首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fission-track dating was conducted on zircons and apatites from 11 cores of the upper Xiaganchaigou Formation and lower Shangganchaigou Formation (northwestern Qaidam Basin). The obtained apatite fission-track age is 3.1–61.9 Ma, and the zircon fission-track age is 49.2–123.5 Ma. Although the average apatite age is consistent with ages predicted from the stratigraphy, nine of the 11 apatite fission-track ages have \(\hbox {P}(\upchi ^{2}) < 5\%\), indicating that the grains experienced heterogeneous annealing after sedimentation. The average zircon age is greater than that indicated by stratigraphy, and all eight zircon fission ages have \(\hbox {P}(\upchi ^{2})>5\%\), exhibiting consistent characteristics and indicating that zircons retain provenance age information after burial. From the zircon and apatite ages, the fission-track length distribution, and the geological setting, the northwestern Qaidam Basin has experienced two tectonothermal events since the Late Mesozoic, at \(39.1 \pm 9.3\) to \(133.7\,\pm \,6.6\,\hbox {Ma}\) and \(1.2 \pm 0.6\) to \(32.0\,\pm \,3.0\,\hbox {Ma}\). The earlier (39.1–133.7 Ma) tectonothermal event resulted from the initial collision of the Indian and Eurasian plates. As a consequence of the collision, the Altyn Tagh fault, which forms the northwestern boundary of the Qaidam Basin, began to develop. Subsequently, uplift of the Altyn Tagh mountains began and the northwestern depression of the Qaidam Basin started to form. The later (1.2–32.0 Ma) tectonothermal event resulted from further collision of the Indian and Eurasian plates along the Yarlung Tsangpo suture zone. Strata in the Qaidam Basin were further deformed by transpression in this period and this period played a crucial role in petroleum accumulation.  相似文献   

2.
柴达木盆地西部地区新生界断裂划分为同生逆断裂、后生同生逆断裂和后生断裂 ,背斜发育有同生断展背斜、后生断展背斜及生长背斜 ,昆北断阶区褶皱发育演化序列为同生断展背斜之上叠加了生长背斜 ,一里坪坳陷、茫崖坳陷褶皱发育演化序列是后生断展背斜上叠加了同生断展背斜 ,同生断展背斜之上又叠加了生长背斜。新生代生长构造格架由三期生长构造组成 ,古近纪—早上新世逆同生构造、中—晚上新世逆同生构造和中—下更新世生长背斜组成 ,不同构造单元构造格架组成略有不同。三期生长构造是由E—N12 盆地基底扭压整体拗陷作用、N22 —N3 2 盆地基底扭压差异拗陷作用和Q盆地基底扭压缓慢拗陷作用而形成的。构造圈闭主要有同生断展背斜、后生断展背斜、生长背斜、断鼻等 ,且具有明显的层次性 ,主要分布在昆北断阶、茫崖坳陷。同生逆断裂的长期活动有利于油气的运移、聚集 ,位于油源区附近的同生和后生断展背斜有利于油气聚集成藏。  相似文献   

3.
《地学前缘》2017,(3):157-167
柴达木盆地是我国西部三大含油气盆地之一,经历了多期叠加与改造。盆地构造-热演化史研究一方面对分析柴达木盆地的构造成因,揭示青藏高原的形成机制和隆升历史有重要的意义,另一方面为盆地进行油气资源评价提供科学依据。采用平衡剖面技术、磷灰石裂变径迹年龄分布特征定性分析与径迹长度分布数据定量模拟相结合的方法,分析了柴达木盆地东部古生代以来的构造演化过程,研究表明:柴达木盆地东部在侏罗纪早期构造活动强烈,导致了石炭系抬升、剥蚀;白垩纪末期构造运动相对较弱,表现为早期的弱伸展与晚期北东-南西向的挤压;喜山运动在该区域多期发育,主要为喜山运动早期(41.1~33.6Ma)、喜山运动晚期(9.6~7.1 Ma,2.9~1.8 Ma),其中晚喜山运动造成了先存断裂的再次活化。在埋藏史重建的基础上,对柴达木盆地东部热历史进行了恢复,结果表明柴达木盆地东部热历史总体变现为缓慢降低的特征,古生代末期柴达木盆地东部古地温梯度为38~41.5℃/km,地温梯度平均值为39℃/km;古近纪早期地温梯度降为29~35.2℃/km,平均值为约33.0℃/km,古近纪末地温梯度有所变大,新近纪末趋于现今的热状态。柴达木盆地东部古生代以来构造-热演化特征主要受控于研究区岩浆热事件发育与构造活动的特征。  相似文献   

