首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Because scour is one of the main reasons for bridge failure, this study focuses on accurately predicting the maximum scour depth around different vertical and inclined piers. Scouring is an issue of concern in the bridge design process, as most existing equations for predicting local scour near bridge piers suffer from over- or underprediction issues, resulting in higher foundation costs or bridge failure and inaccurate predictions of the scour around piers. The dimensionless maximum scour depths (ys/D) of vertical and inclined piers were investigated for seven pier shapes with different L/D ratios and four inclination angles (θ) under shallow flow conditions. The inclined pier configuration reduced the ys/D of the piers. The maximum ys/D was observed for a rectangular pier with an L/D of 4.5 in both vertical and inclined configurations (θ of 10, 15 and 21°, respectively). The ys/D was significantly decreased by increasing the angle of the pier from 10 to 30°. The ys/D of the inclined rectangular piers decreased as θ decreased from 30 to 10° and the L/D ratio increased from 1 to 4.5. The best ys/D results were obtained for inclined rectangular piers at a θ value of 30° and an L/D ratio of 7.5 compared to other shapes and inclination angles. New equations were developed to predict the local scour depth for circular, square and rectangular bridge piers. The equations yielded excellent results for predicting the maximum clear water scour depth around vertical and inclined piers with inclination angles of 10, 15, 21 and 30°, respectively.  相似文献   

2.
Abstract

Composite bucket foundation (CBF) is a wide-shallow foundation for offshore wind turbines, which can be transported and installed with the turbine as one unit at a one-step operation. Compared with deep pile foundations, its structural stability is more sensitive to the scouring by waves and currents. In this paper, a three-dimensional finite element model with CBF and surrounding soil is established to estimate the failure mode at different given soil scour conditions. The loading on CBF for offshore wind turbines is characterized by relatively small vertical loading V, larger horizontal loading H, and bending moment M, and the effect of erosion on bearing capacity of CBF is determined by using the fixed displacement ratio method. In addition, the failure envelopes of the CBF applied in HM and VHM loading modes are obtained. Results indicate that the bearing capacity of CBF under horizontal loading and bending moment will be significantly reduced by the decrease in the embedded depth of CBF due to the scouring depth and extent, as well as the HM, and VHM failure envelopes. The structural stability safety factor of CBF under different scouring conditions can be obtained through the three-dimensional envelope surface with respect to scouring depth and extent.  相似文献   

3.
Abstract

The continental slope off the coast of Israel is riddled with numerous large slump scars at depths greater than 400 m. Recent scar slumps are situated in the steepest central portions of the continental slope (400–450 m depth, α = 6°), frequently disfiguring older slump scars in its lower portions. The slumping materials were probably largely transported downslope in the form of density currents, and occasionally by sliding of large sediment chunks. Upslope retrogressive slumping phases progressively disfigure the shape of the slump scars until they totally disappear, causing net reduction of the thickness of the sedimentary column. To provide a basis for the quantitative analysis of slumping, laboratory vane tests, triaxial consolidated, undrained compression tests with pore‐pressure measurements, drained direct shear tests, and consolidation tests were performed oh undisturbed samples. Because the sediments consist of normally consolidated silty clays, the geotechnical properties measured on the core samples can be readily extrapolated for greater depths, assuming the sediments are homogeneous. Angles of internal friction measured by direct shearing under drained conditions are ?d =24°‐25°, designating the maximum possible angle of a stable infinite slope. These angles are appreciably higher than the steepest slopes in the investigated area, and a drained slumping mechanism is therefore considered unlikely. The slopes of the slump scar walls are about 20°; therefore, in the absence of active erosional, sedimentological, or tectonic agents, these walls have long‐term stability (drained shear). Undrained shear failure resulting in slope instability may be attributable to rapid changes in slope geometry (undercutting or oversteepening of the slope), fluctuations in pore pressure, or accelerations associated with earthquakes. Undrained shear‐strength parameters were determined by both laboratory consolidated‐un‐ drained triaxial tests and by miniature vane shear tests. The angles of internal friction that were measured are ?cu =15°‐17°, and the cu/p o values range between 0.22 and 0.75. An analysis of the force equilibrium within the sediments leads to the conclusion that horizontal earthquake‐induced accelerations, as little as 5–6% of gravity, are sufficient to cause slope failure in the steepest slope zone (400–450 m depth, α=6°, cu/p o=0.25). Collapse resulting from liquefaction is unlikely, as the sediments are normally consolidated silty clays with intermediate sensitivity, St =2–4.

