首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Samples from Kawah Ijen crater lake, spring and fumarole discharges were collected between 1990 and 1996 for chemical and isotopic analysis. An extremely low pH (<0.3) lake contains SO4–Cl waters produced during absorption of magmatic volatiles into shallow ground water. The acidic waters dissolve the rock isochemically to produce “immature” solutions. The strong D and 18O enrichment of the lake is mainly due to enhanced evaporation at elevated temperature, but involvement of a magmatic component with heavy isotopic ratios also modifies the lake D and 18O content. The large ΔSO4–S0 (23.8–26.4‰) measured in the lake suggest that dissolved SO4 forms during disproportionation of magmatic SO2 in the hydrothermal conduit at temperatures of 250280°C. The lake δ18OSO4 and δ18OH2O values may reflect equilibration during subsurface circulation of the water at temperatures near 150°C. Significant variations in the lake's bulk composition from 1990 to 1996 were not detected. However, we interpret a change in the distribution and concentration of polythionate species in 1996 as a result of increased SO2-rich gas input to the lake system.Thermal springs at Kawah Ijen consist of acidic SO4–Cl waters on the lakeshore and neutral pH HCO3–SO4–Cl–Na waters in Blawan village, 17 km from the crater. The cation contents of these discharges are diluted compared to the crater lake but still do not represent equilibrium with the rock. The SO4/Cl ratios and water and sulfur isotopic compositions support the idea that these springs are mixtures of summit acidic SO4–Cl water and ground water.The lakeshore fumarole discharges (T=170245°C) have both a magmatic and a hydrothermal component and are supersaturated with respect to elemental sulfur. The apparent equilibrium temperature of the gas is 260°C. The proportions of the oxidized, SO2-dominated magmatic vapor and of the reduced, H2S-dominated hydrothermal vapor in the fumaroles varied between 1979 and 1996. This may be the result of interaction of SO2-bearing magmatic vapors with the summit acidic hydrothermal reservoir. This idea is supported by the lower H2S/SO2 ratio deduced for the gas producing the SO4–Cl reservoir feeding the lake compared with that observed in the subaerial gas discharges. The condensing gas may have equilibrated in a liquid–vapor zone at about 350°C.Elemental sulfur occurs in the crater lake environment as banded sediments exposed on the lakeshore and as a subaqueous molten body on the crater floor. The sediments were precipitated in the past during inorganic oxidation of H2S in the lake water. This process was not continuous, but was interrupted by periods of massive silica (poorly crystallized) precipitation, similar to the present-day lake conditions. We suggest that the factor controlling the type of deposition is related to whether H2S- or silica-rich volcanic discharges enter the lake. This could depend on the efficiency with which the lake water circulates in the hydrothermal cell beneath the crater. Quenched liquid sulfur products show δ34S values similar to those found in the banded deposits, suggesting that the subaqueous molten body simply consists of melted sediments previously accumulated at the lake bottom.  相似文献   

2.
A bathymetric survey of Kawah Ijen crater lake was conducted by acoustic sounding in 1996 to compare the lake morphology with those measured in 1922, 1925 and 1938, and to calculate the present lake volume. Even though the lake experienced several hydrothermal eruptions, the maximum depth became shallower (182 m) than before (200 m), resulting in a reduced lake volume (3.0×107 m3).Fifty-two major and minor constituents including rare earth elements and polythionates (PT) of the lake waters at various depths were determined by ICP-AES, ICP-MS and HPLC, respectively. These ions except for several volatile elements are taken up by lake fringe through congruent dissolution of pyroclastics of Kawah Ijen volcano. Most ions are homogeneously distributed throughout the lake, although PT showed a considerable vertical variation. Rare earth elements (REE) in the Kawah Ijen water as well as those from other hyper-acidic crater lakes show distribution patterns likely due to the three rock dissolution (preferential, congruent and residual) types, and their logarithmic concentrations linearly depend upon the pH values of the lake waters.Using the PT degradation kinetics data, production rates of PT, injection rates of SO2 and H2S into the lake were estimated to be 114, 86 and 30 tons/day, respectively. Also travel time of the spring water at the Banyupahit Riverhead from Kawah Ijen was estimated to be 600–1000 days through the consideration of decreasing rates of PT. Molten sulfur stocks containing Sn, Cu, Bi sulfides and Pb-barite exposed on the inner crater slope were presumed to be extinct molten sulfur pools at the former lake bottom. This was strongly supported by the barite precipitation temperature estimated through the consideration of the temperature dependence of Pb-chlorocomplex formation.  相似文献   

