首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
The Eastern Sierras Pampeanas were structured by three main events: the Ediacaran to early Cambrian (580?C510?Ma) Pampean, the late Cambrian?COrdovician (500?C440?Ma) Famatinian and the Devonian-Carboniferous (400?C350?Ma) Achalian orogenies. Geochronological and Sm?CNd isotopic evidence combined with petrological and structural features allow to speculate for a major rift event (Ediacaran) dividing into two Mesoproterozoic major crustal blocks (source of the Grenvillian age peaks in the metaclastic rocks).This event would be coeval with the development of arc magmatism along the eastern margin of the eastern block. Closure of this eastern margin led to a Cambrian active margin (Sierra Norte arc) along the western margin of the eastern block in which magmatism reworked the same crustal block. Consumption of a ridge segment (input of OIB signature mafic magmas) which controlled granulite-facies metamorphism led to a final collision (Pampean orogeny) with the western Mesoprotrozoic block. Sm?CNd results for the metamorphic basement suggest that the T DM age interval of 1.8?C1.7?Ga, which is associated with the less radiogenic values of ??Nd(540) (?6 to ?8), can be considered as the mean average crustal composition for the Eastern Sierras Pampeanas. Increasing metamorphic grade in rocks with similar detrital sources and metamorphic ages like in the Sierras de Córdoba is associated with a younger T DM age and a more positive ??Nd(540) value. Pampean pre-540?Ma granitoids form two clusters, one with T DM ages between 2.0 and 1.75?Ga and another between 1.6 and 1.5?Ga. Pampean post-540?Ma granitoids exhibit more homogenous T DM ages ranging from 2.0 to 1.75?Ga. Ordovician re-activation of active margin along the western part of the block that collided in the Cambrian led to arc magmatism (Famatinian orogeny) and related ensialic back-arc basin in which high-grade metamorphism is related to mid-crustal felsic plutonism and mafic magmatism with significant contamination of continental crust. T DM values for the Ordovician Famatinian granitoids define a main interval of 1.8?C1.6, except for the Ordovician TTG suites of the Sierras de Córdoba, which show younger T DM ages ranging from 1.3 to 1.0?Ga. In Devonian times (Achalian orogeny), a new subduction regime installed west of the Eastern Sierras Pampeanas. Devonian magmatism in the Sierras exhibit process of mixing/assimilation of depleted mantle signature melts and continental crust. Achalian magmatism exhibits more radiogenic ??Nd(540) values that range between 0.5 and ?4 and T DM ages younger than 1.3?Ga. In pre-Devonian times, crustal reworking is dominant, whereas processes during Devonian times involved different geochemical and isotopic signatures that reflect a major input of juvenile magmatism.  相似文献   

2.
The Sierra de San Luis constitutes the southernmost tip of the Eastern Sierras Pampeanas. Its Palaeozoic metamorphic basement units define a key location for the understanding of the accretional history along the proto-Andean margin of Gondwana. Although, it is largely accepted that the polyphase accretional history of the Sierras Pampeanas is preluded by the docking of the Pampean Terrane followed by the Famatinian Orogenic Cycle that involves subduction along the margin of Gondwana and the accretion of the Precordillera (Cuyania) Terrane and finally ceased with the collision of the Chilenia terrane, a vast amount of controversial information concerning the timing and mode of collisions as well as the origin of the different involved crustal fragments within the Eastern Sierras Pampeanas is published. In this paper, those different hypothesis are presented and evaluated under the light of new isotopic data of the Sierra de San Luis. Nd-systematics of the metasedimentary sequences of the Sierra de San Luis indicate that the studied sequences were developed on the Pampean Terrane. An Amazonian origin of the Pampean Terrane that was probably detached from the Arequipa Antofalla Craton is proposed. Furthermore, the correlation of two low-grade phyllitic belts (San Luis Formation) with the widespread Puncoviscana Formation is not supported by Sm-Nd data. It is suggested that the sedimentary precursors of the Pringles Metamorphic Complex and the topping phyllites were sourced on the Pampean Orogen and accommodated in a newly formed back arc basin during the early Famatinian.

