that occur along the Arabian Gulf seaboard and elsewhere possess a very low density and strength that necessitate improvement before any actual construction takesplace. For large-scale constructions, several field improvement techniques have recently been implemented with various degrees of success. In surficial, small-scale applications, chemical stabilization provides a potential technique to improve the inferior properties of these soils, known locally as sabkha. A literature search indicates that chemical stabilization of soils usingasphalt, lime and cement is usually conducted at lower moisture contents than the optimum. Such moisture contents are also much lower than the natural moisture content of sabkha, and if applied to sabkha in the field, this wouldrequire lowering the moisture content before any stabilization commenced; whichwould be neither feasible nor economical.

In this investigation, an eastern Saudi sabkha soil was chemically stabilized at its natural moisture level, which varies from 16% to 22%. In addition to the characterization of the soil and standard compaction tests, cement and lime sabkha mixtures were prepared at five additions and cured for up to 90 days in plastic wrap. Results indicate that cement-stabilized sabkha gained high strength with time and proved to have a potential use in construction.  相似文献   


2.
Major geotechnical problems in construction involving silty–clayey soils are due to their low strength, durability and high compressibility of soft soils, and the swell–shrink nature of the overconsolidated swelling soils. Confronted with these problems, a suitable ground improvement technique is needed, for deep excavations in soft clays, for stability, durability and deformation control. Cement-stabilization is one of the alternatives. An increase in strength and durability, reduction in deformability are the main aims of this method. Conventional cement-stabilization methods are used mainly for surface treatment. However, the use of cement has recently been extended to a greater depth in which cement columns were installed to act as a type of soil reinforcement (deep cement–soil mixing and cement jet grouting). In situ engineering properties of these silty–clayey soils are often variable and difficult to predict. For this reason cement-stabilization methods have a basic target to control the aforementioned engineering properties of these clays so that the properties of a silty–clayey soil become more like the properties of a soft rock such as clayey shale or lightly cemented sandstone. So cement-stabilization of these soils is essential to control their engineering properties and to predict their engineering behaviour for construction. In an effort to predict, classify and study the suitability of silty–clayey soils for cement-stabilization both slaking and unconfined compressive strength tests were carried out on clayey–sand mixtures consisted of two types of clays, kaolin and bentonite. Finally diagrams were prepared to study the variation of slaking and strength due to compaction, curing time and cement percentage and also to predict areas of efficient cement-stabilization.  相似文献   

3.
Iron filling and iron filling–cement mixture were used to improve the shear strength characteristics of Irbid clayey soil. For this purpose, five types of Irbid clay soils were obtained and mixed with iron filling and iron filling–cement mixture at different percentages. Two sets of prepared samples were mixed with the admixture. The first set was prepared by mixing the soil samples with iron filling alone at 2.5, 5.0, 7.5, and 10% by dry weight of the soil. The second set was prepared by mixing with iron filling–cement mixture at equal ratio of the same percentages of the first set. An unconfined compression test was performed in this study to measure the shear strength properties of the soils. The test results showed that the increase in the percentages of the iron filling and iron filling–cement mixture up to 10% will result in increasing the maximum dry density of the soil and increase the unconfined compressive strength and the secant of modulus of elasticity of the clayey soil. Also, the addition of iron filling–cement mixture increased the unconfined compressive strength and secant modulus of elasticity of the clayey soil higher than the addition of iron filling alone.  相似文献   