3.
The crater lake of Kawah Ijen volcano contains extremely low pH (<0.4) waters with high SO4 (70000 mg/kg), Cl (21000 mg/kg), F (1500 mg/kg), Al (5000 mg/kg), Fe (2000 mg/kg) and trace metal (Cu 0.5, Zn 4, Pb 3 mg/kg) contents. These brines seep outward through the western crater rim and reappear on the other side as streamlets, which form the headwaters of the Banyupahit stream. The Banyupahit first mixes with fresh rivers and thermal springs in the Ijen caldera and then irrigates a coastal agricultural plain which is 30 km from the summit crater.We discuss the downstream composition changes affecting the Banyupahit waters by using stable isotope, chemical and mineralogical data collected from sites along the stream length. The saturation of the stream waters with respect to minerals was evaluated with SOLVEQ and WATEQ4F and compared with the geochemical observations. An aluminous mineralogy (alunogen, pickeringite, tamarugite and kalinite) develops in the upper part of the Banyupahit due to concentration of the headwaters by evaporation. Downstream attenuation of dissolved element concentrations results principally from dilution and from mineral precipitation. The stream pH changes from 0 at the source to >4 close to the mouth. The δD and δ18O values and the relative SO4–Cl–F contents of the Banyupahit waters indicate that the tributaries are mostly meteoric. Dissolved SO4 in the acidic stream come only from the crater lake seepages and are not involved later in microbially mediated reactions, as shown by their δ34S and δ18O values. Re-equilibration of the stream SO4 oxygen-isotope composition with H2O from tributaries does not occur.Calcium, SiO2, Al, Fe, K and SO4 behave non-conservatively in the stream waters. Gypsum, silica (amorphous or poorly ordered), a basic aluminum hydroxysulfate (basaluminite?), K-jarosite and amorphous ferric hydroxide may exert a solubility control on these elements along the entire stream length, or in certain stream sections, consistent with the thermochemical model results. Downstream concentration trends and mineral saturation levels suggest that precipitation of Sr-, Pb-rich barite and celestite consume Ba, Sr and Pb, whereas dissolved Cu, Pb and Zn may adsorb onto solid particles, especially after the junctions of the acidic stream with non-acidic rivers. We calculated that significant fluxes of SO4, F, Cl, Al, SiO2, Ti, Mn and Cu may reach the irrigation system, possibly causing serious environmental impacts such as soil acidification and induration.  相似文献   

4.
The crater lake water from Maly Semiachik volcano in Kamchatka was used for the international analytical laboratory comparison of major and minor elements, and hydrogen, sulfur, and oxygen isotope data. Eight institutions participated in this program, giving analytical results of 9 major and 20 minor elements mainly by using ICP-AES for cations and IC for anions. Among the major elements, Na, Mg and Si showed coefficients of variation (CV) of 10% or more, whereas B, Al, Fe, Mn had coefficients less than 7%. The CV% of the minor elements Co, Cu, P, Cr, Pb was much greater (>30%) while the V analyses agreed well (<10%). Ti, Sr, Zn, and F were intermediate (between 10 and 20 CV%). The errors observed for these constituents are inherent to the methods applied: large dilutions and spectrometric interferences. Even the major anions such as Cl (>2000 ppm) and SO4 (>5000 ppm) gave considerable ranges (5.1 and 8.8 CV%, respectively) as did the obtained pH values (22 CV%). The measured δ18O of the water samples and δ34S of sulfate are in excellent agreement but the δD values had CV% of 8. Technical recommendations are presented to improve the analytical results for these elements with significant deviations from the mean values.  相似文献   