4.
Carbon and oxygen stable isotopic composition of Cenozoic lacustrine carbonates from the intramontane Qaidam Basin yields cycles of variable length and shows several distinct events driven by tectonics and climate changes. From Eocene to Oligocene, the over-all trend in the δ13C composition of lacustrine carbonates shows a shift toward higher values, possibly related to higher proportions of dissolved inorganic carbon transported to the lake or lower input of soil derived CO2. At the same time, the δ18O composition of lacustrine carbonates is decreasing in accordance with the global cooling trend and northwards drifting of the whole region. During the Miocene, distinct isotopic events can be recognized, although their interpretation and linkage to a certain tectonic event remains difficult. These events may be related to uplift in the Himalayas, to the strongest phase of uplift in the Altyn Mountains, to pronounced subsidence of the Qaidam Basin or to the expansion of C4 plants on land. Generally cold, highly evaporative conditions can be deduced from enrichment of δ18O isotopic compositions during Pliocene and Quaternary times.  相似文献   

5.
柴达木盆地西部新生代沉积演化特征   总被引:2,自引:1,他引:2       下载免费PDF全文
藏北高原的柴达木盆地保存有完整的新生代沉积地层,通过对柴西茫崖凹陷背斜北东翼长尾台剖面详细的野外测量,结合室内薄片鉴定,研究了该剖面岩石组构、沉积构造、沉积相、岩石组合特征,划分了各组基本层序,分析了其旋回特征。最后,系统总结新生代地层的整体沉积演化特征,试图通过这些特征来揭示该地区整个新生代的沉积环境演化。  相似文献   

6.
柴达木盆地是青藏高原北部的一个中新生代山间陆相含油气盆地,盆地内新生代地层的构造变形记录了青藏高原北部生长、地壳缩短及其形成过程的重要信息.本文运用高精度卫星影像资料、地球物理资料剖面和磁性地层年代学数据等多种学科资料的综合研究,重点对柴达木盆地西部逆冲-褶皱构造带的形成机制和演化过程进行了详细的解析.研究结果表明:(1)由北向南依次发育分布的红三旱、尖顶山-黑梁子、南翼山和油砂山褶皱构造带均由不对称的直立褶皱或同斜褶皱构成,并且显示出背斜相对紧闭、向斜宽缓的”侏罗山式”褶皱特征,表明其下部滑脱构造带的存在;(2)红三旱、尖顶山-黑梁子逆冲-褶皱构造SW翼缓NE翼陡的不对称褶皱形态显示出是由南向北的逆冲作用形成的;两翼相对较对称的南翼山褶皱形态是由NE-SW向双向逆冲作用形成的;SW翼陡(或地层倒转)NE翼缓的油砂山褶皱带是由NE-SW向双向逆冲挤出作用形成的反映出由北向南的逆冲作用的存在;(3)红三旱、尖顶山-黑梁子和南翼山褶皱构造带的初始生长地层依次为始新统下干柴沟组、上新统狮子沟组和更新统七个泉组,高精度磁性地层限定其沉积时代依次为~39.5Ma、~8.2Ma和~2.5Ma,这不仅代表了这些褶皱的初始形成时代,而且代表了其逆冲断裂的形成时代;油砂山褶皱构造带中七个泉组初始生长地层以及上地表发育的一系列现代水系发生了弯曲,表明该逆冲-褶皱构造带从~2.5Ma形成以来一直持续到现在迄今仍在生长;红山旱地区近SN向的直立褶皱以及柴西地区似穹窿状的叠加褶皱,反映出阿尔金断裂带走滑过程中伴随的近EW向挤压的结果;(4)综合柴西地区逆冲-褶皱带构造地貌、生长地层、地球物理剖面、磁性地层年代学等证据,表明柴西存在的一系列逆冲-褶皱带是由南向北的滑脱构造产生,具有后退式生长演化特征,表明印度/欧亚板块碰撞以来,~40Ma其远程效应已到达柴达木盆地北部,并形成红山旱逆冲-褶皱构造带,随后的持续挤压,高原北部呈现出局部向南后退生长特征,依次形成尖顶山、南翼山和油砂山逆冲-褶皱带,其中~2.5Ma以来强烈的近南北向挤压作用产生的南翼山和油砂山逆冲-褶皱带构成了现今的”英雄岭”;~ 8Ma以来的阿尔金断裂带的强烈走滑活动波及到了柴达木盆地.  相似文献   