The cooling history of the basement complex is recorded by an extensive amount of K-Ar muscovite and biotite ages. A high variability in muscovite ages is only partly related to different intrusion times of two pegmatoid generations. Post Famatinian to Achalian crustal scale mylonite formation (-359 Ma) and a rotational exhumation of the central basement unit are causal for the observed K-Ar muscovite age pattern in the range from 395 Ma to 447 Ma. Therefore, the decrease in metamorphic degree from west to east is the result of the erosion level of a crustal profile from the mid lower crust to the upper crust. An even higher variability in K-Ar biotite cooling ages covering the range from 315 Ma to 418 Ma is related to the slow cooling after the Famatinian Orogenic Cycle or reheating during the Achalian Orogenic Cycle and consequent variable reset of the isotopic system. However, ages recorded by biotite booklets substantiate the hypothesis of a differential exhumation of the basement of the Sierra de San Luis.  相似文献   


3.
The Las Matras Block in Central Argentina constitutes the southernmost part of the Cuyania terrane, which was accreted to the southwestern margin of Gondwana during the Early to Mid Ordovician Famatinian orogeny. The Grenville-aged rocks of the Las Matras Block are represented by the tonalitic to trondhjemitic Las Matras pluton. A new U-Pb conventional zircon age of 1244±42 Ma confirms previous Sm-Nd and Rb-Sr isochron ages of this pluton. Mineral composition data are consistent with the tonalitic-trondhjemitic character of the pluton, and constrain its emplacement level to 1.9 to 2.6 kb. This shallow level of emplacement and the undeformed character of the pluton are distinctive features of this southernmost basement. A regional comparison indicates that the igneous-metamorphic evolution of the Grenville-aged basement rocks of the Cuyania terrane occurred over a period of more than 200 million years, with ages older than 1200 Ma up to those close to 1000 Ma. The shallowest crustal level is found in Las Matras, suggesting a southward shallowing of the exposed level of basement. The deformation and metamorphism associated with the collisional Famatinian orogeny affect both the Cuyania terrane and the adjacent western margin of Gondwana, and the Gondwana margin was also the locus of the related arc magmatism, but the compressive effects of the collision decrease in intensity toward the south. The Famatinian metamorphism and magmatism continue even further south into the Patagonia region, but the southern continuity of the Cuyania terrane into this region remains uncertain.  相似文献   

4.
青藏高原南部拉萨地体的变质作用与动力学   总被引:3,自引:0,他引:3  
董昕  张泽明  向华  贺振宇 《地球学报》2013,34(3):257-262
拉萨地体位于欧亚板块的最南缘,它在新生代与印度大陆的碰撞形成了青藏高原和喜马拉雅造山带。因此,拉萨地体是揭示青藏高原形成与演化历史的关键之一。拉萨地体中的中、高级变质岩以前被认为是拉萨地体的前寒武纪变质基底。但新近的研究表明,拉萨地体经历了多期和不同类型的变质作用,包括在洋壳俯冲构造体制下发生的新元古代和晚古生代高压变质作用,在陆-陆碰撞环境下发生的早古生代和早中生代中压型变质作用,在洋中脊俯冲过程中发生的晚白垩纪高温/中压变质作用,以及在大陆俯冲带上盘加厚大陆地壳深部发生的两期新生代中压型变质作用。这些变质作用和伴生的岩浆作用表明,拉萨地体经历了从新元古代至新生代的复杂演化过程。(1)北拉萨地体的结晶基底包括新元古代的洋壳岩石,它们很可能是在Rodinia超大陆裂解过程中形成的莫桑比克洋的残余。(2)随着莫桑比克洋的俯冲和东、西冈瓦纳大陆的汇聚,拉萨地体洋壳基底经历了晚新元古代的(~650Ma)的高压变质作用和早古代的(~485Ma)中压型变质作用。这很可能表明北拉萨地体起源于东非造山带的北端。(3)在古特提斯洋向冈瓦纳大陆北缘的俯冲过程中,拉萨地体和羌塘地体经历了中古生代的(~360Ma)岩浆作用。(4)古特提斯洋盆的闭合和南、北拉萨地体的碰撞,导致了晚二叠纪(~260Ma)高压变质带和三叠纪(~220Ma)中压变质带的形成。(5)在新特提斯洋中脊向北的俯冲过程中,拉萨地体经历了晚白垩纪(~90Ma)安第斯型造山作用,形成了高温/中压型变质带和高温的紫苏花岗岩。(6)在早新生代(55~45Ma),印度与欧亚板块的碰撞,导致拉萨地体地壳加厚,形成了中压角闪岩相变质作用和同碰撞岩浆作用。(7)在晚始新世(40~30Ma),随着大陆的继续汇聚,南拉萨地体经历了另一期角闪岩相至麻粒岩相变质作用和深熔作用。拉萨地体的构造演化过程是研究汇聚板块边缘变质作用与动力学的最佳实例。  相似文献   