5.
The June 1991 eruption of Mount Pinatubo, Philippines breached a significant, pre-eruptive magmatic-hydrothermal system consisting of a hot (>300 °C) core at two-phase conditions and surrounding, cooler (<260 °C) liquid outflows to the N and S. The eruption created a large, closed crater that accumulated hydrothermal upwellings, near-surface aquifer and meteoric inflows. A shallow lake formed by early September 1991, and showed a long-term increase in level of ~1 m/month until an artificial drainage was created in September 2001. Comparison of the temporal trends in lake chemistry to pre- and post-eruptive springs distinguishes processes important in lake evolution. The lake was initially near-neutral pH and dominated by meteoric influx and Cl–SO4 and Cl–HCO3 hydrothermal waters, with peaks in SO4 and Ca concentrations resulting from leaching of anhydrite and aerosol-laden tephra. Magmatic discharge, acidity (pH~2) and rock dissolution peaked in late 1992, during and immediately after eruption of a lava dome on the crater floor. Since cessation of dome growth, trends in lake pH (increase from 3 to 5.5), temperature (decline from 40 to 26 °C), and chemical and isotopic composition indicate that magmatic degassing and rock dissolution have declined significantly relative to the input of meteoric water and immature hydrothermal brine. Higher concentrations of Cl, Na, K, Li and B, and lower concentrations of Mg, Ca, Fe, SO4 and F up to 1999 highlight the importance of a dilute hydrothermal contribution, as do stable-isotope and tritium compositions of the various fluids. However, samples taken since that time indicate further dilution and steeper trends of increasing pH and declining temperature. Present gas and brine compositions from crater fumaroles and hot springs indicate boiling of an immature Cl–SO4 geothermal fluid of near-neutral pH at approximately 200 °C, rather than direct discharge from magma. It appears that remnants of the pre-eruptive hydrothermal system invaded the magma conduit shortly after the end of dome emplacement, blocking the direct degassing path. This, along with the large catchment area (~5 km2) and the high precipitation rate of the area, led to a rapid transition from a small and hot acid lake to a large lake with near-ambient temperature and pH. This behavior contrasts with that of peak-activity lakes that have more sustained volcanic gas influx (e.g., Kawah Ijen, Indonesia; Poas and Rincón de la Vieja, Costa Rica).Editorial responsibility: H. Shinohara  相似文献   

6.
The carbon isotopic composition of diagenetic dolomite and calcite in some sediments of the Gulf of Mexico varies between “normal-marine” (δ13C ca. 0‰) and −14.6‰ which suggests that biogenic CO2 contributed to the carbonate formation. The δ13O values of dolomite and coexisting calcite are very similar but variable down-core.Dolomite and calcite precipitated early from pore water where SO42− was not reduced. However, during (and after?) SO42− reduction dolomite and calcite still formed and there are at least two generations of carbonate minerals present.  相似文献   