4.
Effect of Cement Type on the Mechanical Behavior of a Gravely Sand   总被引:1,自引:0,他引:1  
The behavior of a cemented gravely sand was studied using triaxial compression tests. Gypsum, Portland cement and lime were used as the cementing agents in sample preparation. The samples with different cement types were compared in equal cement contents. Three cement contents of 1.5%, 3.0% and 4.5% were selected for sample preparation. Drained and undrained triaxial compression tests were conducted in a range of confining pressures from 25 kPa to 500 kPa. Failure modes, shear strength, stress–strain behavior, volume and pore pressure changes were considered. The gypsum cement induced the highest brittleness in soil among three cement types while the Portland cement was found to be the most ductile cementing agent. In lower cement contents and lower confining pressures the soil cemented with Portland cement showed the highest shear strength. However, in the same range of cement content, the soil cemented with gypsum showed highest shear strength for highest tested confining stress. For higher cement contents the shear strength of soil cemented with Portland cement is higher than that for the two other cement types for the range of confining pressures tested in the present study. The samples cemented with lime had the least peak and ultimate shear strength and the highest pore pressure generation in undrained tests. Contrary to the soil cemented with lime, the brittleness of soil cemented with gypsum and Portland cement reduces in undrained condition. Finally it was found that the effect of cement type on the shear strength of cemented soils is more profound in drained condition compared to undrained state.  相似文献   

5.
An experimental study is conducted to measure small-strain shear modulus of clay-cement mixture using bender element apparatus setup in a triaxial cell. Bender element tests were conducted on cement-treated soils and the results were analyzed to study the variation of shear modulus properties of soil specimens at different cement contents, confining pressures, curing times, and compaction moisture contents. Based on the obtained results increasing the cement ratio has a significant effect on the small-strain shear modulus of the treated soils, and this effect signifies with increasing the moisture content and curing time. Rates of shear modulus enhancements due to cement content, curing time, and compaction moisture content are quantified and presented. In this study, a clay–cement–water ratio formulation is proposed that enables one to calculate cement and water contents required to obtain specific small-strain shear modulus.  相似文献   

6.
Performance of Foundations in Sabkha Soil: Numerical Investigation   总被引:1,自引:1,他引:0  
Sabkha or salt flat soil is one of the most unpredictable and potentially dangerous soils in the Middle East. This soil covers a large and strategically important area of the Arabian Gulf coast, as it contains the world biggest oil reserve and a number of petrochemical plants are either have been built or are scheduled to be built in this area. The performance of shallow and deep foundations in the Eastern Province of Saudi Arabia’s sabkha soil is investigated numerically using the finite element method. The parameters used to simulate this soil in the numerical models were based on a large number of laboratory tests to determine the shear strength and stiffness parameters of the sabkha soil. In addition, the characteristics of the interface between the foundation and soil used in the numerical model were established from shear box tests that were conducted to evaluate the concrete-sabkha soil interface properties. The developed numerical model was calibrated/verified using the results of full-scale pile load testing program from an ongoing project to further enhance the accuracy of the results. A parametric study was then conducted using the verified model to establish the performance characteristics of foundations constructed in sabkha soil and provide guidelines for their design.  相似文献   

7.
This study examines the small-strain dynamic properties of mixtures composed of sandy and gravelly soils with granulated tire rubber in terms of shear modulus (GO), and damping ratio in shear (Dmin). Torsional resonant column tests are performed on dry, dense specimens of soil-rubber mixtures in a range of soil to rubber particles size 5:1–1:10 and rubber content from 0 to 35% by mixture weight. The experimental results indicate that the response of the mixtures is significantly affected by the content of rubber and the relative size of rubber to soil particles. Concering the small-strain shear modulus, an equivalent void ratio is introduced that considers the volume of rubber particles as part of the total volume of voids. Based on a comprehensive set of test results a series of equations were developed that can be used to evaluate the shear modulus and damping ratio at small shear strain levels if the confining pressure, the content of rubber by mixture weight, the grain size of soil and rubber particles, and the dynamic and physical properties of the intact soil are known.  相似文献   