5.
New petrologic, thermobarometric and U-Pb monazite geochronologic information allowed to resolve the metamorphic evolution of a high temperature mid-crustal segment of an ancient subduction-related orogen. The El Portezuelo Metamorphic-Igneous Complex, in the northern Sierras Pampeanas, is mainly composed of migmatites that evolved from amphibolite to granulite metamorphic facies, reaching thermal peak conditions of 670–820 °C and 4.5–5.3 kbar. The petrographic study combined with conventional and pseudosection thermobarometry led to deducing a short prograde metamorphic evolution within migmatite blocks. The garnet-absent migmatites represent amphibolite-facies rocks, whereas the cordierite-garnet-K-feldspar-sillimanite migmatites represent higher metamorphic grade rocks. U-Pb geochronology on monazite grains within leucosome record the time of migmatization between ≈477 and 470 Ma. Thus, the El Portezuelo Metamorphic-Igneous Complex is an example of exhumed Early Ordovician anatectic middle crust of the Famatinian mobile belt. Homogeneous exposure of similar paleo-depths throughout the Famatinian back-arc and isobaric cooling paths suggest slow exhumation and consequent longstanding crustal residence at high temperatures. High thermal gradients uniformly distributed in the Famatinian back-arc can be explained by shallow convection of a low-viscosity asthenosphere promoted by subducting-slab dehydration.  相似文献   

6.
Granites from the Tunka pluton of the Sarkhoi complex, located in the eastern Tunka bald mountains (East Sayan), have been dated at the Middle Ordovician (462.6 ± 7.8 Ma) by LA ICP MS. The granites of the Sarkhoi complex within the studied area cut a foldthrust structure consisting of deformed fragments of the Vendian (Ediacaran)–Early Cambrian cover of the Tuva–Mongolian microcontinent (Upper Shumak metaterrigenous formation, Gorlyk carbonate formation). The red-colored conglomerates and sandstones of the Late Devonian–Early Carboniferous(?) Sagan-Sair Formation overlie the eroded surface of the Tunka pluton granites in the eastern Tunka bald mountains. The Sagan-Sair Formation, in turn, is overlain along a low-angle thrust by a group of tectonic sheets, which comprises the volcanic and carbonate sediments of the Tolta Formation, biotitic schists, and plagiogneisses with garnet amphibolite bodies. Two nappe generations have been revealed on the basis of the described geologic relationships, the Middle Ordovician age of the Tunka pluton granites, and numerous Late Paleozoic Ar–Ar dates of syntectonic minerals from the metamorphic rocks in the area. The first thrusting stage was pre-Middle Ordovician, and the second, Late Carboniferous–Permian. The Lower Paleozoic thrust structure resulted from the accretion of the Tuva–Mongolian microcontinent to the Siberian Platform. The Late Paleozoic nappes resulted from intracontinental orogeny and the reactivation of an Early Paleozoic accretionary belt under the effect of the Late Paleozoic collisional events.  相似文献   

7.
The provenance of Neoproterozoic to Early Paleozoic sedimentary rocks in the Sierras Pampeanas has been established using U–Pb SHRIMP age determination of detrital zircons in twelve metasedimentary samples, with supplementary Hf and O isotope analyses of selected samples. The detrital zircon age patterns show that the western and eastern sectors of the Sierras Pampeanas are derived from different sources, and were juxtaposed during the Early Cambrian ‘Pampean’ collision orogeny, thus defining initiation of the supercontinent stage of southwestern Gondwana. The Western Sierras Pampeanas (WSP), which extend northwards to the southern Puna (Antofalla) and the Arequipa Massif (Peru), constitute a single large continental basement of Paleoproterozoic age — the MARA block — that was reworked during the Grenvillian orogeny. The MARA block probably extends eastwards to include the Río Apa block (southern Brazil), but in this case without a Mesoproterozoic overprint. Detrital zircons from the WSP and Antofalla yield age peaks between 1330 and 1030 Ma, remarkably similar to the range of ages in the Grenville province of eastern Laurentia. The WSP Neoproterozoic sedimentary cover to this basement shows the same 1330–1030 component, but also includes important 1430–1380 Ma zircons whose juvenile Hf and O isotopic signatures strongly suggest derivation from the Grenville and the Southern Granite–Rhyolite provinces of eastern Laurentia. In contrast the Eastern Sierras Pampeanas metasedimentary rocks have a typically bimodal detrital zircon pattern with peaks at ca. 1000 and 600 Ma, which respectively indicate sources in the Natal–Namaqua belt and the East African orogen and/or the Dom Feliciano belt of SE Brazil and Uruguay. Sedimentary rocks in the Eastern Sierras Pampeanas and Patagonia deposited during the Late Early Cambrian–Early Ordovician interval, after the Pampean orogeny, have detrital patterns common to many sectors along the Terra Australis orogen, reflecting increasingly dominant input to the Paleozoic basins from the Neoproterozoic to Early Cambrian orogenic belts of the Gondwana margin.  相似文献   