The existence of slump scars in the lower portion of the continental slope, characterized by gentle slopes (α=1°‐3°) and sediments with high shear strength (cu/p o=0.30–0.50) is attributed to large horizontal accelerations (k= 12–16% of gravity). Owing to the wide range of geotechnical properties of the sediments (cu/p o= 0.20–0.75) and the inclination of the continental slope (α=1°‐6°), the same earthquake may generate a wide range of horizontal accelerations in different portions of the continental slope, and slumping may occur wherever the stability equilibrium is disrupted.  相似文献   

4.
This study investigates the applicability of neural networks to predict whether impact wave force will act on the upright section of a composite breakwater. We employ a three-layered neural network whose units of input layer are h/L, H/h, d/h and BM/h (h: the total water depth; L: the wavelength; H: the wave height; d: the water depth above the mound; BM: the horizontal distance from the shoulder of mound to the caisson). Teach signals are 0.99 and 0.01 according to the cases of occurrence and absence of impact wave force, respectively. The neural network whose parameters are determined through self-learning can accurately predict whether impact wave force occurs.  相似文献   

5.
总结了国外海底犁式开沟机技术进展,海底犁式开沟机可分为"V"型开沟犁和矩形开沟犁两种,"V"型开沟犁开沟截面面积较大,沟槽截面形状为V型,适合与海底管道埋设,其回填方式有专门回填犁回填和回填模块回填两种。矩形开沟犁开沟面积较小,截面狭长且为矩形,多适用于海底电缆埋设。其土壤排出方式有垂向排土和侧向挤压排土两种,沟槽靠重力自动回填。犁式开沟机开沟速度快,造价相对较低,目前正在朝大型化、模块化发展。开沟犁的关键技术包括犁式开沟机的开沟阻力减小方法以及在崎岖海底地形上开沟时的开沟深度稳定性等,这也是目前研究的重点。对国外犁式开沟机技术的总结,对开沟犁设计和海上施工作业有一定指导意义。  相似文献   

6.
采用x方向伸展坐标下的二,三维方程,建立了开避或增深深水航道前后的潮流场数值模模式。该模式在航道横向上网格变距,以保证航道横向上有一定量的网格覆盖。在计算中采用二,三维交替进行,既节省大量计算时间,又保证了计算的稳定性。  相似文献   

7.
Abstract

This study aims to evaluate the relationship between saturated hydraulic conductivity with particle shape and packing density characteristics of silty sand soils. The article presents a series of hydraulics tests performed on three kinds of sand with different particles shapes (Chlef rounded sand, Fontainebleau sub-rounded sand and Hostun sub-angular sand) mixed with low plastic rounded Chlef silt in the range of 0–30% fines content. The sand–silt mixture samples were tested in the constant-head permeability device at a loose relative density (Dr = 18%) and a constant room temperature (T?=?20?°C). The obtained results indicate that the measured saturated hydraulic conductivity (Ks) correlates very well with the fines content (Fc), packing density in terms of [maximum void ratio “emax,” minimum void ratio “emin,” predicted maximum void ratio “emaxpr and predicted minimum void ratio “eminpr] and particle shape characteristics ratios in terms of roundness ratio (Rr = Rhs/Rmixture) and sphericity ratio (Sr = Shs/Smixture) of the silty sand materials under consideration. Moreover, the analysis of the available data show a noticeable success in exploring the prediction of the saturated hydraulic conductivity (Ks) based on the particle shape and packing density characteristics (Rr, Sr, emax, and emin) of the studied sand–silt mixture samples.  相似文献   