7.
青藏高原东北缘构造变形研究是认识整个青藏高原隆升过程、机制以及印欧板块碰撞远程效应的重要途径。受控于昆仑山断裂、阿尔金断裂、祁连山断裂的柴达木盆地,新生代地层发育,较完整地记录了高原东北缘的构造变形信息。尤其柴达木盆地西部地区,构造变形强烈,晚新生代地层出露完整,是研究其晚新生代构造变形历史及驱动机制的理想地区。文中应用平衡剖面和古地磁构造旋转方法,结合最新的磁性地层年代,定量恢复该地区的构造变形历史。结果表明,在挤压应力的控制下该地区自22 Ma以来,构造变形主要表现为地层缩短与构造旋转,且其强度呈阶段性增长,具体又可划分为3个阶段:22~9.1 Ma构造活动平静期、9.1~2.65 Ma构造变形相对加强期、2.65 Ma以来构造变形顶峰期。研究表明,造成柴西地区地层持续缩短和顺时针旋转的关键推动力是印欧板块晚新生代的持续向北推挤、昆仑山-祁曼塔格山向柴达木盆地强烈挤压推覆以及阿尔金左旋走滑断裂大规模的复活。  相似文献   

8.
柴达木盆地被昆仑山、阿尔金山和祁连山围限,新生代盆地发育受周边山体隆升的控制。柴西地区是整个盆地内构造最复杂的地区,形成了NWW 和NEE 走向的两套断裂体系,地震剖面上明显发育生长地层。为研究柴西地区构造运动模式及期次与周边山体及断裂活动之间的关系,基于该区主干地震剖面的最新解译成果,对剖面中的断裂及生长层序进行分析。确定柴西地区新生代活动断裂集中在3 个时期,分别控制不同生长层序的发育: 早期活动的断层控制生长层序1 的发育( TR ~ T3 , 53. 5 ~ 31. 5 Ma) ,晚期活动断层控制生长层序2 的发育( T'2 ~ 现今,14. 9 ~ 0 Ma) ,新生代以来一直活动的断层也控制着一套生长层序。区内构造演化主体方向由昆仑山和阿尔金山前不断向盆内扩展并共同调节构造展布方向。  相似文献   

9.
北京断陷的新生代沉积与构造演化   总被引:2,自引:0,他引:2  
北京断陷形成于新生代,受北东向及北西向断裂活动的影响。本文根据地貌、钻孔、物探、探槽等方面资料的分析,研究了北京断陷新生代沉积地层和构造演化的关系。沉积中心的迁移与断裂的活动互相对应,有着良好的构造指示作用。石油储集层的储集体积、孔隙率和渗透率,决定其对石油的储集性能。本文用理论研究和测量,证明了构造应力场是影响石油储集层孔隙率和渗透率的主要因素。  相似文献   

10.
通过对柴达木盆地西部地区(柴西地区)地震剖面构造沉积相演化的分析, 结合基底岩性及区域构造运动历史, 重建了柴西地区新生代构造沉积动态演化框架。柴西地区新生代以来一直处在印欧板块碰撞所引起的青藏高原阶段性隆升的挤压构造背景下, 经历了两大构造变形期: 第一变形期主要发育在古近纪, 变形高峰在下干柴沟组上段, 第二变形期发育在新近纪-第四纪, 变形强度日益加剧。剖面沉积相的变化体现柴西地区经历了水进-静水沉降-水退的过程, 平面沉积相演变是沉积中心受构造运动控制的直接结果; 受构造演化控制柴西地区以Ⅺ号(油狮断裂)和油北断裂为分界线, 由南至北地表形态表现为3种不同样式: 柴西南区断裂发育,柴西中部为英雄岭新生造山带,柴西北区主要发育冲断褶皱。柴西地区构造沉积演化特征是对青藏高原阶隆升的响应, 同时记录了青藏高原向北间歇性蔓延生长的过程。  相似文献   