8.
The general structure of the Chinese Altai has been traditionally regarded as being formed by five tectono-stratigraphic ‘terranes’ bounded by large-scale faults. However, numerous detrital zircon studies of the Paleozoic volcano-sedimentary sequences shown that the variably metamorphosed Cambro-Ordovician sequence, known as the Habahe Group, is present at least in four ‘terranes’. It structurally represents deepest rocks unconformably covered by Devonian and Carboniferous sedimentary and volcanic rocks. Calc-alkaline, mostly Devonian, granitoids that intruded all the terranes revealed their syn-subduction related setting. Geochemistry and isotope features of the syn-subduction granitoids have shown that they originated mainly from the melting of youthful sediments derived from an eroded Ordovician arc further north. In contrast, Permian alkaline granitoids, mostly located in the southern part of the Chinese Altai, reflect a post-subduction intraplate setting. The metamorphic evolution of the metasedimentary sequences shows an early MP-MT Barrovian event, followed by two Buchan events: LP-HT mid-Devonian (ca. 400–380 Ma) and UHT-HT Permian (ca. 300–270 Ma) cycles. The Barrovian metamorphism is linked to the formation of a regional sub-horizontal possibly Early Devonian fabric and the burial of the Cambro-Ordovician sequence. The Middle Devonian Buchan type event is related to intrusions of the syn-subduction granitoids during an extensional setting and followed by Late Devonian-Early Carboniferous NE-SW trending upright folding and crustal scale doming during a general NW-SE shortening, responsible for the exhumation of the hot lower crust. The last Permian deformation formed NW-SE trending upright folds and vertical zones of deformation related to the extrusion of migmatites, anatectic granitoids and granulite rocks, and to the intrusions of gabbros and granites along the southern border of the Chinese Altai. Finally, the Permo-Triassic cooling and thrust systems affected the whole mountain range from ca. 265 to 230 Ma. In conclusion, the Chinese Altai represents different crustal levels of the lower, middle and upper orogenic crust of a single Cambro-Ordovician accretionary wedge, heterogeneously affected by the Devonian polyphase metamorphism and deformation followed by the Permian tectono-thermal reworking event related to the collision with the Junggar arc. It is the interference of Devonian and Permian upright folding events that formed vertical boundaries surrounding the variously exhumed and eroded crustal segments. Consequently, these crustal segments should not be regarded as individual suspect terranes.  相似文献   

9.
New insights on the Paleozoic evolution of the continental crust in the North Patagonian Massif are presented based on the analysis of Sm–Nd systematics. New evidence is presented to constrain tectonic models for the origin of Patagonia and its relations with the South American crustal blocks. Geologic, isotopic and tectonic characterization of the North Patagonian Massif and comparison of the Nd parameters lead us to conclude that: (1) The North Patagonian Massif is a crustal block with bulk crustal average ages between 2.1 and 1.6 Ga TDM (Nd) and (2) At least three metamorphic episodes could be identified in the Paleozoic rocks of the North Patagonian Massif. In the northeastern corner, Famatinian metamorphism is widely identified. However field and petrographic evidence indicate a Middle to Late Cambrian metamorphism pre-dating the emplacement of the ca. 475 Ma granitoids. In the southwestern area, are apparent 425–420 Ma (?) and 380–360 Ma metamorphic peaks. The latter episode might have resulted from the collision of the Antonia terrane; and (3) Early Paleozoic magmatism in the northeastern area is coeval with the Famatinian arc. Nd isotopic compositions reveal that Ordovician magmatism was associated with attenuated crust. On the southwestern border, the first magmatic recycling record is Devonian. Nd data shows a step by step melting of different levels of the continental crust in the Late Palaeozoic. Between 330 and 295 Ma magmatism was likely the product of a crustal source with an average 1.5 Ga TDM (Nd). Widespread magmatism represented by the 295–260 Ma granitoids involved a lower crustal mafic source, and continued with massive shallower-acid plutono volcanic complexes which might have recycled an upper crustal segment of the Proterozoic continental basement, resulting in a more felsic crust until the Triassic. (4) Sm–Nd parameters and detrital zircon age patterns of Early Paleozoic (meta)-sedimentary rocks from the North Patagonian Massif and those from the neighboring blocks, suggest crustal continuity between Eastern Sierras Pampeanas, southern Arequipa-Antofalla and the northeastern sector of the North Patagonian Massif by the Early Paleozoic. This evidence suggests that, at least, this corner of the North Patagonian Massif is not allochthonous to Gondwana. A Late Paleozoic frontal collision with the southwestern margin of Gondwana can be reconcilied in a para-autochthonous model including a rifting event from a similar or neighbouring position to its post-collision location. Possible Proterozoic or Early Paleozoic connections of the NPM with the Kalahari craton or the western Antartic blocks should be investigated.  相似文献   

