首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
本文根据野外试验资料分析指出,黄河中游高含沙水流泥沙具有均质分布的特点。认为这种均质分布在流域产生径流时就已形成,并且在浑水流体较大的极限切应力和密集泥沙形成的结构体作用下保持下来。扩散理论的垂线分布公式不适用于高含沙水流,这时的泥沙测验内容、方法和仪器等应与低含沙测量不同。一、高含沙水流泥沙分布特性黄河中游干支流,洪水时期常出现高含沙水流。根据这个地区部分水文站的实测资料分析,这种水流有如下的分布特性:  相似文献   

2.
基于甘肃省黄土高原区33个气象站1962-2010年气象资料, 利用综合气象干旱指数(CI)对其近50 a的干旱频率和平均持续时间的空间分布、 干旱强度趋势变化和极端干旱事件频次进行了分析, 此基础上应用基于分型理论的R/S方法对干旱强度未来变化趋势进行了预测. 结果表明: 甘肃省黄土高原区干旱发生频率和多年平均持续天数在兰州-靖远一带和庆阳北部属于高值区, 而岷县、 渭源一带属于低值区; 106° E以西"临洮-通渭-天水"一带和庆阳东南部是干旱变幅最大的地方. 20世纪90年代以来, 干旱强度增大的较快, 四季均呈现出干旱强度变大的趋势, 其中春、 秋季干旱强度加剧的趋势明显, 夏季近10 a都处于非常严重的干旱状态, 但未通过0.01的显著性检验; 20世纪60年代至今, 极端干旱事件发生频次快速增多. 四季干旱强度Hurst指数H 均大于0.5, 同时分维数D 均小于1.5, 因此, 未来一段时间干旱强度仍然保持与过去相一致的变化趋势. 研究结果可为相关部门制定相应抗旱对策提供科学依据.  相似文献   

3.
祁连山及周边地区降雪气候特征研究   总被引:7,自引:3,他引:4  
利用祁连山区及其周边地区(90°~104° E, 32°~42° N)1960-2004年55个站点冬季逐日降水资料, 重点分析了祁连山区(94°~104° E, 36°~39° N)不同降雪强度的时空分布特征, 暴雪的天气影响系统及地形作用. 结果表明: 祁连山区降雪量与中雪日数关系最密切, 祁连山东北侧降雪日数最多. 祁连山不同区域分布中西部雪日最少, 中部强度最弱;小雪中部最多, 中雪中南部较多较强, 大到暴雪北侧最多、南侧最强. 降雪夜间明显较多, 小到中雪强度夜间较强;年变化在西部持续增多, 中部70年代最少, 北侧90年代最少;但西中北部均21世纪最多, 南侧70年代最多, 之后持续减少. 降雪日数有3~4 a、 5~7 a和12~14 a的年际变化周期. 暴雪出现的主要天气环流形势为北方横槽南压型和新疆冷温槽发展东移型, 分别占38.1%和52.4%. 暴雪均出现在山脉冬季风的迎风坡和峡谷地带.  相似文献   

4.
滇藏铁路香格里拉—邦达段沿线断层发育,构造运动强烈,为提高沿线工程的稳定性,基于构造形迹、震源机制解和实测数据的多元综合分析法,对研究区主应力方向进行了分析;基于Hoek-Brown强度准则和修正的Sheorey理论,结合实测数据,对研究区岩体强度参数和主应力量值进行了估算和预测,最后对研究区的地应力场特征及其工程效应进行了分析。结果表明:香格里拉-德钦应力区的水平最大主应力方向N0°W~N40°W;芒康-邦达应力区的水平最大主应力方向为N60°E~N80°E;铁路沿线埋深1000 m处,水平最大主应力范围为24.23~37.30 MPa;埋深2000 m处,水平最大主应力范围为47.29~66.69 MPa;香格里拉-德钦应力区隧道轴线设置为N80°W~N40°E有利于围岩稳定,芒康-邦达应力区隧道轴线走向设置为N10°E~N130°E有利于围岩稳定;铁路沿线高地应力显著,埋深超过400 m就可能处于高地应力状态,硬质岩埋深超过700 m会有岩爆风险,软质岩埋深超过1400 m会有大变形风险。  相似文献   