8.
For classical Hamiltonian with general form we find a new convenient way to obtain its normal coordinates, namely, let H be quantised and then employ the invariant eigen-operator (IEO) method (Fan et al. 2004 Phys. Lett. A 321 75) to derive them. The general matrix equation, which relies on M and L, for obtaining the normal coordinates of H is derived.  相似文献   

9.
The dense water formation process under polynya or lead is examined by numerical experiments using a three-dimensional non-hydrostatic model. Many numerical experiments on isolated convection in an initially homogeneous fluid have been performed for different sets of external parameters, in order to investigate a relationship between the convection process and the external parameters. The main focus is on the situation in which the horizontal length scale of disk-shaped buoyancy forcing (radius R) is comparable with the total water depth (H). The two dynamical regimes described in previous work—the baroclinically unstable convection and the baroclinically stable convection—are confirmed in the experiments. A horizontal shift of a convective chimney is important to a density anomaly in baroclinically stable convection. For the stable range, as R is reduced R/H < 0.7, a new regime is found, called “single-plume convection”, in which multiple convective plumes do not fully develop, and the density anomaly scale has nearly no dependency on R. This change of dependency on R is consistent with that derived by scaling analysis. The non-hydrostatic component is more significant than the hydrostatic one in the single-plume convection. The information obtained is useful for parameterizing dense water formation under ice cover in a numerical model with a large grid size; i.e., the newly formed water has a density anomaly independent of the polynya size smaller than the water depth, while the anomaly increases as the size exceeds the depth.  相似文献   

10.
Abstract

The continental slope off the coast of Israel is riddled with numerous large slump scars at depths greater than 400 m. Recent scar slumps are situated in the steepest central portions of the continental slope (400–450 m depth, α=6°), frequently disfiguring older slump scars in its lower portions. The slumping materials were probably largely transported downslope in the form of density currents, and occasionally by sliding of large sediment chunks. Upslope retrogressive slumping phases progressively disfigure the shape of the slump scars until they totally disappear, causing net reduction of the thickness of the sedimentary column. To provide a basis for the quantitative analysis of slumping, laboratory vane tests, triaxial consolidated, undrained compression tests with pore‐pressure measurements, drained direct shear tests, and consolidation tests were performed oh undisturbed samples. Because the sediments consist of normally consolidated silty clays, the geotechnical properties measured on the core samples can be readily extrapolated for greater depths, assuming the sediments are homogeneous. Angles of internal friction measured by direct shearing under drained conditions are ?d =24°‐25°, designating the maximum possible angle of a stable infinite slope. These angles are appreciably higher than the steepest slopes in the investigated area, and a drained slumping mechanism is therefore considered unlikely. The slopes of the slump scar walls are about 20°; therefore, in the absence of active erosional, sedimentological, or tectonic agents, these walls have long‐term stability (drained shear). Undrained shear failure resulting in slope instability may be attributable to rapid changes in slope geometry (undercutting or oversteepening of the slope), fluctuations in pore pressure, or accelerations associated with earthquakes. Undrained shear‐strength parameters were determined by both laboratory consolidated‐un‐drained triaxial tests and by miniature vane shear tests. The angles of internal friction that were measured are ?cu =15°‐17°, and the cu/po values range between 0.22 and 0.75. An analysis of the force equilibrium within the sediments leads to the conclusion that horizontal earthquake‐induced accelerations, as little as 5–6% of gravity, are sufficient to cause slope failure in the steepest slope zone (400–450 m depth, α = 6°, cu /po =0.25). Collapse resulting from liquefaction is unlikely, as the sediments are normally consolidated silty clays with intermediate sensitivity, St =2–4.