10.
敦煌复合造山带前寒武纪地质体的组成和演化   总被引:3,自引:3,他引:0  
赵燕  孙勇 《岩石学报》2018,34(4):963-980
敦煌复合造山带位于塔里木克拉通东端,是连接塔里木克拉通和华北克拉通的重要纽带。近年来,敦煌基础地质研究取得了重大进展。本文简要回顾了敦煌基础地质研究历史和现状,系统归纳了区内前寒武纪地质单元时空分布特征及前寒武纪构造-热事件序列,初步讨论了前寒武纪大陆地壳形成和演化规律、前寒武纪结晶基底亲缘性及构造演化过程,提出:(1)敦煌造山带前寒武纪结晶基底形成于ca.3.1~1.6Ga,构造-热事件主要划分为新太古代(ca.2.7~2.6Ga和2.6~2.5Ga)、古元古代晚期(ca.2.0~1.8Ga)和中元古代早期(1.8~1.6Ga)三个阶段;(2)新太古代早期(ca.2.7~2.6Ga)和新太古代晚期(2.6~2.5Ga)是敦煌造山带大陆地壳形成的主要阶段;古元古代晚期(ca.2.0~1.8Ga)和中元古代早期(1.8~1.6Ga)主要是古老大陆地壳物质再循环阶段,也有少量新生陆壳物质的形成;(3)敦煌造山带前寒武纪结晶基底最初拼合事件可能发生在新太古代末期(~2.5Ga),之后经历了古元古代晚期(ca.2.0~1.8Ga)汇聚、碰撞造山过程,直到中元古代早期(1.8~1.6Ga),造山活动结束,前寒武纪结晶基底最终固结,进入稳定发展阶段;(4)前寒武纪结晶基底最终稳定固结之后,即~1.6Ga之后,敦煌前寒武纪结晶基底可能进入长达12亿年的静寂期,一直处于稳定状态,目前没有发现相关的岩浆-变质-沉积记录(类似于地盾状态),直至古生代志留纪开始活化(~440Ma),卷入古亚洲洋南缘俯冲、碰撞造山过程并被强烈改造。  相似文献   

11.
Structural, metamorphic and isotopic data obtained from the Nogoli Metamorphic Complex of western Sierra de San Luis indicate that the Early Paleozoic Famatinian Orogeny overprinted an already structured and metamorphosed older basement. The older geological features are relict NW trending fabric associated with high-grade (amphibolite facies) regional metamorphism preserved within thin strips of schists and paragneisses and in the core of mafic to ultramafic lenses. Arc magmatism, medium P (Barrovian type)/high T (amphibolite to granulite facies) regional metamorphism and penetrative NNE to NE trending foliation are related to the building of the Famatinian orogenic belt. The P-T conditions of the Famatinian prograde metamorphism reached a pressure peak of ca. 8 kb, with a thermal peak from -750°C up to -820°C. U-Pb conventional and chemical dating and Ar-Ar plateau ages constrain the peak of the main orogenic phase related to the Famatinian belt to 470–457 Ma (Early to Mid-Ordovician). Greenschist facies retrograde metamorphism closely associated with shear zones and secondary Ar-Ar plateau and Sm-Nd ages suggest that a late to post-orogenic phase of the Famatinian belt was active at least since -445 Ma. This phase continued during the Silurian to Late Devonian times through multiple reactivation of early shear zones. The Famatinian Orogeny reset a previous thermal history and therefore, the timing of the relict fabric could not be constrained conclusively with radiometric dates. Despite this difficulty, a range of 520 to 490 Ma suggests some inheritance from Pampean events registered by the older NW-SE fabric. The Early to Mid-Ordovician regional metamorphism and ductile deformation of the western Sierra de San Luis is interpreted as the orogenic effects of the collision of the allochthonous Cuyania terrane with the autochthonous proto-Pacific margin of Gondwana during the Famatinian Orogeny.  相似文献   