5.
地层岩性是生态地质环境条件的重要组成部分,查明不同岩性对生长在其上植物群落的影响,对生态保护和生态修复具有重要意义。以江西赣州市相同地貌条件和气候条件下的岩石、土壤、植物群落为研究对象,通过对植被和土壤开展全面调查与采样分析,探索了岩石-土壤-植物群落间的对应关系。分析了不同成土母岩衍生的土壤在粒度组成、化学成分、物理性质等方面的特征,揭示了地质背景条件与植物群落分布的关系。结果表明: ①成土母岩岩性、土壤质地、土壤pH值、土壤养分、土壤中主量和微量元素含量的差异是影响植物群落分布的重要因素; ②研究区各岩性区的土壤养分含量从高到低为变余杂砂岩区土壤>粉砂岩区土壤>砂砾岩区土壤>长石石英砂岩区土壤>花岗岩区土壤。  相似文献   

6.
用模式分类方法区分高、低含沙水流   总被引:1,自引:0,他引:1       下载免费PDF全文
在介绍模式分类方法的基础上,通过分析BP神经网络训练结果发现:高、低含沙水流挟沙力的变化规律有相似之处,说明挟沙规律不宜作为区别高、低含沙水流的标准,与前人的分析比较吻合;当多沙流体宾汉剪应力大于或小于某一数值组次的资料占总数的绝大多数时,这些组次训练结果与实测值符合较好,而另外组次训练结果与实测值有较大差别,这说明低含沙流体随着含沙量的增加流变方程由牛顿体向宾汉体模型转化时对应的宾汉剪应力有一个临界值。因此可将多沙流体的宾汉剪应力是否达到相应的临界值,作为区分高、低含沙水流的标准。对电木粉高含量的流体,该临界值约为3.2×10-1Pa。  相似文献   

7.
黄河源黑河下游于2018年7月汛期发生1次颈口裁弯的极端地貌过程,裁弯河段的水流结构发生强烈调整,开展原型观测裁弯后河道水流结构具有重要科学意义。2019年和2020年采用声学多普勒流速剖面仪对裁弯河段共计45个横断面进行野外测量,对比分析裁弯后河道三维水流结构与环流强度。结果表明:受河道形态、边界条件、水文条件等因素影响,裁弯口上游顺直河段的水流结构受颈口裁弯的影响较小,而弯道段水流结构于裁弯后明显调整。具体表现为颈口裁弯对顺直河段的流速、环流强度空间分布无较大影响,会改变弯顶段最大流速的横向分布和环流结构的断面分布、影响分离区的规模和分布位置。研究结果加深了颈口裁弯后水流结构调整对牛轭湖淤积、分离区河床冲淤以及新河道冲刷影响的认识。  相似文献   

8.
为了揭示影响成壤作用发生的主要因素,对河北省阳原县桑干河流域表层土壤开展常规土壤指标和环境磁学参数的地统计学分析,结果表明,土壤的频率磁化率(χ_(fd20))、Eh值、有机质、黏土—粉砂含量等参数的空间分布特征受控于研究区的高程,而土壤的含水量、铁游离度和活化度的空间分布特征受控于坡向。因此,在影响成壤作用的五大因素(母质、气候、地形、有机质、时间)中,地形(高程、坡向)是影响研究区成壤作用强弱的主要因素。此外,虽然前人发现频率磁化率和铁游离度都能反映铁氧化物含量和成壤作用强弱,但本次研究通过对比空间分布特征发现,频率磁化率与有机质、Eh值等土壤指标有较好的相似性,且与耕地类型分布一致,所以,相对于铁游离度,频率磁化率更能反映研究区土壤发育状况。  相似文献   

9.
港珠澳跨海通道由东、西人工岛实现桥隧过渡,海中隧道采用沉管法,沉管段总长5 664 m,从西人工岛开始布置E1—E33管节,标准管节长180 m,宽37.95m,高11.4 m,重约8万t。岛隧结合区受到人工岛挑流和基槽开挖水深突变的影响,水流结构复杂,沉管沉放时也会引起水流变化。沉管安全沉放和精准对接安装需掌握受到的水流力大小。利用宽水槽几何比尺为100的正态模型,开展岛隧结合区水流分布和沉管沉放过程水流力试验研究。结果表明:岛头无掩护措施时,岛壁挑流影响到E1管节中部附近,表、底层流速大于中层;E1管节沉放过程中纵向水流力最大可达4 601 kN,E2管节纵向水流力平均5 149 kN;掩护E1管节后,E1管节处流速大幅减小,E2管节中部受掩护体挑流影响最大,流速最大增加40%,中层流速大于表、底层;E2管节纵向水流力平均5 240 kN。当沉管完全入水后,基槽内流速较小,沉放过程中受到的水流力逐渐减小。岛隧结合区水流垂线分布并不是指数分布,受到岛头壁挑流的影响沿管节长度方向流速分布也不均匀,管段浮运水流力公式并不适用计算沉管沉放过程受到水流力的大小。  相似文献   