7.
The edifice of Mount Rainier, an active stratovolcano, has episodically collapsed leading to major debris flows. The largest debris flows are related to argillically altered rock which leave areas of the edifice prone to failure. The argillic alteration results from the neutralization of acidic magmatic gases that condense in a meteoric water hydrothermal system fed by the melting of a thick mantle of glacial ice. Two craters atop a 2000-year-old cone on the summit of the volcano contain the world's largest volcanic ice-cave system. In the spring of 1997 two active fumaroles (T=62°C) in the caves were sampled for stable isotopic, gas, and geochemical studies.Stable isotope data on fumarole condensates show significant excess deuterium with calculated δD and δ18O values (−234 and −33.2‰, respectively) for the vapor that are consistent with an origin as secondary steam from a shallow water table which has been heated by underlying magmatic–hydrothermal steam. Between 1982 and 1997, δD of the fumarole vapor may have decreased by 30‰.The compositions of fumarole gases vary in time and space but typically consist of air components slightly modified by their solubilities in water and additions of CO2 and CH4. The elevated CO2 contents (δ13CCO2=−11.8±0.7‰), with spikes of over 10,000 ppm, require the episodic addition of magmatic components into the underlying hydrothermal system. Although only traces of H2S were detected in the fumaroles, most notably in a sample which had an air δ13CCO2 signature (−8.8‰), incrustations around a dormant vent containing small amounts of acid sulfate minerals (natroalunite, minamiite, and woodhouseite) indicate higher H2S (or possibly SO2) concentrations in past fumarolic gases.Condensate samples from fumaroles are very dilute, slightly acidic, and enriched in elements observed in the much higher temperature fumaroles at Mount St. Helens (K and Na up to the ppm level; metals such as Al, Pb, Zn Fe and Mn up to the ppb level and volatiles such as Cl, S, and F up to the ppb level).The data indicate that the hydrothermal system in the edifice at Mount Rainier consists of meteoric water reservoirs, which receive gas and steam from an underlying magmatic system. At present the magmatic system is largely flooded by the meteoric water system. However, magmatic components have episodically vented at the surface as witnessed by the mineralogy of incrustations around inactive vents and gas compositions in the active fumaroles. The composition of fumarole gases during magmatic degassing is distinct and, if sustained, could be lethal. The extent to which hydrothermal alteration is currently occurring at depth, and its possible influence on future edifice collapse, may be determined with the aid of on site analyses of fumarole gases and seismic monitoring in the ice caves.  相似文献   

8.
During 1979–1989, variations were observed in the oxygen composition of the water contained in the geothermal reservoir at Vulcano Island, Italy.The reservoir water, that has a magmatic origin, showed an oxygen composition of +1.0±0.5‰ δ18O during periods without local tectonic earthquakes, and an oxygen composition of +3.4±0.5‰ δ18O after the highest-energy seismic activity that occurred recently near the island. A slight increase of the δ18O value in the reservoir water was also observed after a low-energy sequence of tectonic earthquakes that occurred at very shallow depth just beneath Vulcano Island. These 18O variations in the reservoir water are consistent with earthquake-induced increases in the contribution from high-temperature δ18O-rich magmatic condensate to the geothermal reservoir, and with subsequent decreases in the δ18O value due to 18O exchanges at the temporarily increased reservoir temperature during reactions between the highly reactive magmatic condensate and the local rocks.Only minor changes in the deuterium composition of the reservoir water occurred with time, as the δD value in the magmatic condensate released from the magma after major local earthquakes quickly approached the δD value of the water contained in the geothermal reservoir.Also the chloride concentration in the reservoir water appears to be linked to the contribution from the magmatic fluid. This chloride content seems not to have undergone major changes with time, as it may be buffered by temporary increases in the reservoir temperature up to values >300°C induced by major local earthquakes. This mechanism may possibly occur also in other magmatic–hydrothermal systems.  相似文献   

9.
A two-channel or split-window algorithm designed to correct for atmospheric conditions was applied to thermal images taken by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) of Lake Yugama on Kusatsu–Shirane volcano in Japan in order to measure the temperature of its crater lake. These temperature calculations were validated using lake water temperatures that were collected on the ground. Overall, the agreement between the temperatures calculated using the split-window method and ground truth is quite good, typically ± 1.5 °C for cloud-free images. Data from fieldwork undertaken in the summer of 2004 at Kusatsu–Shirane allow a comparison of ground-truth data with the radiant temperatures measured using ASTER imagery. Further images were analyzed of Ruapehu, Poás, Kawah Ijen, and Copahué volcanoes to acquire time-series of lake temperatures. A total of 64 images of these 4 volcanoes covering a wide range of geographical locations and climates were analyzed. Results of the split-window algorithm applied to ASTER images are reliable for monitoring thermal changes in active volcanic lakes. These temperature data, when considered in conjunction with traditional volcano monitoring techniques, lead to a better understanding of whether and how thermal changes in crater lakes aid in eruption forecasting.  相似文献   