The existence of slump scars in the lower portion of the continental slope, characterized by gentle slopes (α=1°‐3°) and sediments with high shear strength (c u /p o=0.30–0.50) is attributed to large horizontal accelerations(k=12–16% of gravity). Owing to the wide range of geotechnical properties of the sediments (cu /po = 0.20–0.75) and the inclination of the continental slope (α=1°‐6°), the same earthquake may generate a wide range of horizontal accelerations in different portions of the continental slope, and slumping may occur wherever the stability equilibrium is disrupted.  相似文献   

11.
The wave forces and moments on and the water surface fluctuations around a vertical circular cylinder encircled by a perforated square caisson were experimentally investigated. The porosity of the outer square caisson was varied from 4.24 to 14.58%. The in-line wave forces on the inner vertical cylinder are influenced by changing the porosity of the outer caisson, whereas the variations in the water surface fluctuations are less influenced in this porosity range. The in-line moment on the vertical cylinder is relatively less sensitive when the porosity is increased from 4.24 to 8.75%, but varies substantially when it is increased from 8.75 to 14.58%. The force and moment ratio (i.e. the ratio of the force or moment on the vertical cylinder, when it is encircled by the perforated caisson to the force or moment on the cylinder without any protection around it) reduces with increased wave height, H, and wave length, L, whereas the wave height ratio (ratio of the wave height at a point in the vicinity of the structure to the incident wave height) is less sensitive for the varying H and L. A new non-dimensional parameter, p1.5 (D/L)/(H/d), is introduced to predict the in-line force and moment on the inner vertical cylinder, where d is local water depth, D is the diameter of the inner cylinder and p is the porosity of the outer caisson in percentage. Simple predictive equations for forces, moments and water surface fluctuations are provided.  相似文献   

12.
近年来大直径钢圆筒结构在离岸人工岛工程中得到应用,如港珠澳大桥人工岛即采用振动下沉的方式安装钢圆筒,该方法对施工条件、装备以及施工控制技术要求较高。提出一种新型隔舱吸力式钢圆筒结构,在钢圆筒内部设置隔舱板,将结构分为上下两个隔舱,通过对下舱抽气实现隔舱吸力式钢圆筒在负压作用下的下沉安装。设计了隔舱吸力式钢圆筒安装及水平承载力模型试验,对比了负压贯入的隔舱吸力式钢圆筒和压力贯入的传统钢圆筒结构的贯入阻力及承载特性,分析了改变隔舱吸力式钢圆筒上下舱高度比L1/L2对其沉贯过程及承载特性的影响。结果表明,采用负压吸力沉贯的隔舱吸力式钢圆筒相比于采用压力贯入的传统钢圆筒结构的贯入阻力减小,水平极限承载力提高。在极限水平荷载作用下,随着隔舱吸力式钢圆筒的L1/L2从2.28减小到1.00、0.56,转动中心位置上移,水平极限承载力及弯矩承载力得到显著提高。  相似文献   

