首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The changes in the concentrations of silicate, phosphate and inorganic nitrogen in Elefsis Bay, an intermittently anoxic basin, are described and related to the changes in the physical properties of the water for two seasonal cycles. Winter convection resulted in a very small vertical gradient of temperature, salinity, oxygen and nutrients. Stratification started to develop in May and persisted for about 6 months. In Elefsis Bay, high values of silicate, phosphate and ammonia occurred during the anoxic conditions prevailing in summer. The consumption of oxygen in the lower water column was directly related to density differences in it. The regeneration of nutrients was related to the consumption of oxygen, with seasonal differences in the regeneration of nitrate and silicate. A stoichiometric model indicates that plankton organisms in Elefsis Bay have approximate ratios for C:N:P of 105:14:1, whereas the ratio for nitrogen and phosphorus in the water is only 2:1. The water/plankton relationship in Elefsis Bay appears to be very similar to that in the Baltic Sea.  相似文献   

2.
Seasonal and spatial variations of phytoplankton primary production were studied using a high frequency sampling strategy in the external (ENW) and internal (INW) part of Arcachon Bay, during 2002 and 2003. In order to better assess the availability of nutrients and their relationship with phytoplankton primary production, nutrient variability was studied in relation to environmental conditions and phytoplankton production. During winter, when primary production rates were the lowest, nutrient concentrations were maximal but did not show excessive levels compared to highly urbanised areas. Seasonal and spatial variations of nutrient concentrations (especially DIN-nitrate + nitrite + ammonium- and Si) were largely influenced by Leyre River loads coupled with high tidal exchange with the Atlantic Ocean creating a nutrient gradient between the INW and ENW. By February, diatom growth leads to an early severe nutrient depletion in the entire bay. Examination of nutrient ratios showed that the potential limiting nutrient during spring was P in 2003, and Si in 2002. During summer 2003, N and Si concentrations reached their lowest values, and nutrient ratios revealed a N-deficient environment, more pronounced in the INW. The high Si:N ratios during this period might be explained by (1) important N-uptake by all autotroph communities and (2) benthic-pelagic coupling with high Si regeneration. This study shows that nutrient levels in Arcachon Bay seem to play an important role in the control of phytoplankton primary production rates during the productive period and explain their spatial, seasonal and inter-annual variability. Our estimates of annual integrated phytoplankton primary production (103 g C m−2 y−1) place this bay within the low to moderate phytoplankton primary production systems.  相似文献   

3.
Nutrients, chlorophyll-a, particulate organic carbon (POC), and environmental conditions were extensively investigated in the northern East China Sea (ECS) near Cheju Island during three seasonal cruises from 2003 to 2005. In spring and autumn, relatively high concentrations of nitrate (2.6~12.4 μmol kg-1) and phosphate (0.17~0.61 μmol kg-1) were observed in the surface waters in the western part of the study area because of the large supply of nutrients from deep waters by vertical mixing. The surface concentrations of nitrate and phosphate in summer were much lower than those in spring and autumn, which is ascribed to a reduced nutrient supply from the deep waters in summer because of surface layer stratification. While previous studies indicate that upwellings of the Kuroshio Current and the Changjiang (Yangtze River) are main sources of nutrients in the ECS, these two inputs seem not to have contributed significantly to the build-up of nutrients in the northern ECS during the time of this study. The lower nitrate:phosphate (N:P) ratio in the surface waters and the positive correlation between the surface N:P ratio and nitrate concentration indicate that nitrate acts as a main nutrient limiting phytoplankton growth in the northern ECS, contrary to previous reports of phosphate-limited phytoplankton growth in the ECS. This difference arises because most surface water nutrients are supplied by vertical mixing from deep waters with low N:P ratios and are not directly influenced by the Changjiang, which has a high N:P ratio. Surface chlorophyll-a levels showed large seasonal variation, with high concentrations (0.38~4.14 mg m-3) in spring and autumn and low concentrations (0.22~1.05 mg m-3) in summer. The surface distribution of chlorophyll-a coincided fairly well with that of nitrate in the northern ECS, implying that nitrate is an important nutrient controlling phytoplankton biomass. The POC:chlorophyll-a ratio was 4~6 times higher in summer than in spring and autumn, presumably because of the high summer phytoplankton death rate caused by nutrient depletion in the surface waters.  相似文献   

