首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Quantitative laboratory studies on the structural behavior of natural intact marine clays require a large number of identical natural samples leading to an expensive and challenging task. This study proposes a simple method to reconstruct an artificial structured marine clay as the state of its natural intact clay at both macro and micro levels. For this purpose, the Shanghai marine clay is selected and mixed with low cement contents (1–6%). The clay-cement slurry is mixed in a container with the ice-covered sides at a low temperature about 0 ± 2 °C to postpone the hydration reactions until consolidation began. The purpose of adding cement is to generate the inter-particle bonding and structure in reconstituted samples. Initially, the reconstituted samples are consolidated under the in situ stress of 98 kPa and then under the pre-consolidation pressure of 50 kPa. Mechanical characteristics such as compression index, yield stress, unconfined compression strength, shear strength ratio, and the stress paths from triaxial tests are compared with natural intact clay accordingly. Scanning electron microscope and mercury intrusion porosimetry analyses are also performed to analyze the microstructure of clays for comparison. Furthermore, the proposed method is also examined by using natural intact marine clays of different locations and characteristics.  相似文献   

2.
Abstract

This research presents measurements and simulations of the full-scale behavior of a test embankment built on a soft marine clay deposit improved using soil–cement mixing (SCM) columns in Bangkok, Thailand, using both two-dimensional (2D) and 3D finite element analyses (FEAs). Fixed SCM columns with two different installation patterns, that is, column groups and column rows, were constructed in the soft clay foundation prior to the construction of the embankment. Three column wall methods, namely, equivalent width, equivalent axial rigidity, and equivalent flexural rigidity approaches, were used to convert the 3D individual columns into 2D plane strain column walls. A comparison of the results obtained through the 3D and 2D FEAs revealed that the 2D analyses provide inaccurate results in terms of the column lateral movements, bending moments, and axial loads induced in the SCM columns in addition to the factors of safety against slope failure. This outcome occurred because the actual columns in the 2D FEA were modeled using extended walls, which essentially prevent the movements of soil between two columns or column rows. Correction factors used to convert the 2D analysis results into 3D analysis results were also proposed in this study.  相似文献   

3.
The results of one-dimensional compression tests conducted on undisturbed specimens of Jiangsu soft marine clay is presented. Because of its high in situ void ratios and natural water content, Jiangsu soft marine clay displays high values of both the virgin compression index, Cc, and the secondary compression coefficient, Cα. The laboratory data indicates that the value of the ratio Cα/Cc for Jiangsu soft marine clay is constant. However, neither Cα nor Cc are constant: they both depend upon the natural water content (or void ratio) and thus are also dependent on the deformation (or compression) of Jiangsu soft marine clay. Settlement analyses show that the secondary settlement of Jiangsu soft marine clay is a significant component of the field settlement. The concept of a constant value for Cα/Cc is used to predict the secondary settlement of a surcharged embankment founded upon Jiangsu soft marine clay. The predictions are in agreement with the limited post-construction field measurements of the embankment settlement.  相似文献   

4.
Abstract

The use of soft clay and dredged marine clays as the construction material is challenging. This is because the high water content, high compressibility and low permeability of the clay causing the instability of ground and structure. This detrimental effect of soft clay can be improved by the cement solidification process, which is relatively cheap and efficient. This paper mainly focuses on the study of improvement on the mechanical behavior of cement mixed marine clay. The soil is reconstituted by using ordinary Portland cement of 5%, 10%, 15% and 20% by its mass. The study reveals that cementation of clay significantly improves the peak and residual strength of soil. Similarly, the primary yield stress of the soil is also improved from 16 to 275?kPa as cement content increases from 5% to 20%, respectively. By using statistical tools, the relationships between various parameters are established, which are very important to define the mechanical behavior of the clay. This study reveals that the yield surface of the solidified marine clay is not a smooth elliptical surface. Rather it is composed of two linear surfaces followed by a log-linear surface which can be modeled by using simple parameters obtained from triaxial tests.  相似文献   

5.
Prediction of Settlements of Soft Clay Subjected to Long-Term Dynamic Load   总被引:2,自引:0,他引:2  
—Presented is the numerical analysis of settlements of soft soil by a 2-D dynamic effective stressFEM method.The model based on the results of cyclic triaxial tests on the reconstituted soft Ariake clay isused to predict the wave induced excess pore water pressure and residual strain of soft clay.The settle-ments of two types of breakwaters on the soft clay under ocean wave load,a low embankment subjected totraffic load and the tunnel surrounded by soft clay in Shanghai subjected to locomotive load are calculatedas examples.  相似文献   