13.
嵊泗列岛海域三种贻贝贝体框架特征的差异   总被引:1,自引:1,他引:0  
以壳长SL、壳宽SW、壳高SH(BD)、OA(壳顶至韧带末端的直线距离)、OB(壳顶至壳背面最高点的直线距离)、OC(壳顶至壳后端最远点的直线距离)、OD(壳顶至壳高性状在腹缘的落点的直线距离)、AB(韧带末端至壳背缘最高点的直线距离)、BC(壳背缘最高点至壳后端最远点的直线距离)、CD(壳后端最远点至壳高性状在腹缘的落点的直线距离)为贝体框架变量,采用多元分析方法系统比较了嵊泗列岛海域厚壳贻贝、紫贻贝和"杂交贻贝"贝体框架特征的差异,结果表明:(1)在所涉9项贝体框架特征指标中,紫贻贝与厚壳贻贝间无显著差异的指标仅为L5(OC/SL)和L7(AB/SL)(P0.05),而"杂交贻贝"各项指标则均与厚壳贻贝和紫贻贝具显著差异(P0.05),厚壳贻贝和紫贻贝变异系数大于10%的指标均仅为L7(AB/SL),而"杂交贻贝"则仅为L3(OA/SL);(2)厚壳贻贝与紫贻贝间的欧氏距离最短(P0.05),仅为0.160;厚壳贻贝与"杂交贻贝"间和紫贻贝与"杂交贻贝"间的欧氏距离相近(P0.05),分别为0.452和0.418;(3)经主成分分析,提取到的3个特征值均大于1的主成分,累计贡献率达82.928%,其中第一主成分、第二主成分、第三主成分可依次归为与滤食功能区水平剖面占比相关的贝体框架因子,与消化功能区水平剖面占比相关的贝体框架因子,和与消化功能区垂直剖面占比相关的贝体框架因子,通过第一主成分仅能较清晰地区分厚壳贻贝和"杂交贻贝";(4)采用逐步判别法,以判别贡献率较大的L1(SW/SL)、L3(OA/SL)、L4(OB/SL)、L5(OC/SL)、L6(OD/SL)和L7(AB/SL)为自变量,所建Fisher分类函数方程组可较清晰区分厚壳贻贝、紫贻贝和"杂交贻贝",三者的判别准确率依次为94.6%、94.6%和100%,综合判别准确率为96.4%。  相似文献   

14.
台湾岛1999年9月21日在南投发生7.6级地震前有出现地震条带现象,在2005年工作的基础上继续用地震条带方法对2004年12月台东海外7.0级地震、2006年12月高雄海外7.2级地震和2016年2月6日高雄6.7级地震前的地震图像进行分析发现,这3次地震前也存在ML5.5级以上地震条带现象,说明近年来台湾岛及邻近海域强地震前都有地震条带出现.对这些条带形成的原因进行分析后认为:EN向地震条带是受菲律宾板块挤压形成的,沿台湾岛东部海岸排列的地震条带是受台湾岛东部的地震断层影响形成的,沿琉球海沟方向排列的地震条带是受琉球海沟断裂带影响形成的.研究结果对台湾岛及邻近海域的地震预报具有参考意义.  相似文献   

15.
Aquasi-three-dimensionalnumericalpredictionmodelofsalinitystructureinBohaiSeaandHuanghaiSea¥SunWeiyangandWangZongshan(Receive...  相似文献   

16.
Polychaete assemblages are described from replicate box‐core samples collected in summer 1983 at 18 stations on the continental shelf and upper slope (28–943 m) off the west coast of the South Island, New Zealand, south‐eastern Tasman Sea (c. 41–43°S, 169–172°E). Three main station groupings were identified by multivariate analysis: (1) inner shelf sandy stations characterised by Prionospio australiensis, Aricidea (Acesta) sp., Magelona cf. dakini, Paraprionospio aff. pinnata, Aglaophamus sp., Heteromastus filiformis, and Magelona sp.; (2) middle to outer shelf muddy stations characterised by Levinsenia cf. gracilis, Prionospio australiensis, Paraprionospio coora, Aglaophamus verrilli, and Auchenoplax mesos; and (3) upper slope sandy mud or mud stations characterised by Prionospio ehlersi. A combination of water depth and sediment clay content provided the best correlation with the biotic pattern. Spionidae was the most abundant family (49% of polychaete individuals), which may reflect the scope for opportunistic species in a shelf environment characterised by a high input of terrigenous sediment and episodic upwelling.  相似文献   