10.
汶川地震中擂鼓镇地区的滑坡崩塌规律及预测   总被引:1,自引:1,他引:0  
地震滑坡影响因素与滑坡崩塌分布关系的研究,有助于认识地震滑坡崩塌的发育规律,进而对潜在的地震滑坡危险区段进行划分,为土地的合理使用提供支持.5.12汶川地震引发了大量的滑坡、崩塌、碎屑流等次生灾害,造成了严重的人员伤亡和经济财产损失.以受滑坡、崩塌灾害影响严重的北川县擂鼓镇约180 km2的地区作为研究对象,选取坡度、高程、坡向等影响因素进行确定性及面积发育率分析,探讨它们与滑坡、崩塌等灾害空间分布之间的关系.研究结果表明:在高程低于1 km的地段,滑坡崩塌的发生频率达13.5%,高于其它地段;坡向为东向、北东向、南东向的坡体的滑坡崩塌发生率较其它方向大;随着坡度的增大,滑坡、崩塌的分布也在增大,坡度大于30°的区域滑坡发生频率较高.采用2种方法对研究区进行地震滑坡危险性区划,获得大体一致的划分结果:①基于综合确定性系数与面积发育率方法分析的地震滑坡危险性区划结果中,约有66%的滑坡崩塌落入较高危险和高危险区域;②采用判别分析法获得的地震滑坡危险性区划结果中,约有73%的滑坡崩塌判定为不稳定区域.其中,判别分析法选用的地震动、坡度、曲率等因素在不同地区都对滑坡分布具普遍的影响作用.  相似文献   

11.
Based on data of SSC, precipitation, sand-dust storms and area of soil and water conservation, a study has been made of the temporal variation in the frequency of hyperconcentrated flows in the Wudinghe River, a major tributary of the Yellow River, China. The results showed that the decreasing trend in the frequency of hyperconcentrated flows (F h) was significant. High-flow season precipitation (P 6–9) decreased slightly, and annual number of sand-dust storm days (D ss) decreased markedly. Correlation analysis shows that the variation in P 6–9 had little influence on the decreasing F h, but the decreasing D ss had significant influence on the decreasing F h. The 5-year moving average of the frequency of hyperconcentrated flows (F h,5m) was closely correlated with the area of land terracing, the area of the land created by check dams, the area of tree planting and the area of grass planting. The results of the present study show that the frequency of hyperconcentrated flows can be significantly reduced by soil and water conservation measures. Thus, these results may be useful for decision making for the management of sediment-related disasters in the Wudinghe River basin and in the Yellow River basin.  相似文献   