12.
The Sierras Pampeanas in central and north-western Argentina constitute a distinct morphotectonic feature between 27°S and 33°S. The last stage of uplift and deformation in this area are interpreted to be closely related to the Andean flat-slab subduction of the Nazca plate beneath the South American plate. K–Ar fault gouge dating and low-temperature thermochronology along two transects within the Sierra de Comechingones reveal a minimum age for the onset of brittle deformation about 340 Ma, very low exhumation rates since Late Paleozoic time, as well as a total exhumation of about 2.3 km since the Late Cretaceous. New Ar–Ar ages (7.54–1.91 Ma) of volcanic rocks from the San Luis volcanic belt support the eastward propagation of the flat-slab magmatic front, confirming the onset of flat-slab related deformation in this region at 11.2 Ma. Although low-temperature thermochronology does not clearly constrain the signal of the Andean uplift, it is understood that the current structural relief related to the Comechingones range has been achieved after the exhumation of both fault walls (circa 80–70 Ma).  相似文献   

13.
The tectonic evolutions of Gondwana and Laurasia in the Late Precambrian show some differences, which become more striking after the Late Riphean (1000-700 m.y.), when Gondwana separated from Pangea. These differences include distributions of aulocogens and intrageosynclines as well as zones of non-geosyncline tectono-thermal reworking of basement. Geodynamics of interiors in Gondwana and Laurasia were quite different during the Vendian-Early Cambrian. The fragmentation of Laurasia and the opening of the Iapetus and the Paleo-Asian ocean coincide in time with the Pan-African orogeny and equivalent orogenies in Gondwana.  相似文献   

14.
新疆克孜尔河流经南天山造山带南缘,其河流沉积物中记录了流域内地质体的重要信息。为进一步约束南天山造山带的构造演化历史,探讨该造山带古生代地壳生长与演化,对克孜尔河沉积物中的碎屑锆石进行U‐Pb定年。结果表明锆石年龄主要集中分布在460~390 Ma和310~260 Ma,少量分布在前寒武纪,暗示南天山造山带在古生代期间发生了强烈的岩浆活动。物源分析表明克孜尔河沉积物中的碎屑锆石主要源于南天山造山带和塔里木克拉通北部,年龄为460~390 Ma的碎屑锆石很可能记录了南天山洋在晚奥陶—早泥盆世期间向南俯冲到塔里木克拉通之下的弧岩浆作用。南天山洋闭合以及塔里木克拉通与伊犁—中天山地块的最终碰撞可能发生在晚石炭世,随后发生同碰撞和后碰撞岩浆作用,以样品中大量310~260 Ma的碎屑锆石为代表。结合南天山造山带内已有的古生代岩浆岩锆石的Hf同位素数据分析表明,晚奥陶—早泥盆世南天山造山带的大陆地壳演化主要以古老地壳的再造和部分新生地幔物质的加入为主,晚石炭—早二叠世该造山带地壳演化则以前寒武纪古老基底岩石的改造为主,仅有限的新生组分加入到岩浆的形成过程中。  相似文献   

15.
Partial melting of ultrahigh‐pressure (UHP) metamorphic rocks is common during collisional orogenesis and post‐collisional reworking, indicating that determining the timing and processes involved in this partial melting can provide insights into the tectonic evolution of collisional orogens. This study presents the results of a combined whole‐rock geochemical and zirconological study of migmatites from the Sulu orogen in eastern China. These data provide evidence of multiple episodes of crustal anatexis and geochemical differentiation within the UHP metamorphic rocks. The leucosomes contain higher concentrations of Ba and K and lower concentrations of the rare earth elements (REE), Th and Y, than associated melanosomes and granitic gneisses. The leucosomes also have homogenous Sr–Nd–O isotopic compositions that are similar to proximal (i.e. within the same outcrop) melanosomes, suggesting that the anatectic melts were generated by the partial melting of source rocks that are located within individual outcrops. The migmatites contain zircons with six different types of domains that can be categorized using differences in structures, trace element compositions, and U–Pb ages. Group I domains are relict magmatic zircons that yield middle Neoproterozoic U–Pb ages and contain high REE concentrations. Group II domains represent newly grown metamorphic zircons that formed at 230 ± 1 Ma during the collisional orogenesis. Groups III, IV, V, and VI zircons are newly grown anatectic zircons that formed at 222 ± 2 Ma, 215 ± 1 Ma, 177 ± 2 Ma, and 152 ± 2 Ma, respectively. The metamorphic zircons have higher Th/U and lower (Yb/Gd)N values, flat heavy REE (HREE) patterns with no significantly negative Eu anomalies relative to the anatectic zircons, which are characterized by low Th/U ratios, steep HREE patterns, and negative Eu anomalies. The first two episodes of crustal anatexis occurred during the Late Triassic at c. 222 Ma and c. 215 Ma as a result of phengite breakdown. The other two episodes of anatexis occurred during the Jurassic period at c. 177 Ma and c. 152 Ma and were associated with extensional collapse of the collision‐thickened orogen. The majority of Triassic anatectic zircons and all of the Jurassic zircons are located within the leucosomes, whereas the melanosomes are dominated by Triassic metamorphic zircons, suggesting that the leucosomes within the migmatites record more episodes of crustal anatexis. Both metamorphic and anatectic zircons have elevated εHf(t) values compared with relict magmatic zircon cores, suggesting that these zircons contain non‐zircon Hf derived from material with more radiogenic Hf isotope compositions. Therefore, the Sulu and Dabie orogens experienced different episodes of reworking during the exhumation and post‐collisional stages.  相似文献   