11.
乌伦古坳陷位于准噶尔盆地东北部、阿尔泰山南缘,由北西-南东走向的红岩断阶带、索索泉凹陷和南部斜坡带组成。坳陷内上三叠统直接覆盖在石炭系基底之上,上三叠统和侏罗系发育生长地层,白垩系向红岩断阶带方向超覆沉积在侏罗系顶削蚀不整合面之上,古近系、新近系和第四系较稳定地沉积在白垩系顶小角度不整合面之上。索索泉凹陷中生界底面最深,往南部斜坡带逐渐抬高。红岩断阶带中生界被抬升剥蚀,古生界之上直接覆盖新生界。根据生长地层、不整合面、卷入变形的地层时代判断:早-中三叠世乌伦古坳陷延续了二叠纪的隆升剥蚀格局,地层缺失;晚三叠世-侏罗纪陆梁隆起隆升,在坳陷内沉积生长地层,局部发育逆冲断层;白垩纪为红岩断阶带主形成期,白垩系朝着红岩断阶带超覆沉积于侏罗系之上;古近纪构造变形微弱,沉积较为稳定;新近纪-第四纪发育挤压构造和正断层。乌伦古坳陷中生代受阿尔泰陆内造山作用制约,属于阿尔泰中生代陆内前陆盆地系统的一部分:楔顶带从阿尔泰山不断往南扩展,到白垩纪扩展到乌伦古坳陷红岩断阶带;前隆带位于陆梁隆起,并于晚三叠世-侏罗纪挠曲隆升。古近纪造山作用减弱,乌伦古坳陷区域沉降,地层较稳定沉积。新近纪-第四纪受印度-欧亚板块碰撞作用的远程效应影响,北天山发生陆内造山作用,乌伦古坳陷远离北天山,挤压构造变形相对较弱。新近纪-第四纪正断层为造山间歇期形成的区域性伸展构造,代表了中亚地区晚新生代脉动式冲断作用的一个间歇期。  相似文献   

12.
Zhu  Wen  Wu  Chaodong  Wang  Jialin  Fang  Ya’nan  Wang  Chuanwu  Chen  Qilin  Liu  Huaqing 《International Journal of Earth Sciences》2017,106(6):1943-1961
International Journal of Earth Sciences - The structural relationship between the Qaidam Basin and Qimen Tagh-Eastern Kunlun Range holds important implications for evaluating the formation...  相似文献   

13.
Geologists agree that the collision of the Indian and Asian plates caused uplift of the Tibet Plateau.However,controversy still exists regarding the modes and mechanisms of the Tibetan Plateau uplift.Geology has recorded this uplift well in the Qaidam Basin.This paper analyzes the tectonic and sedimentary evolution of the western Qaidam Basin using sub-surface seismic and drill data. The Cenozoic intensity and history of deformation in the Qaidam Basin have been reconstructed based on the tectonic developments,faults growth index,sedimentary facies variations,and the migration of the depositional depressions.The changes in the sedimentary facies show that lakes in the western Qaidam Basin had gone from inflow to still water deposition to withdrawal.Tectonic movements controlled deposition in various depressions,and the depressions gradually shifted southeastward.In addition,the morphology of the surface structures in the western Qaidam Basin shows that the Cenozoic tectonic movements controlled the evolution of the Basin and divided it into(a) the southern fault terrace zone, (b) a central Yingxiongling orogenic belt,and(c) the northern fold-thrust belt;divided by the XI fault (Youshi fault) and Youbei fault,respectively.The field data indicate that the western Qaidam Basin formed in a Cenozoic compressive tectonic environment caused by the India—Asia plate collision. Further,the Basin experienced two phases of intensive tectonic deformation.The first phase occurred during the Middle Eocene—Early Miocene(Xia Ganchaigou Fm.and Shang Ganchaigou Fm.,43.8—22 Ma),and peaked in the Early Oligocene(Upper Xia Ganchaigou Fm.,31.5 Ma).The second phase occurred between the Middle Miocene and the Present(Shang Youshashan Fm.and Qigequan Fm., 14.9—0 Ma),and was stronger than the first phase.The tectonic—sedimentary evolution and the orientation of surface structures in the western Qaidam Basin resulted from the Tibetan Plateau uplift,and recorded the periodic northward growth of the Plateau.Recognizing this early tectonic—sedimentary evolution supports the previous conclusion that northern Tibet responded to the collision between India and Asia shortly after its initiation.However,the current results reveal that northern Tibet also experienced another phase of uplift during the late Neogene.The effects of these two stages of tectonic activity combined to produce the current Tibetan Plateau.  相似文献   