12.
Philip M.   《Earth》2005,70(3-4):203-251
Proglacial fluvial sedimentary systems receive water from a variety of sources and have variable discharges with a range of magnitudes and frequencies. Little attention has been paid to how these various magnitude and frequency regimes interact to produce a distinctive sedimentary record in modern and ancient proglacial environments. This paper reviews the concept of magnitude and frequency in relation to proglacial fluvial systems from a geomorphic and sedimentary perspective rather than a hydrological or statistical perspective. The nature of the meltwater inputs can be characterised as low-magnitude–high-frequency, primarily controlled by ablation inputs from the source glacier, or high-magnitude–low-frequency, primarily controlled by ‘exceptional’ inputs. The most important high-magnitude–low-frequency inputs are catastrophic outburst floods, often referred to by the term jökulhlaup (Icelandic for glacier-burst). Glacier surges are an additional form of cyclical variation impacting the proglacial environment, which briefly alter the volumes and patterns of meltwater input. The sedimentary consequences of low-magnitude–high-frequency discharges are related to frequent variations in stage, the greater directional variability that sediment will record, and the increased significance of channel confluence sedimentation. In contrast, the most significant characteristics of high-magnitude–low-frequency flooding include the presence of large flood bars and mid-channel ‘jökulhlaup’ bars, hyperconcentrated flows, large gravel dunes, and the formation of ice-block kettle hole structures and rip-up clasts. Glacier surges result in a redistribution of low-magnitude–high-frequency processes and products across the glacier margin, and small floods may occur at the surge termination. Criteria for distinguishing magnitude and frequency regimes in the proglacial environment are identified based on these major characteristics. Studies of Quaternary proglacial fluvial sediments are used to determine how the interaction of the various magnitude and frequency regimes might produce a distinctive sedimentary record. Consideration of sandur architecture and stratigraphy shows that the main controls on the sedimentary record of proglacial regions are the discharge magnitude and frequency regime, sediment supply, the pattern of glacier advance or retreat, and proglacial topography. A model of sandur development is suggested, which shows how discharge magnitude and frequency, in combination with sandur incision and aggradation (controlled by glacier advance and retreat) can control sandur stratigraphy.  相似文献   

13.
重力流沉积:理论研究与野外识别   总被引:13,自引:3,他引:10  
重力流沉积是(半)深海和深湖环境中一种重要的沉积现象,因此准确识别重力流沉积对恢复古代沉积环境具有重要意义。从沉积物重力流的基本理论出发,介绍四类重力流沉积的特点和野外鉴别特征。碎屑流沉积表现为颗粒大小混杂,底面平坦,板条状砾石平行层面排列;超高密度流沉积的砂岩呈厚层状或块状,砂岩内部经常出现较大砾石或泥岩碎片,泄水构...  相似文献   

14.
ABSTRACT It is important to understand the exact process whereby very large amounts of sediment are transported. This paper reports peculiar conglomerate beds reflecting the transition of submarine debris flows into hyperconcentrated flows, something that has been well documented only in subaerial debris-flow events until now. Voluminous debris flows generated along a Cretaceous submarine channel, southern Chile, transformed immediately into multiphase flows. Their deposits overlie fluted or grooved surfaces and comprise a lower division of clast-supported and imbricated pebble–cobble conglomerate with basal inverse grading and an upper division of clast- to matrix-supported, disorganized conglomerate with abundant intraformational clasts. The conglomerate beds suggest temporal succession of turbidity current, gravelly hyperconcentrated flow, and mud-rich debris flow phases. The multiphase flows resulted from progressive dilution of gravelly but cohesive debris flows that could hydroplane, in contrast to the flow transitions in subaerial environments, which involve mostly non-cohesive debris flows. This finding has significant implications for the definition, classification, and hazard assessment of submarine mass-movement processes and characterization of submarine reservoir rocks.  相似文献   

15.
The study area near Chelm in Western Pomerania, NW Poland, is located between the end moraine and outwash plain of the glaciomarginal zone of the Pomeranian Phase (Weichselian glaciation). Four assemblages of deposits are exposed in the Chem pits: gravelly diamictons derived from debrisflows, sandy diamictons derived from hyperconcentrated flows, alternating sand and gravel deposited by sheetflows and sandy deposits filling shallow, braided-stream channels. The first facies association predominates in the proximal part of the transition zone and the last one in the distal part. This spectrum of facies associations, some resembling those of the end moraines and others those of the adjacent outwash plain, is considered to be unique, and is attributed to the formation of an array of coalescent ice-contact fans ('transition' fans). Architectural element analysis highlights the southwards change from debrisflow processes accompanied by sheetflows to hyperconcentrated flows and further to channelized streamflow. This transition zone in the present case is c. 1-km wide. It is suggested that analogous transitional zones, with similar or different widths, may have been developed in other glaciomarginal belts and remain to be recognized.  相似文献   