8.
刘鑫  范晓秋  洪宝宁 《岩土力学》2011,32(6):1676-1682
为研究水泥砂浆固化土剪切强度特性和合理确定水泥砂浆固化土工程应用的配比,从掺砂量、水泥掺入比、原料土含水率及砂料粒径入手,对水泥砂浆固化土进行了室内固结不排水三轴(CU)试验研究。结果表明,掺砂可以改善固化土强度;随掺砂量的增加,黏聚力和有效黏聚力先增加后减小,转折点的掺砂量为最佳掺砂量(10%左右),内摩擦角和有效内摩擦角不断增加,一定掺砂量下增加水泥掺入比可有效地提高固化土的强度;随着含水率的增加,固化土的黏聚力呈近似线性减小的关系,而内摩擦角几乎保持不变,采用水泥砂浆处理高含水率软弱地基时适当提高掺砂量,可以较大幅度改善固化土的力学性质;在掺料配比一定的情况下砂料粒径对固化土的抗剪强度指标存在一定的影响。采用单一粒径砂料的固化土抗剪强度更高,该单一粒径在固化土级配良好的前提下,不均匀系数Cu趋于最大、曲率系数Cc趋于最小  相似文献   

9.
This paper presents the effect of random inclusion of polypropylene fibers on strength characteristics of soil. Locally available cohesive soil (CL) is used as medium and polypropylene fibers with three aspect ratios (l/d = 75, 100 and 125) are used as reinforcement. Soil is compacted with standard Proctor’s maximum density with low percentage of reinforcement (0–1% by weight of oven-dried soil). Direct shear tests, unconfined compression tests and CBR tests were conducted on un-reinforced as well as reinforced soil to investigate the strength characteristics of fiber-reinforced soil. The test results reveal that the inclusion of randomly distributed polypropylene fibers in soil increases peak and residual shear strength, unconfined compressive strength and CBR value of soil. It is noticed that the optimum fiber content for achieving maximum strength is 0.4–0.8% of the weight of oven-dried soil for fiber aspect ratio of 100.  相似文献   

10.
改良黄土强度特性与工程处置试验研究   总被引:1,自引:0,他引:1  
本文针对山西朔州典型黄土,利用素黄土与石灰粉煤灰、石灰水泥、水泥粉煤灰三种改良黄土,进行了击实特性、抗剪强度特性及崩解特性试验研究,提出了黄土改良的最佳方案,并采用该方案对山西某煤矿电梯井填方段进行了数值模拟分析,验证了石灰粉煤灰改良黄土工程应用的可行性。试验结果表明:粉煤灰与黄土形成致密的混合结构,石灰的掺入,激活了粉煤灰的活性,发生了一系列的水化反应,使改良黄土的强度大大提高,改良黄土在物理力学性质方面有明显改善。  相似文献   

11.
This paper investigates the fundamental characteristics of shear strength and deformation of crushed oyster shell–sand mixtures to stimulate recycling of waste oyster shells. Standard penetration tests (SPT) and large-scale direct-shear tests were carried out with different kinds of dry unit weight and mixing rate of oyster shell–sand mixture. Correlations between N-value, dry unit weight, and friction angle of mixtures were observed from the results of experimental tests, making it possible to estimate the in situ strength from SPT, and the coefficient of volume compressibility from the confined direct-shear compression test. These results also make it possible to compute the settlement of oyster shell–sand mixture when used in soft ground improvement.  相似文献   

12.
Biosurfactants are frequently used in petroleum hydrocarbon and dense non-aqueous phase liquids (DNAPLs) remediation. The applicability of biosurfactant use in clayey soils requires an understanding and characterization of their interaction. Comprehensive effects of surfactants and electrolyte solutions on kaolinite clay soil were investigated for index properties, compaction, strength characteristics, hydraulic conductivities, and adsorption characteristics. Sodium dodecyl sulfate (SDS) and NaPO3 decreased the liquid limit and plasticity index of the test soil. Maximum dry unit weights were increased and optimum moisture contents were decreased as SDS and biosurfactant were added for the compaction tests for mixtures of 30% kaolinite and 70% sand. The addition of non-ionic surfactant, biosurfactant, and CaCl2 increased the initial elastic modulus and undrained shear strength of the kaolinite–sand mixture soils. Hydraulic conductivities were measured by fixed-wall double-ring permeameters. Results showed that the hydraulic conductivity was not significantly affected, but slightly decreased from 1×10−7 cm/s (water) to 0.3×10−7 cm/s for Triton X-100 and SDS. The adsorption characteristics of the chemicals onto kaolinite were also investigated by developing isotherm curves. SDS adsorbed onto soil particles with the strongest bonding strength of the fluids tested. Correlations among parameters were developed for surfactants, electrolyte solutions, and clayey soils.  相似文献   