14.
黄兴富  施炜  李恒强  陈龙  岑敏 《地学前缘》2013,20(4):199-210
银川盆地新生代以来主要沿其边界断裂发生多期断陷活动,其边界断裂运动学特征记录了盆地的形成演化历史。基于其边界断裂滑动矢量的详细测量与分析,结合区域构造、盆地内沉积序列以及叠加变形分析,提出银川盆地新生代主要受NWSE向伸展、NESW向伸展与NESW向挤压3期构造应力场控制。结合区域构造演化与相关年代学数据,银川盆地新生代以来主要经历初始断陷、持续断陷与拉分断陷等3期构造演化,始新世-上新世受NWSE向伸展作用控制,银川盆地两侧主边界断裂发生正倾滑活动,导致盆地发生强烈断陷活动,充填了始新世-上新世红色砂岩、砾岩;更新世期间,古构造应力场转变为NESW向伸展,其主边界断裂以左行斜张活动,银川盆地持续断陷沉降;晚更新世晚期(?)以来,在NESW向挤压作用控制下,银川盆地主边界断裂发生强烈右行走滑兼正断活动,盆地受断裂剪切拉张活动,发生拉分断陷沉积。  相似文献   

15.
依据二维、三维地震资料,精细分析位于柴达木盆地西南部的阿拉尔断裂的几何学特征、水平缩短量及活动时间等,并探讨了其整个新生代的运动学特征、形成机制和油气地质意义。结果表明,阿拉尔断裂平面上可分为NWW走向的西段和近SN走向的东段,两段近于垂直;剖面上,其西段倾向南,倾角相对较小,而东段倾向西,断面近乎直立。阿拉尔断裂自新生代初期开始活动,西段以逆冲为主,水平缩短量和竖直抬升量均达到3 km以上,走滑量约为1 km;东段以右旋走滑为主,水平缩短量和竖直抬升量为1 km左右,走滑量达到3 km。阿拉尔断裂的形成和活动受南侧祁漫塔格造山带向北挤压和西侧阿尔金左旋走滑断裂的共同影响,柴西南地区断裂活动与油气形成具有良好的时空匹配关系,对形成油气藏具有重要意义。  相似文献   

16.
The Qaidam Basin is the one of the three major petroliferous basins in northeastern Tibetan Plateau, which has experienced multiphase superimposition and transformation. The study of thermal history not only plays an important role on revealing the tectonic origin of the Qaidam Basin and the forming mechanism and uplift history of the Tibetan Plateau,but also can provide scientific evidence for the assessment of oil and gas resources. This work used balanced cross-section technique and apatite fission track ages with modeling of fission track length distribution to infer that the eastern Qaidam Basin has experienced significant tectonic movement in the Early Jurassic movement(~200 Ma), which caused the carboniferous uplift and denudation, the geological movement in the Late Cretaceous, characterized by early stretching and late northeast-southwest extrusion; the Himalayan movement in multi-stage development in eastern Qaidam Basin, which can be divided into the early Himalayan movement(41.1–33.6 Ma) and the late Himalayan movement(9.6–7.1 Ma, 2.9–1.8 Ma), and large-scale orogeny caused pre-existing faults reactivated in late Himalayan movement. On the basis of burial history reconstruction, the thermal history of eastern Qaidam Basin was restored. The result shows that the thermal history in eastern Qaidam Basin shows slow cooling characteristics; the paleo-geothermal gradient of eastern Qaidam Basin was 38–41.5℃/km, with an average value of 39.0℃/km in the Late Paleozoic, 29–35.2℃/km, with an average value of 33.0℃/km in the Early Paleogene; the geothermal gradient of the Qaidam Basin increased in the Late Paleogene, which was similar to the present geothermal gradient in the Late Neogene. The characteristics of the tectono-thermal evolution since Paleozoic in the eastern Qaidam Basin are mainly controlled by magmatic thermal events in the study area.  相似文献   