16.
The complexity of flow and wide variety of depositional processes operating in subaqueous density flows, combined with post‐depositional consolidation and soft‐sediment deformation, often make it difficult to interpret the characteristics of the original flow from the sedimentary record. This has led to considerable confusion of nomenclature in the literature. This paper attempts to clarify this situation by presenting a simple classification of sedimentary density flows, based on physical flow properties and grain‐support mechanisms, and briefly discusses the likely characteristics of the deposited sediments. Cohesive flows are commonly referred to as debris flows and mud flows and defined on the basis of sediment characteristics. The boundary between cohesive and non‐cohesive density flows (frictional flows) is poorly constrained, but dimensionless numbers may be of use to define flow thresholds. Frictional flows include a continuous series from sediment slides to turbidity currents. Subdivision of these flows is made on the basis of the dominant particle‐support mechanisms, which include matrix strength (in cohesive flows), buoyancy, pore pressure, grain‐to‐grain interaction (causing dispersive pressure), Reynolds stresses (turbulence) and bed support (particles moved on the stationary bed). The dominant particle‐support mechanism depends upon flow conditions, particle concentration, grain‐size distribution and particle type. In hyperconcentrated density flows, very high sediment concentrations (>25 volume%) make particle interactions of major importance. The difference between hyperconcentrated density flows and cohesive flows is that the former are friction dominated. With decreasing sediment concentration, vertical particle sorting can result from differential settling, and flows in which this can occur are termed concentrated density flows. The boundary between hyperconcentrated and concentrated density flows is defined by a change in particle behaviour, such that denser or larger grains are no longer fully supported by grain interaction, thus allowing coarse‐grain tail (or dense‐grain tail) normal grading. The concentration at which this change occurs depends on particle size, sorting, composition and relative density, so that a single threshold concentration cannot be defined. Concentrated density flows may be highly erosive and subsequently deposit complete or incomplete Lowe and Bouma sequences. Conversely, hydroplaning at the base of debris flows, and possibly also in some hyperconcentrated flows, may reduce the fluid drag, thus allowing high flow velocities while preventing large‐scale erosion. Flows with concentrations <9% by volume are true turbidity flows (sensu 4 ), in which fluid turbulence is the main particle‐support mechanism. Turbidity flows and concentrated density flows can be subdivided on the basis of flow duration into instantaneous surges, longer duration surge‐like flows and quasi‐steady currents. Flow duration is shown to control the nature of the resulting deposits. Surge‐like turbidity currents tend to produce classical Bouma sequences, whose nature at any one site depends on factors such as flow size, sediment type and proximity to source. In contrast, quasi‐steady turbidity currents, generated by hyperpycnal river effluent, can deposit coarsening‐up units capped by fining‐up units (because of waxing and waning conditions respectively) and may also include thick units of uniform character (resulting from prolonged periods of near‐steady conditions). Any flow type may progressively change character along the transport path, with transformation primarily resulting from reductions in sediment concentration through progressive entrainment of surrounding fluid and/or sediment deposition. The rate of fluid entrainment, and consequently flow transformation, is dependent on factors including slope gradient, lateral confinement, bed roughness, flow thickness and water depth. Flows with high and low sediment concentrations may co‐exist in one transport event because of downflow transformations, flow stratification or shear layer development of the mixing interface with the overlying water (mixing cloud formation). Deposits of an individual flow event at one site may therefore form from a succession of different flow types, and this introduces considerable complexity into classifying the flow event or component flow types from the deposits.  相似文献   

17.
朱新运 《地球科学》2016,41(12):2109-2117
华北盆地是中国大陆地震活跃区之一,通过地震波衰减及场地响应参数研究该区构造介质属性及台基属性对地震预测预报、灾害评估具有重要意义.基于Lg波谱比的联合反演方法是获得地震波衰减参数及场地响应的有效方法,通过随机重采样方法可以检验解的稳定性.使用华北盆地68个台站记录的2004—2008年的149次地震,震级ML为1.7~5.3的震中距为100~600 km,按信噪比大于2的标准挑选有效垂向记录1 000多条,地震射线较好地覆盖了华北盆地38°N~41°N、114°E~120°E区域.采用2.60~3.65 km/s的速度窗截取Lg波形并转化为频谱,研究频率范围为1~7 Hz,频率间隔0.2 Hz.计算得到的地震波衰减品质因子Q(f)与频率f的关系可表示为Q(f)=125±4.4f0.86±0.03,研究区为低Q0(对应频率1 Hz),高频率依赖性的构造活跃区.基岩台站对地震波没有表现出明显放大作用,黄土沉积台站低频端比高频端明显放大;场地响应波动较大台站其解的标准偏差也大,说明场地响应的不稳定性体现了台基属性的非稳定性特征.   相似文献   