10.
Secular variations in 13C/12C ratios and chemical compositions of gas samples from October 1986 to July 1992 are reported from a 92–95 °C steam well located about 3 km north of Mt. Mihara, an active volcano on Izu-Oshima Island, Japan. The δ13C value steeply increased from −2.97‰ (relative to PDB carbonate) in December 1986 to −1.15‰ in March 1988 and then gradually decreased to −1.75‰ in July 1992. Over the same period, the CO2 content changed similarly with time, even though the experimental error is relatively large. These variations are consistent with helium isotope changes. Initially rapid and then slow enhancements of 3He/4He ratio, δ13C value and CO2 content are invoked by violent eruptions of Izu-Oshima volcano from 15 November to 18 December 1986. After the eruptive activity, depletion of magmatic gas emission and subsequent mixing with crustal fluids in the hydrothermal system may produce the gradual decreases of 3He/4He ratio, δ13C value and CO2 content. Taking into account the rates of these decreases, we suggest that helium and carbon isotope ratios will return to the situation of before the magmatic eruption within 15 years.  相似文献   

11.
Three crater lakes from Mexican volcanoes were sampled and analyzed at various dates to determine their chemical characteristics. Strong differences were observed in the chemistry among the three lakes: Nevado de Toluca, considered as dormant, El Chichón at a post-eruptive stage, and Popocatépetl at a pre-eruptive stage. Not surprisingly, no influence of volcanic activity was found at the Nevado de Toluca volcano, while the other volcanoes showed a correlation between the changing level of activity and the evolution of chemical trends. Low pHs (<3.0) were measured in the water from the active volcanoes, while a pH of 5.6 was measured at the Nevado de Toluca Sun lake. Changes with time were observed at Popocatépetl and El Chichón. Concentrations of volcanic-gas derived species like Cl, SO42− and F decreased irregularly at El Chichón from 1983 until 1997. Major cations concentrations also diminished at El Chichón. A 100% increase in the SO42− content was measured at Popocatépetl between 1985 and 1994. An increase in the Mg/Cl ratio between 1992 (Mg/Cl=0.085) and 1994 (Mg/Cl=0.177) was observed at Popocatépetl, before the disappearance of the crater lake in 1994. It is concluded that chemical analysis of crater lakes may provide a useful additional tool for active-volcano monitoring.  相似文献   

12.
Isotopic compositions were determined for hydrothermal quartz, calcite, and siderite from core samples of the Newberry 2 drill hole, Oregon. The δ15O values for these minerals decrease with increasing temperatures. The values indicate that these hydrothermal minerals precipitated in isotopic equilibrium with water currently present in the reservoirs. The δ18O values of quartz and calcite from the andesite and basalt flows (700–932 m) have isotopic values which require that the equilibrated water δ18O values increase slightly (− 11.3 to −9.2‰) with increasing measured temperatures (150–265°C). The lithic tuffs and brecciated lava flows (300–700 m) contain widespread siderite. Calculated oxygen isotopic compositions of waters in equilibrium with siderite generally increase with increasing temperatures (76–100°C). The δ18O values of siderite probably result from precipitation in water produced by mixing various amounts of the deep hydrothermal water (− 10.5 ‰) with meteoric water (− 15.5 ‰) recharged within the caldera. The δ13C values of calcite and siderite decrease with increasing temperatures and show that these minerals precipitated in isotopic equilibrium with CO2 of about −8 ‰.The δ18O values of weakly altered (<5% alteration of plagioclase) whole-rock samples decrease with increasing temperatures above 100°C, indicating that exchange between water and rock is kinetically controlled. The water/rock mass ratios decrease with decreasing temperatures. The δ18O values of rocks from the bottom of Newberry 2 show about 40% isotopic exchange with the reservoir water.The calculated δ18O and δD values of bottom hole water determined from the fluid produced during the 20 hour flow test are −10.2 and −109‰, respectively. The δD value of the hydrothermal water indicates recharge from outside the caldera.  相似文献   