17.
长江河口涨、落潮槽内的沙波地貌和输移特征   总被引:3,自引:0,他引:3       下载免费PDF全文
涨、落潮槽是河口区的重要地貌单元,槽内由于不同的优势流作用而表现出不同的泥沙运移特征。沙波是底沙输移的表现,因此研究槽内的沙波特征对于涨、落潮槽的水动力和沉积地貌研究有重要的意义。本文依据现场声纳观测、测深仪测深、表层取样和现场水动力观测等方法获得河槽床面沙波和水动力资料,对沙波的几何形态、波高和全潮周期的迁移距离进行...  相似文献   

18.
Abstract

The Whangamaire Stream (North Island, New Zealand) has high concentrations of nitrate nitrogen (NO? 3‐N), biochemical oxygen demand (BOD5), and Kjeldahl nitrogen (TKN) as a result of catchment land use practices. The lower reaches of the stream drain intensively farmed land and have dissolved oxygen (DO) levels of 10–50% saturation. The dominant riparian vegetation, Apium nodiflorum, provides a large organic loading by intercepting nutrients in run‐off and then decaying in the stream channel. Water quality and reaeration aspects of the stream were studied in order to explain the observed low DO levels. Measurements of the reaeration coefficient at 20°C, K2 20, using methyl chloride (CH3Cl) as a gas tracer, yielded values of 1.1–3.0 d?1 for the upper part of the study reach and 15.5–16.2 d?1 for the lower reach (overall average 12.5 ± 2.5 d?1). These were in agreement with values inferred from single‐station diurnal curve analysis, which also showed that respiration was dominant in the lower reach where photo‐synthetic activity was inhibited by shade. The relatively large reaeration coefficients ensure that parts of the stream do not become anoxic at night time. Better riparian management and reduced nutrient inputs are likely to improve stream water quality.  相似文献   

19.
A detailed gravimetric geoid around Japan has been computed on the basis of 30’ × 30’ block mean free‐air gravity anomalies and GSFC GEM‐8 geopotential coefficient set. The 30’ × 30’ block means were read from various gravity maps around Japan, and the block means have been compiled into the JHDGF‐1 gravity file. Since the gravity file is restricted around Japan (see Figure 1), additional gravity data are needed to perform the Stokes’ integration in the cap with radius ψ0 = 20°. The 1° × 1° block gravity means have been used outside the JHDGF‐1 region. The remarkable features of the gravimetric geoid occur over the trench areas. The geoidal dents over the trenches amount to ‐20~ ‐25 m in comparison with the geoidal heights in the land areas of Japan. The mean error of the 30’ × 30’ detailed gravimetric geoid obtained is estimated to be around 1.4 m, and the relative undulation of the geoid between the distance of a few hundred kilometers may be more accurate.  相似文献   

20.
The chemical speciation of dissolved mercury in surface waters of Galveston Bay was determined using the concentrations of mercury-complexing ligands and conditional stability constants of mercury-ligand complexes. Two classes of natural ligands associated with dissolved organic matter were determined by a competitive ligand exchange-solvent solvent extraction (CLE-SSE) method: a strong class (Ls), ranging from 19 to 93 pM with an average conditional stability constant (KHgLs) of 1028, and a weak class (Lw) ranging from 1.4 to 9.8 nM with an average KHgLs of 1023. The range of conditional stability constants between mercury and natural ligands suggested that sulfides and thiolates are important binding sites for dissolved mercury in estuarine waters. A positive correlation between the estuarine distribution of dissolved glutathione and that of mercury-complexing ligands supported this suggestion. Thermodynamic equilibrium modeling using stability constants for HgL, HgClx, Hg(OH)x, and HgCl(OH) and concentrations of each ligand demonstrated that almost all of the dissolved mercury (> 99%) in Galveston Bay was complexed by natural ligands associated with dissolved organic matter. The importance of low concentrations of high-affinity ligands that may originate in the biological system (i.e., glutathione and phytochelatin) suggests that the greater portion of bulk dissolved organic matter may not be important for mercury complexation in estuarine surface waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号