6.
Abstract

In this article, the degradation of the lateral bearing capacity of piles in soft clay subjected to cyclic lateral loading is studied numerically. A modified kinematic hardening constitutive model is employed to simulate the degradation of soft clay after cyclic loading. The modified model is verified by comparing the numerical simulation results with the results of centrifuge model tests. Furthermore, the modified model is applied to numerical simulations for evaluating the lateral bearing capacity of piles in soft clay subjected to cyclic lateral loading. The degradation of the lateral bearing capacity of piles in soft clay after different cyclic displacement levels and different numbers of cycles is investigated. The study reveals that the modified kinematic hardening constitutive model can effectively estimate the cyclic degradation behavior of piles in soft clay subjected to cyclic lateral loading. The degradation of the ultimate lateral bearing capacity progresses slowly with increasing cyclic displacement level for fewer cycles, and the degradation develops significantly at higher levels of cyclic displacement after applying a larger number of cycles.  相似文献   

7.
Abstract

In the coastal area, nearshore and offshore structures have been or will be built in marine soft clay deposits that have experienced long-term cyclic loads. Therefore, the mechanical behavior of marine clay after long-term cyclic loading needs to be investigated. In this research, a series of monotonic and cyclic triaxial tests were carried out to investigate the postcyclic mechanical behavior of the marine soft clay. The postcyclic water pore pressure, shear strength and secant stiffness are discussed by comparing the results with the standard monotonic test (without cyclic loading). It is very interesting that the postcyclic behavior of marine soft clay specimen is similar to the behavior of overconsolidated specimen, that is, the specimen shows apparent overconsolidation behavior after long-term cyclic loading. Then relationship between the overconsolidation ratio and the apparent overconsolidation ratio is established on the basis of the theory of equivalent overconsolidation. Finally, a validation formula is proposed which can predict the postcyclic undrained shear strength of marine soft clay.  相似文献   

8.
To study the undrained behavior of natural marine clay under cyclic loading, two kinds of stress-controlled cyclic triaxial tests were conducted on natural K0-consolidated Wenzhou clay. In the Series I tests, samples were cyclically sheared until failure, and the accumulative behavior was studied; based on the results, a suitable cyclic failure criterion is suggested for natural clays. The effect of loading frequency was also investigated, and it was observed that the loading duration t is a key factor in controlling the undrained cyclic behavior. In the Series II tests, cyclic undrained tests followed by strain-controlled monotonic compression tests were carried out, and special attention was given to changes in the undrained strength after cyclic loading. The degradation of the post-cyclic peak strength was affected by the accumulative behavior during cyclic shearing, but the deviatoric stresses at the critical state were nearly constant. Finally, the accumulative behavior of natural clays was simulated using a proposed anisotropic elastic viscoplastic model with a pseudo-static method of equivalent undrained creep, and the results indicate that this equivalent creep simplification is suitable in practice. By taking the apparent overconsolidation after cyclic loading into account, the post-cyclic strength degradation can also be explained by this model.  相似文献   

9.
The behavior of single piles subjected to negative skin friction in soft soil was conducted by analyzing the results from full-scale long-term field measurements and three-dimensional (3D) numerical analyses. A skin friction coefficient (α and β coefficients) of the instrumented piles is back-calculated at different degrees of consolidation (U) of soft marine clay. Back-calculated β-values ranged from 0.15 to 0.35 for clay, and from 0.30 to 0.55 for sand, respectively. In addition, back-calculated α-values ranged from 0.1 to 0.3 for coated pile, and from 0.2 to 0.8 for uncoated pile when undrained shear strength of the soft clay was about 30–60 kPa, respectively. Moreover, this study describes behavior of a pile based on full-coupled 3D finite element (FE) analysis. The appropriate parametric studies needed for verifying the pile-soil interaction with consolidation are presented in this paper. Compared to the results from the measurements, it is shown that the computed results are capable of predicting the pile-soil behavior under consolidation. The major parameters that influence the pile behavior are discussed for different soil-pile conditions.  相似文献   

10.
Abstract

In the field of ocean engineering, anchors are used for several purposes. This article studies the behavior of a helical anchor embedded in soft marine clay under vertical repetitive loading. Helical anchors are simple steel shafts to which one or more helical plates are attached at regular intervals. The tests are conducted on a model helical anchor installed in a soft marine clay bed prepared in a test tank. Repetitive loading is applied using a pneumatic loading arrangement. Different cyclic load ratios and time periods are adopted. In each test, after the application of repetitive loading, poststatic‐pullout tests are conducted to observe the effect of repetitive loading on anchor behavior. From the test results, it is found that, up to a cyclic load ratio of 55%, there is no reduction in capacity. Instead, there seems to be a marginal increase in capacity and reduction in displacement. The reasons for this behavior are explained in terms of induced changes in strength and deformation behavior of marine clay under repetitive load. However, at higher cyclic load ratios, there seems to be reduction in pullout capacity of the anchor, and the reason for this is explained in terms of strain criteria. From this investigation, it can be concluded that the deep anchor is more suitable to a marine environment than a shallow anchor.  相似文献   