13.
The addition of cementitious admixtures and/or inclusion of fibers are frequently used in practice to stabilize soils and to improve their mechanical properties. In this study, ring shear tests were conducted to investigate mechanical properties such as shear strength, angle of friction and cohesion values of randomly distributed discrete fiber-reinforced sand mixtures. The length and aspect ratio of the fibers used in the current study were 12 mm and 120, respectively. Specimens were prepared at four different fiber ratios (0.1, 0.3, 0.6, and 0.9 % by weight of sand). A series of ring shear tests were carried out on sand alone and fiber-reinforced sand mixtures at different normal stresses. The test results indicated that the addition of fiber had a significant effect on the shear strength of the sand. Shear stress of the unreinforced sand increases 1.29–2.32, 1.16–1.39, and 1.07–1.5 times at a normal stress of 50, 150, and 250 kPa, respectively with fiber inclusion. Fiber content had positive effects on improving the shear strength parameters (angle of internal friction and cohesion) of the mixtures. The cohesion and angle of internal friction of fiber-reinforced sand prepared at different ratios of fiber increased by 5.3–27.4 kPa and 2.0°–7.3° respectively. The inclusion of fibers improves the ductility of the soil by preventing the loss of post-peak strength.  相似文献   

14.
水泥加固不同地区软土的试验研究   总被引:1,自引:0,他引:1  
陈慧娥  王清 《岩土力学》2007,28(2):423-426
对不同地区软土经水泥加固后的强度形成特征进行了研究。进行直接剪切试验及无侧限抗压试验测定了水泥加固土的力学指标,发现不同地区的软土经水泥加固后力学性质存在很大差异,从试样的粒度成分、有机质含量及加固后试样的微观结构特征等方面对此进行解释。结果表明,试样的粒度成分及有机质含量会对加固效果产生很大影响,黏粒含量越大,有机质含量越高,对水泥加固土强度的形成越不利。为在用水泥进行不同性质的软土加固处理时采取合理的附加措施提供了理论依据。  相似文献   

15.
Use of Natural Pozzolana and Lime for Stabilization of Cohesive Soils   总被引:1,自引:0,他引:1  
The present study investigates the use of natural pozzolana combined with lime for ground improvement applications. Laboratory tests were undertaken to study the effect of natural pozzolana, lime or a combination of both on the physical and the mechanical characteristics of cohesive soils. Natural pozzolana, lime and natural pozzolana-lime were added to two cohesive soils at ranges of 0–20 and 0–8%, respectively. Consistency, compaction, undrained traxial shear and unconfined compressive strength tests were performed on untreated and treated soil samples to assess the physical and mechanical characteristics of the soil. Treated samples were cured for 1, 7, 28 and 90 days. The results show that the cohesive soils can be successfully stabilized by combining natural pozzolana and lime.  相似文献   

16.
In this paper, an experimental investigation of cement treated sand is performed under triaxial tests in order to quantify the effects of cementation on the stress–strain behavior, stiffness and shear strength. Samples were cured up to 180 days. The results show that the stress–strain behavior of cemented sands is nonlinear with contractive–dilative stages. The stress–strain response is strongly influenced by effective confining pressure and cement content. Stiffness and strength are greatly improved by an increase in binder content. An increase of the angle of shearing resistance and cohesion intercept with increasing cement content is observed consistently. Brittle behavior is observed at low confining pressure and high cement content. After yielding, the increase in the dilatancy accelerates. Two competing related processes determine the peak strength: Bond breakages cause a strength reduction but the associated dilatancy leads to a strength increase. This finding and the experimental observation that the dilatancy at the peak state increases with increasing cement content explain why the measured peak-state strength parameters, c′ and φp′, are relevant to the binder content.  相似文献   