13.
Stable isotope ratios of S, O and Sr have been measured for active vent materials which were first found and sampled in April 1987 from the Mariana backarc spreading axis at 18°N. Chimneys consisted mostly of barite with a lesser proportion of sulfide minerals such as sphalerite, galena, chalcopyrite and pyrite. Theδ34S values of sphalerite and galena taken from several chimneys and various parts of a chimney showed a narrow range from 2.1 to 3.1‰, suggesting uniform conditions of fluid chemistry during chimney growth. The sulfur isotopic results imply a contribution of hydrogen sulfide reduced from seawater sulfate in the deep hydrothermal reaction zone, considering that fresh glasses of the Mariana Trough basalts haveδ34S= −0.6 ± 0.3‰. Sulfur isotopic compositions of hydrogen sulfide in the high temperature vent fluids (δ34S= 3.6–4.8‰) which are higher than those of the sulfide minerals suggest the secondary addition of hydrogen sulfide partially reduced from entrained seawater SO42− at a basal part of the chimneys. This interpretation is consistent with theδ34S values of barite (21–22‰) that are higher than those of seawater sulfate. The residence time of the entrained SO42− was an order of an hour on a basis of oxygen isotopic disequilibrium of barite. Strontium isotopic variations of barite and vent waters indicated that Sr in barite was mostly derived from the Mariana Trough basalts with a slight contribution from Sr in circulating sea-water, and that 10–20% mixing of seawater with ascending hydrothermal fluids induced precipitation of barite at the sea-floor.  相似文献   

14.
3He/4He ratios in lavas erupted during the last 360 years at Mt. Vesuvius are between 2.2 and 2.7 RA (RA = atmospheric ratio of 1.39 × 10−6), and are among the lowest values measured in young volcanic rocks. They are also identical to values measured in summit crater fumaroles sampled during 1987–1991. This agreement indicates that the 3He/4He ratio in the crater fumaroles faithfully tracks the magmatic value. The relatively low and uniform 3He/4He ratio in the lavas reflects either a mantle source enriched in (U + Th)/3He, or a mixture of magmatic and crustal components.  相似文献   

15.
Here we present the first species-specific study of boron isotopes in the epibenthic foraminifer species Cibicidoides wuellerstorfi. Coretop samples from a water depth profile from 1000 to 4500 m on the northern flank of the Walvis Ridge are 4.4‰ lower than the values expected, based on calculations of the δ11Bborate of ambient seawater. Similar values for this foraminifer species are presented from ODP site 668B at the Sierra Leone Rise, in the equatorial Atlantic. The consistency between data of the same species suggests the offsets are primary, rather than diagenetic. Glacial C. wuellerstorfi from ODP 668B and Walvis Ridge have boron isotope compositions only slightly different to interglacial samples, that is no larger than + 0.10 pH units, or + 23 µmol kg− 1 in [CO32−] above the reconstructed glacial lysocline, and − 0.07 pH units, or − 14 µmol kg− 1 in [CO32−] below. We use these results to suggest that glacial deep water pH in the Atlantic was similar to interglacial pH. The new data resolve the inconsistency between the previously reported high bottom water pH and the lack of significant carbonate preservation of the glacial deep ocean.  相似文献   