11.
In this article, the mechanical behavior of a Jiangsu marine clay was investigated by drained triaxial tests, traixial rheological tests, and one-dimensional compression and swelling tests. A visco-plastic model, the Bingham model combining two yield surfaces model, was proposed to describe the time-dependent deformation behaviors of the marine clay. The governing equation of Biot's consolidation theory for the visco-plastic soil is solved using a finite element code which incorporates the visco-plastic model. Using the finite element method, settlements of a typical embankment on the Lianxu expressway in China are calculated. Settlement calculations using the visco-plastic model are in agreement with the measured settlements in the field. The results demonstrate that the visco-plastic model is appropriate for calculating the visco-plastic deformations of Jiangsu marine clay. Theoretical and experimental studies show that the visco-plastic deformation of Jiangsu marine clay is substantial.  相似文献   

12.
In actual engineering, soft clay foundations are in drained or partial drained conditions, it would be useful to establish reasonable constitutive relationship and provide guidance for engineering projects. A hollow cylinder apparatus is used to investigate the anisotropic deformation behavior of natural soft marine clay influenced by intermediate principal stress coefficient b and principal stress direction α. Tests were conducted by maintaining a fixed principal stress direction α relative to the vertical direction, while keeping the intermediate principal stress coefficient b constant. It was found that the anisotropic deformation behavior of natural soft clay is merely influenced by major principal stress direction α, but significantly influenced by intermediate principal stress coefficient b.  相似文献   

13.
Abstract

This article presents an experimental investigation on the dynamic consolidation (DC) drainage behavior of soft marine clays. A sinusoidal harmonic load with different frequencies was applied to simulate the DC method in which the conventional impact load was replaced by the cyclic load. Four geotextile-filter strips were used to form the side drainage channels simulating the wick drain method. A series of loading tests were conducted on soft soil specimens at different confining pressures (i.e., 20, 40, 70, and 100?kPa) and different vibration frequencies (i.e., 0, 0.5, 1, 1.5, 2, and 5?Hz). Test results showed that both confining pressure and frequency have significant influences on the drainage behavior of soft marine clay specimens. The magnitude of drainage volume consistently decreases linearly with increasing confining pressure. Compared to static loading condition, specimens under cyclic loading condition at different frequencies show a better drainage performance. Specimen at applied frequency of 1?Hz exhibits the maximum cumulative drainage volume due to the resonant effect.  相似文献   

14.
As offshore energy developments move towards deeper water, moored floating production facilities are increasingly preferred to fixed structures. Anchoring systems are therefore of great interest to engineers working on deep water developments. Suction embedded plate anchors (SEPLAs) are rapidly becoming a popular solution, possessing a more accurate and predictable installation process compared to traditional alternatives. In this paper, finite element analysis has been conducted to evaluate the ultimate pullout capacity of SEPLAs in a range of post-keying configurations. Previous numerical studies of anchor pullout capacity have generally treated the soil as an elastic-perfectly plastic medium. However, the mechanical behaviour of natural clays is affected by inter-particle bonding, or structure, which cannot be accounted for using simple elasto-plastic models. Here, an advanced constitutive model formulated within the kinematic hardening framework is used to accurately predict the degradation of structure as an anchor embedded in a natural soft clay deposit is loaded to its pullout capacity. In comparison with an idealised, non-softening clay, the degradation of clay structure due to plastic strains in the soil mass results in a lower pullout capacity factor, a quantity commonly used in design, and a more complex load–displacement relationship. It can be concluded that clay structure has an important effect on the pullout behaviour of plate anchors.  相似文献   

15.
The mechanical behavior of clay subjected to cyclic loading is important to consider in the design of the foundations of many types of structures that must resist cyclic loading, such as subgrades and offshore foundations, because clay undergoes greater settlement under cyclic loading than under static loading. The difference in settlement between these two loading patterns due to creep behavior is affected by the cyclic frequency and the cyclic stress ratio. This study investigated the effects of the frequency and cyclic stress ratio of cyclic loading on the creep behavior of a natural clay in China using stress-controlled triaxial tests. The assessed the following parameters: three frequencies, four cyclic stress ratios, and six vertical stresses. The test results indicate that the soft clay displays accelerated creep behavior under dynamic loads. A specific “limit frequency” (in this case, 0.2 Hz) and a “safe load” at which the strain of the soft clay increases very slowly were observed. The effect of the effective axial stress on the creep behavior increases with the increase in the cyclic stress ratio. Based on the tests, the critical cyclic stress ratio is 0.267 at a certain effective axial stress and frequency.  相似文献   