18.
Ambrym is one of the most voluminous active volcanoes in the Melanesian arc. It consists of a 35 by 50 km island elongated east–west, parallel with an active fissure zone. The central part of Ambrym, about 800 m above sea level, contains a 12 kilometre-wide caldera, with two active intra-caldera cone-complexes, Marum and Benbow. These frequently erupting complexes provide large volumes of tephra (lapilli and ash) to fill the surrounding caldera and create an exceptionally large devegetated plateau “ash plain”, as well as sediment-choked fluvial systems leading outward from the summit caldera. Deposits from fall, subordinate base surge and small-volume pyroclastic (scoria) flows dominate the volcaniclastic sequences in near vent regions. Frequent and high-intensity rainfall results in rapid erosion of freshly deposited tephra, forming small-scale debris flow- and modified grain flow-dominated deposits. Box-shaped channel systems are initially deep and narrow on the upper flanks of the composite cones and are filled bank-to-bank with lapilli-dominated debris flow deposits. These units spill out into larger channel systems forming debris aprons of thousands of overlapping and anastomosing long, narrow lobes of poorly sorted lapilli-dominated deposits. These deposits are typically remobilised by hyperconcentrated flows, debris-rich stream flows and rare debris flows that pass down increasingly shallower and broader box-shaped valleys. Lenses and lags of fines and primary fall deposits occur interbedded between the dominantly tabular hyperconcentrated flow deposits of these reaches. Aeolian sedimentation forms elongated sand dunes flanking the western rim of the ash-plain. Outside the caldera, initially steep-sided immature box-canyons are formed again, conveying dominantly hyperconcentrated flow deposits. These gradually pass into broad channels on lesser gradients in coastal areas and terminate at the coast in the form of prograding fans of ash-dominated deposits. The extra-caldera deposits are typically better sorted and contain other bedding features characteristic of more dilute fluvial flows and transitional hyperconcentrated flows. These outer flank volcaniclastics fill valleys to modify restricted portions of the dominantly constructional landscape (lava flows, and satellite cones) of Ambrym. Apparent maturity of the volcanic system has resulted in the subsidence of the present summit caldera at a similar rate to its infill by volcaniclastic deposits.  相似文献   

19.
Flexible barriers undergo large deformation to extend the impact duration, and thereby reduce the impact load of geophysical flows. The performance of flexible barriers remains a crucial challenge because there currently lacks a comprehensive criterion for estimating impact load. In this study, a series of centrifuge tests were carried out to investigate different geophysical flow types impacting an instrumented flexible barrier. The geophysical flows modelled include covered in this study include flood, hyperconcentrated flow, debris flow, and dry debris avalanche. Results reveal that the relationship between the Froude number, Fr, and the pressure coefficient α strongly depends on the formation of static deposits called dead zones which induce static loads and whether a run-up or pile-up impact mechanism develops. Test results demonstrate that flexible barriers can attenuate peak impact loads of flood, hyperconcentrated flow, and debris flow by up to 50% compared to rigid barriers. Furthermore, flexible barriers attenuate the impact load of dry debris avalanche by enabling the dry debris to reach an active failure state through large deformation. Examination of the state of static debris deposits behind the barriers indicates that hyperconcentrated and debris flows are strongly influenced by whether excessive pore water pressures regulate the depositional process of particles during the impact process. This results in significant particle rearrangement and similar state of static debris behind rigid barrier and the deformed full-retention flexible barrier, and thus the static loads on both barriers converge.  相似文献   

20.
Tsunamis are unpredictable, catastrophic events, and so present enormous difficulties for direct studies in the field or laboratory. However, their sedimentary deposits yield evidence of a wide variety of hydrodynamic conditions caused by flow transformations on a spatial and temporal scale. Tsunami deposits ranging from the Miocene to modern times identified at different localities along the Chilean coast are described to provide a database of their characteristics. Among the typical features associated with tsunami deposits are well-rounded megaclasts eroded from coastal alluvial fans or beaches by very dense, competent flows. Sand injections from the base of these flows into the substrate indicate very high dynamic pressures, whereas basal shear carpets suggest hyperconcentrated, highly sheared flows. Turbulence develops in front of advancing debris flows, as indicated by megaflutes at the base of scoured channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号