17.
柴北缘东段古生界构造变形特征、构造演化过程研究较为薄弱,尤其是古构造应力场性质及其转变机制尚不明确。文中对欧龙布鲁克地区野外剖面及应力感构造要素(褶皱、节理、擦痕)进行了系统观测和分析,结果表明:加里东晚期应力场为NE向;晚海西-印支期早期为SN向,晚期NW向两期挤压应力场;燕山早期近EW向拉张,燕山晚期及喜山晚期处于NE向挤压应力场。根据欧南凹陷平衡剖面反演结果,对比不同时代地层收缩速率可知,柴北缘东段寒武纪-新近纪构造演化可以分为4个阶段:(1)加里东早期(C -O1)弧后伸展、晚期(O2-S)弧后挤压,导致柴北缘东段初步形成NW向的背斜凸起;(2)晚海西-印支期(P-T)隆升阶段,欧龙布鲁克地区整体处于水体之上,并没有造成盆内二叠系-三叠系的沉积;(3)燕山早期(J1-J2)陆内伸展断陷、晚期(J3-K)挤压反转,欧龙布鲁克地区为继承性隆起,未完全接受沉积;(4)喜山晚期(N-Q)强烈挤压构造变形,逆断层强烈活动使山体快速隆升,基底卷入型构造样式广泛分布。  相似文献   

18.
南海北部新生代构造演化序列   总被引:8,自引:0,他引:8  
本文从构造地质学的基本理论出发,在综合分析板块作用、壳幔作用、岩浆热事件、构造变形、沉积作用等地质作用特点及其相互印证与制约关系的基础上,梳理了南海北部新生代主要构造事件和构造演化序列,提出受欧亚、印澳、太平洋3大板块的共同影响,南海北部新生代主要构造运动划分为礼乐运动、西卫运动一幕、西卫运动二幕、南海运动、南沙运动5次较为合适。其中礼乐运动使南海北部进入裂陷发展阶段,并产生NE走向小型断陷;西卫运动一幕使断陷进一步扩展;西卫运动二幕使南海北部由断陷向断坳转变,断陷走向向NEE向转变;南海运动使南海北部进入坳陷发展阶段;南沙运动使南海北部进入差异性区域沉降阶段,构造格局基本形成。南海北部这种构造演化序列造就了前古近系、古近系、新近系3层含油气结构层系及始新统湖相、渐新统湖相—湖沼相及海陆过渡相和中新统海相3套烃源岩,围绕3套烃源岩可形成"上生下储上盖"、"自生自储自盖"与"下生上储上盖"3类成藏组合和背斜、古潜山、地层-岩性等多种类型的油气藏及其复式油气聚集带。  相似文献   

19.
南海的形成和演化是地学界长期争论的问题,前人给出了多种成因模式,目前较流行的模式是海底扩张,但它难以合理解释南海海底扩张中的洋中脊跳跃现象及南海大洋中的大陆残片。基于欧亚东缘的陆缘伸展,从地幔上涌和陆壳沿莫霍面的重力滑移的新大陆漂移模型出发,通过横跨南海的几条地震勘探剖面的地质新解释,研究了南海的形成和演化过程。结果说明,南海的形成是一种“构造被动挤出+微陆块主动漂移”模式。构造被动挤出是指印度-欧亚碰撞造成的欧亚大陆东南缘的微陆块被大规模挤出,而由陆缘伸展形成的微陆块在被挤出后发生了主动裂解漂移,南海的海底扩张现象是诸多微陆块主动漂移的结果。这个新的模式能够合理地解释南海形成过程中的洋中脊跳跃现象及南海中大陆残片的成因机制。进一步恢复了南海演化过程中周边陆块的运动演化历史,说明欧亚东缘在中生代晚期发生的大规模伸展构造运动是南海形成的基础,新生代印度-欧亚碰撞是南海形成的直接动力,微陆块的裂解漂移是南海形成的主要参与者。  相似文献   

20.
准噶尔盆地的原型和构造演化   总被引:34,自引:3,他引:34  
文中讨论了以下三个问题:(1)洋-陆转换时限和中、晚石炭世盆地原型。根据准噶尔盆地及其邻区的构造演化及岩浆活动研究,洋-陆转换时限应为早石炭世末,中、晚石炭世裂陷槽是由于造山期后伸展塌陷作用产生的;(2)二叠纪—早更新世陆内盆地的原型。根据陆内盆地的鉴别标志,提出了二叠纪盆地为陆内裂谷—裂谷期后弱伸展坳陷—弱缩短挠曲坳陷,三叠纪、侏罗纪、白垩纪和第三纪为弱伸展或稳定大陆内坳陷和陆内前陆坳陷或弱缩短挠曲坳陷交替的叠合盆地;(3)准噶尔盆地原型和构造演化对油气分布的控制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号