16.
Abstract

Rapid industrial growth and increasing population has resulted in the discharge of wastes into the ocean, wastes which ultimately reach the seabed and contaminate the marine sediments. The soil-contaminants interaction, and their associated physico chemical properties with sediments control the behavior of marine clays. Marine clay deposits of low strength and high compressibility are located in many coastal and offshore areas. There are several foundation problems encountered in these weak marine clays. In this study, experimental work was carried out in the laboratory to stabilize soft marine clays using the lime column technique. Also the lime-induced effects on the physical and engineering behavior of marine clays in sulfate-contaminated marine environment was investigated. Consolidation tests indicate that compressibility of the lime-treated samples was reduced to 1/2–1/3 of the virgin soil after 45 days treatment. The test results also suggest that the lime column technique can be conveniently used to improve the behavior of contaminated marine clay deposits.  相似文献   

17.
Degradation in Cemented Marine Clay Subjected to Cyclic Compressive Loading   总被引:1,自引:0,他引:1  
The influence of cyclic loading on the strength and deformation behavior of cemented marine clay has been studied. This marine clay is of recent Pleistocene origin and deposited in a shallow water marine environment. Open pits were dug in sheeted enclosures and from these pits, undisturbed samples were taken for strength testing. A series of standard triaxial shear tests and stress controlled one-way cyclic load tests were conducted at consolidation stress ranges below and above the preconsolidation pressure. For the stress levels below the preconsolidation pressure, the cyclic loading has brought about the collapse of the cementation bond through an increase in strains, and at higher pressure ranges, the soil behaves like typical soft clay. This experiment studied the rate of development of strain and pore water pressure and shows that rate is a function of number of cycles, applied stress, and stress history. In addition, soil degradation during cyclic loading is studied in terms of Degradation Index. Attempt has been made to predict stain, pore water pressure, and degradation index through an empirical model.  相似文献   

18.
Abstract

This paper presents a novel elasto-viscoplastic constitutive formulation based on the isotache concepts and the Nishihara model. Incorporating a novel viscoelastic body to include the delay elastic deformation of marine soft clays under the external load, the proposed model is used to evaluate the theories of consolidation-creep coupling, strain rate dependency and stress relaxation of saturated marine soft clays, and hence, the methodology used to determine the parameters of the model is discussed. Ningbo marine soft clay is selected as an example to interpret the determination of the model parameters on a field scale. A series of conventional oedometer tests are conducted as well. Eventually, we utilize the model to simulate several kinds of rheological tests, including one-dimensional (1-D) long-term compression tests on Ningbo marine soft clays, 1-D constant rate of strain (CRS) tests on Batiscan clays and 1-D stress relaxation tests on Hong Kong marine deposits. These findings indicate good agreement between the computational and experimental results, suggesting the given model can provide reliable forecasts for the rheological characteristics of marine soft clays.  相似文献   

19.
ABSTRACT

The use of lime to improve the properties of soft clays is not new. Recently the deep lime mixing technique has been extended to coastal regions for improving the behavior of weak marine clays. But lime treatment technique should be approached carefully for clay containing a high percentage of sodium sulphate. The presence of sulphate in lime-treated clays may result in high swelling due to the formation of the expansive mineral, ettringite. A limited study of lime-treated marine clays has shown a need to further explore the formation of ettringite and its stability with time. In this article, a laboratory investigation was carried out to examine the influence of sodium and calcium sulphates on the behavior of lime column treated marine clay. Scanning electron microscopy (SEM) was used to identify the formation of various reaction products, including ettringite. Test results indicate that the formation of ettringite in the lime-sodium sulphate-clay system adversely affects the engineering behavior of the marine clay, whereas the addition of calcium sulphate significantly improves the engineering characteristics of the soil.  相似文献   

20.
The deformation behavior and shear strength of soft marine clays subjected to wave or traffic loads are different from that in triaxial loading due to the changes of major principal stress direction β and intermediate principal stress coefficient b. To investigate the anisotropy affected by β and b in natural soft marine clay, a series of drained tests were conducted by hollow cylinder apparatus. The principal stress direction relative to vertical direction were maintained constant under an increasing shear stress, with fixed intermediate principal stress coefficient b. The influence of the b and β on anisotropy of typically Wenzhou intact clay is discussed. It was found that octahedral stress–strain relationships expressed anisotropy with different b and β. The friction angle and deviator stress ratio with different b and β were presented to provide guidance for engineering projects in the coastal zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号