16.
The minerals of basic and acidic rocks from the volcano-sedimentary sequence in the Huelva area, Spain, Iberian Pyrite Belt, display an extendedδ18O enrichment. Quartzδ18O values from quartz-keratophyres vary from +10.5 to +17.0 and feldsparδ18O values from +14.4 to +16.0. For the spilite or spilitized doleritesδ18O values vary from +9.9 to +13.4 for feldspar, from +6.4 to +9.8 for chlorite, from +3.7 to +4.3 for ilmenite and from +13.6 to +14.0 for quartz, but pyroxene exhibits magmatic values, from +5.3 to +6.1 with an exception at +7.5. The chloriteδD values vary from −34 to −43‰.This is attributed to hydrothermal alteration with seawater enriched inδ18O by circulation through sediments.The temperatures of interaction determined from isotopic fractionations between minerals range from 400° to 520°C.CalculatedδD andδ18O values for water in equilibrium with the minerals at isotopic temperatures range from −16 to +5 and from +8.3 to +12.8, respectively.A model of circulation of seawater through a pile of sedimentary rocks and then through basaltic rocks is proposed to explain the high18O compositions of the rocks from the Huelva District. Water/rock mass ratios calculated from this model range between 0.3 and 0.7 for the determined range of temperatures.  相似文献   

17.
The nitrogen isotope geochemistry of 15 basaltic glasses has been investigated using stepped heating and high sensitivity static vacuum mass spectrometry. At low temperature (< 600°C) the glasses release small amounts of nitrogen with δ15NAIR, averaging −0.3‰, suggesting surficial adsorption of atmospheric nitrogen. At high temperature, usually with a maximum at 1000°C, indigenous nitrogen with a concentration ranging from 0.2 to 2.1 ppm is released. The δ15N values of this high temperature release show a wide range from −4.5‰ to +15.5‰. There is no correlation between N ppm and δ15N, and the samples apparently form 3 groups with distinctive δ15N. Six MORB glasses from the Mid-Atlantic Ridge, East Pacific Rise and Juan de Fuca Ridge define a group with δ15N = +7.5 ± 1.3‰. In contrast two Indian Ocean MORB glasses (Carlsberg Ridge and Gulf of Aden) gave negative δ15N averaging −3.2‰. Glasses from Loihi Seamount have high δ15N averaging +14.0 ± 1.0‰. Comparison of the δ15N data with the mantle models derived from helium and argon isotope studies suggests that the wide range in δ15N may reflect in part heterogeneities in the mantle related to its degassing history. It is possible, however, that magmatic degassing processes have also affected nitrogen isotopic compositions, and the data cannot yet be unambiguously interpreted in terms of source variations.  相似文献   

18.
Variations of polythionates (sulfane disulfonates) and sulfate in the Yugama crater lake, Japan, have been monitored for more than 25 years. Just before the 1982 eruption at the crater lake, polythionate ions decreased to zero from the normal level of about 2000 ppm and sulfate ions increased from 2500 to 5000 ppm. During the 1982 eruption polythionate and sulfate ions varied inversely in concentration and the variations exactly coincided with the frequency of volcanic earthquakes and subsequent explosions. These observations are interpreted in terms of aqueous reactions of fumarolic SO2-H2S gases, resulting in precipitation of alunite. The behavior of polythionate and sulfate ions strongly suggests that they are useful indicator for prediction of impending volcanic hazards from active crater lakes.  相似文献   