17.
Shear Strength Criteria for Unsaturated Soils   总被引:4,自引:3,他引:1  
Shear strength is one of the fundamental properties of unsaturated soils. It has been found to change with matric suction. Various shear strength equations have been proposed for predicting the shear strength versus suction relationship for unsaturated soils. Some of these equations are based on regression analysis of experimental data, while some are embodied in more complex stress–strain constitutive models. In this paper, a variety of shear strength equations are examined and compared with respect to their fit of experimental data. Data for specimens prepared from initially slurry conditions as well as data for initially compacted soil specimens are analysed. The advantages and limitations associated with various proposed shear strength equations are discussed in this paper.  相似文献   

18.
Capturing strain localization in reinforced soils   总被引:2,自引:1,他引:1  
Lade’s single hardening soil model with Cosserat rotation embodied in the finite element method is employed to investigate the behavior of geosynthetic reinforced soils with special attention to the development of shear banding. The ability of the finite element model to detect shear banding in a reinforced soil is examined against three high quality small-scale laboratory plane strain tests on Toyoura sand with and without reinforcement. These three tests were chosen because of the clear failure surfaces that developed in the soil during loading. The FEM analyses were able to reasonably simulate the plane strain laboratory tests including both unreinforced and reinforced cases. The FEM analyses gave reasonably good agreement with the experimental results in terms of global stress–strain relationships and shear band occurrences. Furthermore, and based on FE analyses of a hypothetical geosynthetic reinforced soil (GRS) retaining wall, it is shown that the geosynthetic reinforcements are very effective in hindering the formation of shear bands in GRS retaining walls when small spacing between the reinforcement layers was used. When used properly, the geosynthetic reinforcements made the soil behave as a truly reinforced mass of considerable stiffness and strength.  相似文献   

19.
Stabilization of desert sands using municipal solid waste incinerator ash   总被引:1,自引:0,他引:1  
This paper presents experimental results on the use of incinerator ash in stabilizing desert sands for possible use in geotechnical engineering applications. The incinerator ash was added in percentages of 2, 4, 8, 10 and 12%, by dry weight of sand. Laboratory tests such as compaction, unconfined compression, shear box and hydraulic conductivity were performed to measure the engineering characteristics of the stabilized material. The results showed substantial improvements in unconfined compressive strength and shear strength parameters (c and φ). Thus, incinerator ash can be used to improve the shear strength characteristics of desert sands. The permeability of the sand–incinerator ash mixture was relatively low.  相似文献   

20.
以汶川震区漩口一带地震诱发的松散堆积体为研究对象,开展碎石土原状样和重塑样的现场直剪对比试验,探讨不同法向应力、不同粒度组成和不同含水率等条件下碎石土的剪切强度特性。研究结果表明,地质成因和岩土体结构相似、粒度组成不同且级配不良的碎石土的剪切强度特性具有相似性;原状样剪切强度明显高于相同干密度和含水率的重塑样;级配良好的碎石土应变硬化程度略高于级配不良的碎石土,当粒径大于5 mm的粗颗粒含量大于42.9%时,随粗颗粒含量增加,碎石土的内摩擦角增加,而粘聚力则先减小后增大;抗剪强度指标与含水率呈线性负相关关系,随着含水率增高,碎石土抗剪强度降低,其中粘聚力较内摩擦角下降更明显。综合前人研究和本次试验结果,建议汶川震区类似结构组分碎石土天然状态下的剪切强度指标c值取15±3 k Pa,φ值取30°±2°。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号