4.
Pore Water Nutrient Regeneration in Shallow Coastal Bohai Sea, China   总被引:1,自引:0,他引:1  
The regeneration of pore water nutrients was studied and the contribution of benthic nutrient fluxes to the overlying water was evaluated on the basis of field specific observations conducted in September–October 1998 and April–May 1999 in the Bohai Sea. Nutrient concentrations in sediment pore waters were examined by incubating sediment core samples with overlying seawater in air and/or nitrogen conditions. Nutrient diffusion fluxes calculated by diagenetic equations were within a factor of 2 during incubations. The factors affecting nutrient diffusion across sediment/water interface include bioturbation, nitrification, denitrification, adsorption, and dissolution. The regeneration of nutrients from sediments will increase nutrient loads of the Bohai Sea and affect nutrient atomic ratios in this region. Among nutrient sources from riverine input, atmospheric deposition and sediment regeneration, ammonium and phosphate mainly came from atmospheric deposition (>50%); nitrate was mainly transported by riverine input into the Sea, silicate from sediment regeneration accounts up to 60%. This demonstrates that nutrient regeneration in sediments contributes more silicate than riverine input and atmospheric deposition together, but benthic flux contributes very much less phosphate and nitrate relative to riverine input and atmospheric deposition. The benthic fluxes of nutrients may lead to a decrease of the amount of nitrate, an increase of phosphate, ammonia and silicate in the water column. The release of silicate from sediments may compensate the decrease of silicate due to the reduction of riverine discharge. Nutrient regeneration in sediment may have an important influence on the eutrophic character of coastal waters in this region. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
The seasonal dynamics of nutrient ratios and abundance of phytoplankton cells from the central (CB) and western (WB) Bay of Bengal (BOB) were studied during the fall intermonsoon (FIM; September-October 2002) and spring intermonsoon (SpIM; April-May 2003). The nutrient molar ratios of macronutrients such as nitrate to phosphate (N:P), nitrate to silicate (N:Si) and silicate to phosphate (Si:P) in the top 120m were calculated for both FIM and SpIM. During both the seasons, the N:P ratios along the CB and WB were lower than 16, indicating nitrate deficiency. Whereas, along both transects the N:Si ratio was <1 and Si:P >3 in the top 20 and 40m during FIM and SpIM, respectively, indicating Si enrichment. Relatively greater nutrient concentrations along the WB than the CB appear to contribute to higher phytoplankton abundance. The preponderance of diatoms in the Bay could be attributed to rapid utilization of available nutrients in particular during FIM thus resulting in low N:Si ratios in the water column. Among diatoms, pennales were predominantly controlled by nutrients and their ratios. While, apart from nutrients, physical stratification, light and eddies also seem to influence the distribution and abundance of centrales.  相似文献   

6.
We conducted studies of nutrients and water mass movements in a semi-enclosed bay in northern China to understand nutrient dynamics under varying tidal regimes. Four cruises were conducted under varying tidal regimes in Jiaozhou Bay, two at neap tide and one at spring tide in August and one at spring tide in October 2001. In addition to transect surveys, drift experiments and an anchor station were employed to show current and tidal effects. Samples for nutrient evaluation were taken from the five major tributary rivers in March (dry season) and August (flood season) of 2002 to estimate nutrient transport by rivers, and wastewater samples were collected to evaluate nutrients in wastewater discharge. Benthic nutrient fluxes were determined by (1) incubation of sediments with overlying seawater on board the boat and (2) calculated by Fick’s First Law from nutrient pore water profiles. Nutrient concentrations were high in the north, especially the northeast and northwest sectors, reflecting human activities. Jiaozhou Bay was characterized by high nitrogen, but low phosphorus and silica concentrations compared to Chinese coastal seas. Based on nutrient atomic ratios, the limiting elements for phytoplankton growth in Jiaozhou Bay were silica and phosphorus. The fluxes of nutrients between sediment and overlying water varied depending on the specific nutrient, the site and redox conditions. Benthic nutrient fluxes based on sediment incubations were all lower than the estimated diffusive fluxes, implying that the nutrients released from sediment pore waters were probably utilized by benthic microalgal and bottom-water primary production. A preliminary estimate of nutrient budgets demonstrated that riverine and wastewater inputs were greater than atmospheric deposition into Jiaozhou Bay, except that nitrate from wastewater inputs was less than atmospheric deposition. Concentrations of nitrogen and phosphorus increased while silica decreased in the last four decades, similar to other eutrophicated estuaries. The resulting shift in nutrient composition in Jiaozhou Bay affects phytoplankton composition, trophic interactions, and sustainability of living resources.  相似文献   