19.
Whole-rock oxygen isotope compositions of cores and cuttings from Long Valley exploration wells show that the Bishop Tuff has been an important reservoir for both fossil and active geothermal systems within the caldera. The deep Clay Pit-1 and Mammoth-1 wells on the resurgent dome penetrate mildly to strongly altered Bishop Tuff with δ18OWR values as low as −2.6% (vs V-SMOW). The idfu 44-16 well intercepts a thinner Bishop Tuff section with δ18OWR values of +0.4 to +2.3%. in the western caldera moat, where milder and more sporadic 18O depletions occur in Tertiary volcanic rocks of the western caldera floor (δ18OWR = +2.2 to +6.4‰). Bishop Tuff samples from deeper parts of the 715 m rdo-8 (Shady Rest) well in the SW moat are also strongly depleted in 18O (δ18OWR = −1.5 to +0.6‰). Four shallow thermal gradient wells (469–715 m td drilled in the western moat did not penetrate Bishop Tuff, but Early Rhyolites from two of these holes are depleted in 18O (δ18OWR = −1.2 to +6.0‰ inplv-1 +4.6 to +5.3%. inmlgrap-1), compared to lithologic equivalents from the other two holes (δ18OWR = +6.3 to +8.0‰ inplv-2 andmlgrap-2).Whole-rock oxygen isotope profiles for the resurgent dome wells are unlike profiles calculated assuming alkali feldspar-H2O fractionation behavior and total O-isotopic equilibration with −14.3‰ fluids at measured temperatures. The sense of this divergence implies an earlier hydrothermal episode within the central caldera driven by one or more shallow intrusions. Geochemical similarities between an intrusive granophyre at the bottom of the Clay Pit-1 well and a nearby Moat Rhyolite dome with a K/Ar cooling age of 0.5 Ma suggest that vigorous hydrothermal activity beneath the central resurgent dome may have occurred as much as 0.5 m.y. ago. Calculated and measured O-isotope profiles are similar for deep wells that penetrate the western moat of the caldera, where steep temperature gradients and low δ18OWR values in Early Rhyolites from plv-1 are attributed to an active hydrothermal aquifer that has descended slightly from earlier, shallower elevations. Similarly, severe 18O depletions in Bishop Tuff samples from the idfu 44-16 and rdo-8 wells reflect active convection beneath the western moat, whereas milder 18O depletions in Early Rhyolites from mlgrap-1 were apparently caused by hydrothermal alteration at lower temperatures. The O-isotope profiles imply that surface discharge within and around the resurgent dome results from shallow, eastward-directed outflow from a zone of higher enthalpy hydrothermal upflow beneath the western caldera moat. Intrusive magmatic heat source(s) are inferred to exist beneath the western moat, perhaps beneath Mammoth Mountain.  相似文献   

20.
The Ischia geothermal system is hosted by silicic rocks of the Quaternary Potassic Roman Province, in southern Italy. Exploration drilling down to 1156 m depth in the mid-1950s provided information on boiling profiles (up to 250°C) and on the depth and permeability of the potential reservoirs. Discharge fluid samples were collected and analyzed to define the inflow of surrounding seawater (C1 ranges from 2.5 to 20 g/kg) into the system.Analyses of samples from surface manifestations and shallow wells collected during 1983 and 1988 point to the existence of three distinct mixing regimes, involving three water components. A dishomogeneous body of diluted water (Cl less than 2.5 g/kg), that occurs at depths > 700 m and reequilibrates at 240°C at least, is overlain by an aquifer of groundwater variably mixed with variably seawater (Cl from 4 to 10 g/kg), which tends to reequilibrate at 160°C. Steam-heated waters locally develop and act as dilutants of the rising geothermal fluids.Dilution, mixing, and evaporation of the ascending chloride fluids are supported by oxygen and hydrogen isotopic data the thermal waters being enriched in 18O and D with respect to local meteoric water by up to 7 and 30‰, respectively. The relative composition of the major cations in thermal solutions was used to discriminate the two main groups of thermal waters, the reservoir temperatures of which are estimated from the Na/K-gethermometer. K-Mg geothermometer indicates reequilibration in near-surface conditions.The isotopic composition of the fumarolic steam varies from −7 to −12‰ in ∂8O and from − 35 to − 70‰ in ∂D, in agreement with a deep mixed fluid that boils adiabatically from 240 to 80°C. The deuterium content of the H2O-H2 pair gives enrichment factor of about 830‰, corresponding to equilibrium temperature conditions slightly higher than the surface boiling temperatures. The ∂13C of CO2is almost constant at −4.5‰ (1δ=0.4), suggesting an important magmatic contribution, and the ∂18O values of CO2appears to in equilibrium with accompanying steam at the measured temperatures.The CO2/Ar and H2/Ar chemical ratios have been used to derive aquifer temperatures, the values obtained being consistent with those of solute geothermometers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号