16.
The Gangdese magmatic arc, southeastern Tibet, was built by mantle‐derived magma accretion and juvenile crustal growth during the Mesozoic to Early Cenozoic northward subduction of the Neo‐Tethyan oceanic slab beneath the Eurasian continent. The petrological and geochronological data reveal that the lower crust of the southeastern Gangdese arc experienced Oligocene reworking by metamorphism, anatexis and magmatism after the India and Asia collision. The post‐collisional metamorphic and migmatitic rocks formed at 34–26 Ma and 28–26 Ma respectively. Meta‐granitoids have protolith ages of 65–38 Ma. Inherited detrital zircon from metasedimentary rocks has highly variable ages ranging from 2708 to 37 Ma. These rocks underwent post‐collisional amphibolite facies metamorphism and coeval anatexis under P–T conditions of ~710–760 °C and ~12 kbar with geothermal gradients of 18–20 °C km ? 1, indicating a distinct crustal thickening process. Crustal shortening, thickening and possible subduction erosion due to the continental collision and ongoing convergence resulted in high‐P metamorphic and anatectic reworking of the magmatic and sedimentary rocks of the deep Gangdese arc. This study provides a typical example of the reworking of juvenile and ancient continental crust during active collisional orogeny.  相似文献   

17.
The Uralides, a linear N–S trending Palaeozoic fold belt, reveals an intact, well-preserved orogen with a deep crustal root within a stable continental interior. In the western fold-and-thrust belt of the southern Uralides, Devonian to Carboniferous siliciclastic and carbonate rocks overlay Mesoproterozoic to Neoproterozoic sedimentary rocks. Deformation in the Devonian, Carboniferous and Permian caused thick-skinned tectonic features in the western and central parts of the western fold-and-thrust belt. A stack of several nappes characterizes the deformation in the eastern part. Along the E–W transect AC-TS'96 that crosses the western fold-and-thrust belt, apatite fission track data record various stages of the geodynamic evolution of the Uralide orogeny such as basin evolution during the Palaeozoic, synorogenic movements along major thrusts, synorogenic to postorogenic exhumation and a change in the regional stress field during the Upper Jurassic and Lower Cretaceous. The Palaeozoic sedimentary cover and the Neoproterozoic basement of the Ala-Tau anticlinorium never exceed the upper limit of the PAZ since the Devonian. A temperature gradient similar to the recent one (20 °C/km) would account for the FT data. Reactivation of the Neoproterozoic Zilmerdak thrust was time equivalent to the onset of the Devonian and Carboniferous collision-related deformation in the east. West-directed movement along the Tashli thrust occurred in the Lower Permian. The Devonian and Carboniferous exhumation path of the Neoproterozoic siliciclastic units of the Tirlyan synclinorium mirrors the onset of the Uralian orogeny, the emplacement of the Tirlyan nappe and the continuous west-directed compression. The five main tectonic segments Inzer Synclinorium, Beloretzk Terrane, Ala-Tau anticlinorium, Yamantau anticlinorium and Zilair synclinorium were exhumed one after another to a stable position in the crust between 290 and 230 Ma. Each segment has its own t–T path but the exhumation rate was nearly the same. Final denudation of the western fold-and-thrust belt and exhumation to the present surface probably began in Late Tertiary. In Jurassic and Cretaceous, south-directed movements along W–E trending normal faults indicate a change in the tectonic regime in the southern Uralides.  相似文献   