7.
The North-Adriatic basin shows typical shallow water mass characteristics which in a first approach, can be considered independent of the Middle and the Southern basins, being more affected by seasonal temperature and salinity variability. Primary production estimates represent the main quantitative assessments of the trophic conditions of a marine system, resulting from the combined effect of a large number of oceanographic factors. In this paper the results from three EUROMARGE AS (EEC-MAST II-MTP project) field trips carried out in 1994 are presented as a contribution to the better understanding of the factors controlling the trophic balance in the Northern Adriatic basin. These results include: depth profiles of salinity, nutrients and chlorophyll a concentrations, oxygen saturation, phytoplankton taxonomy and abundance, estimated biomass and primary production measurements by the 14C in-situ incubation method. The field trips were carried out in three seasons (February, July, September 1994) and the results reported belong to three stations in the northern basin, 5 miles off Ravenna, Cesenatico and Ancona, respectively. As expected, the physical situation of the water column was different in the three periods: the water was mixed in February and stratified in July and September. Nutrient concentrations were higher in winter, whilst the maximum of primary production was measured in September. The phytoplankton was composed predominantly of diatoms. The correlations between primary production and salinity reflect a difference in the factors controlling primary production. During February and September nutrients coming from rivers play an important role, although with a decreasing influence from station 1, nearest to the Po delta, towards station 3. Depth profiles of nutrient concentrations and O2 saturation measured during summer in the water column suggest that regeneration of nutrients in the water column down to the bottom boundary layer must play an important role in the nutrient cycling and dynamics in the basin.  相似文献   

8.
Two processes are generally explained as causes of temporal changes in the stoichiometric silicon/nitrogen (Si/N) ratios of sinking particles and of nutrient consumption in the surface water during the spring diatom bloom: (1) physiological changes of diatom under the stress of photosynthesis of diatom and (2) differences of regeneration between silicon and nitrogen. We investigated which process plays an important role in these changes using a one-dimensional ecosystem model that explicitly represents diatom and the other non-silicious phytoplankton. The model was applied to station A7 (41°30′ N, 145°30′ E) in the western North Pacific, where diatom regularly blooms in spring. Model simulations show that the Si/N ratios of the flux exported by the sinking particles at 100 m depth and of nutrient consumptions in the upper 100 m surface water have their maxima at the end of the spring diatom bloom, the values and timings of which are significantly different from each other. Analyses of the model results show that the differences of regeneration between silicon and nitrogen mainly cause the temporal changes of the Si/N ratios. On the other hand, the physiological changes of diatoms under stress can hardly cause these temporal changes, because the effect of the change in the diatom's uptake ratio of silicon to nitrogen is cancelled by that in its sinking rate.  相似文献   