18.
We review the geology of the Gyeonggi Massif, Gyeonggi Marginal Belt, and Taebaeksan Basin of the Korean Peninsula, which are relevant to the 2018 Winter Olympic sites. Neoarchaean–Palaeoproterozoic gneisses and schists of the Gyeonggi Massif underwent two distinct collisional orogenies at the Palaeoproterozoic (1.88–1.85 Ga) and Triassic (245–230 Ma). These basement rocks are structurally overlain by a suite of Mesoproterozoic to Early Permian supracrustal rocks of the Gyeonggi Marginal Belt, consisting primarily of medium-pressure schists and amphibolites metamorphosed at ~270–250 Ma. In contrast, sedimentary successions in the Taebaeksan Basin, commonly fossiliferous, consist primarily of Early Cambrian–Middle Ordovician Joseon Supergroup and Late Carboniferous–Early Triassic Pyeongan Supergroup. The ‘Great Hiatus’ between the two supergroups is characteristic for the North China Craton. The marked contrast in tectonometamorphic evolution between the Taebaeksan Basin and Gyeonggi Marginal Belt suggests an existence of major suture in-between, which is most likely produced by the Permian–Triassic continental collision between the North and South China cratons. Finally, recent tectonics of the Korean Peninsula is governed by the opening of East Sea/Sea of Japan during the Late Oligocene–Early Miocene. This back-arc rifting event has resulted in an exhumation of the Taebaek Mountain Range, estimated to be 22 ± 3 Ma on the basis of apatite (U–Th)/He ages. Thus, high topography in the 2018 Winter Olympic sites is the consequence of Tertiary tectonics associated with the opening of a back-arc basin.  相似文献   

19.
王枫  许文良  葛文春  杨浩  裴福萍  吴韦 《岩石学报》2016,32(4):1129-1140
敦化-密山断裂带是郯庐断裂北段的重要分支之一,其大规模左行走滑发生的时限以及平移距离一直存在较大争议。本文系统地总结了松嫩-张广才岭地块东缘、佳木斯地块以及兴凯地块之上古生代-中生代火成岩的锆石U-Pb年代学资料,结合其空间分布特征,对敦化-密山断裂带的平移时限及距离提供了制约。研究表明,松嫩-张广才岭地块东缘与兴凯地块在古生代-中生代期间具有类似的岩浆活动历史,两个地块之上该时期的岩浆作用可以划分为8个主要期次:中-晚寒武世(ca.500~516Ma)、早奥陶世(ca.480~486Ma)、晚奥陶世(ca.450~456Ma)、中志留世(ca.426~430Ma)、早二叠世(ca.285~292Ma)、晚二叠世(ca.255~260Ma)、晚三叠世(ca.202~210Ma)和早侏罗世(ca.185~186Ma)。相比之下,佳木斯地块中的古生代-中生代早期岩浆事件则集中在晚寒武世(~492Ma)、晚泥盆世(~388Ma)、早二叠世(~288Ma)、晚二叠世(~259Ma)和早侏罗世(~176Ma),而晚奥陶世-志留纪和晚三叠世的岩浆活动在佳木斯地块未见报道。早白垩世晚期(ca.105~110Ma)和晚白垩世(ca.90~94Ma)的岩浆活动在三个地块均存在。上述结果表明兴凯地块东缘与松嫩-张广才岭地块东缘在早古生代经历了共同的地质演化历史,而中生代早期,兴凯地块西缘与松嫩-张广才岭地块东缘经历了同样的岩浆作用历史。上述结果暗示,敦化-密山断裂可能经历了至少两次平移,分别发生在中-晚二叠世-早三叠世和中-晚侏罗世-早白垩世,推测其总的平移距离约400km。结合研究区中生代期间的构造演化历史,敦化-密山断裂中生代的左行平移应与中-晚侏罗世-早白垩世期间古太平洋板块(Izanagi板块)的斜向俯冲相联系。  相似文献   

20.
青海刚察泉吉地区中酸性侵入岩发育,为了进一步查明侵入岩的特征、侵入时代和形成环境,对其进行了地质学、岩石地球化学及年代学研究。LA-ICP-MS锆石U-Pb定年结果表明,研究区中酸性侵入岩侵位年龄主要集中在430~455 Ma,指示岩体为晚奥陶世—早志留世,指示两个期次岩浆产物,侵位于巴龙贡噶尔组的花岗闪长岩测年结果显示锆石206Pb/238U值为444±11 Ma,指示该花岗闪长岩体的侵位时代属晚奥陶世,因此限定了巴龙贡噶尔组(Sb)时代上限应该早于晚奥陶世。从岩石地球化学特征来看,花岗岩类表现为富钾、准铝—过铝质,富集大离子亲石元素Rb、K和Ba,亏损高场强元素Nb、Ti和P,具弱铕负异常;闪长岩类表现为富钾、准铝质、铕负异常特征不明显。从形成环境来看,研究区中酸性侵入岩均具有大陆碰撞环境的特征。结合区域地质构造环境及前人研究成果,研究区侵入岩是俯冲—碰撞环境下晚奥陶世-早志留世的加里东期产物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号