9.
基于2018年早春和夏季长江口邻近海域的调查数据,分析溶解氧(DO)的时空分布,并讨论其影响因素.结果表明,夏季DO浓度变化范围为1.58~9.37 mg/L,浮游生物光合作用产生的DO是夏季表层水体过饱和的主要因素;夏季调查海域受台湾暖流北上引起海水层化加强,同时水体富营养化导致表层生物大量繁殖所引起有机碎屑的沉降和耗氧分解作用是底层低氧区存在的主要因素.夏季在台湾暖流影响下底层水体表观耗氧量(AOU)与营养盐成正相关关系,底层有机物耗氧降解过程与营养盐的再生密切相关.早春DO浓度变化范围为7.90~10.1 mg/L,长江口外北部海域和浙江近岸海域海水混合均匀,DO浓度主要受温度控制,而台湾暖流影响区海水出现层化现象,其低DO含量也为低氧区的形成奠定了基础.  相似文献   

10.
渤黄海营养盐结构及其潜在限制作用的时空分布   总被引:7,自引:0,他引:7  
根据2006-2007年4个季节的现场调查资料,分析探讨了渤海和黄海营养盐结构分布变化特征及其对浮游植物生长的潜在的限制状况.结果表明,渤黄海水体 Si/N/P 比值均偏离 Redfield 比值,季节变化明显;春夏冬季 N/P和 Si/P比值由近岸向远岸海域递减,高值区主要分布在黄河口、鸭绿江口及苏北近岸,秋季上层水体N/P和Si/P比值的分布趋势有所不同,高值区主要分布在南黄海的中部海域.受陆源输入的影响,近岸特别是河口区 N/P和 Si/P比值均较高,温跃层的生消变化和生物活动调控着黄海中部海域营养盐结构的变化.渤黄海浮游植物生长主要受P的潜在限制,部分季节受N、Si的潜在限制;营养盐限制状况存在着明显的时空变化及不同营养盐的同时或交替限制的现象.  相似文献   

11.
北极王湾2010年夏季水体营养盐分布及影响因素   总被引:2,自引:1,他引:1  
王湾海域位于北极斯瓦尔巴群岛西北侧,其水体特征主要受到北极冰川与大西洋的共同影响。为了研究冰川融水与大西洋水对王湾营养盐分布以及生态系统的影响,在2010年夏季黄河站考察期间,对王湾海水与地表径流进行采样分析,并测定了营养盐和叶绿素a。结果表明:2010年夏季王湾是大西洋水影响较弱的年份,以低温低盐高营养盐的本地变异水为主导。2010年7月王湾水体可以划分为4个水团,表层水(SW)、中层变异水(TIW)、本地变异水(TLW)和大西洋变异水(TAW),其中,表层水与中层变异水营养盐浓度较低,随着深度增加,本地变异水与大西洋变异水营养盐浓度都较高。大西洋变异水主要影响200m以深水柱,其营养盐浓度低于本地变异水影响的底部值,本地变异水中营养盐浓度的增加主要来自于颗粒物中营养盐的再生。表层水主要来源于地表径流与冰川融水,这些淡水输入与浮游植物的初级生产作用共同决定了表层水的营养盐浓度水平及结构。本地变异水中在水深100m上下出现的铵盐高值可能与浮游动物和/或微生物的代谢过程有关。  相似文献   

12.
Phytoplankton pigments and size-fractionated biomass in the Chukchi and Beaufort Seas showed spatial and temporal variation during the spring and summer of 2002. Cluster analysis of pigment ratios revealed different assemblages over the shelf, slope and basin regions. In spring, phytoplankton with particle sizes greater than 5 μm, identified as diatoms and/or haptophytes, dominated over the shelf. Smaller (<5 μm) phytoplankton containing chlorophyll b, most likely prasinophytes, were more abundant over the slope and basin. Due to extensive ice cover at this time, phytoplankton experienced low irradiance, but nutrients were near maximal for the year. By summer, small prasinophytes and larger haptophytes and diatoms co-dominated in near-surface assemblages in largely ice-free waters when nitrate was mostly depleted. Deeper in the water column at 1–15% of the surface irradiance larger sized diatoms were still abundant in the upper nutricline. Phytoplankton from the shelf appeared to be advected through Barrow Canyon to the adjacent basin, explaining similar composition between the two areas in spring and summer. Off-shelf advection was much less pronounced for other slope and basin areas, which are influenced by the low-nutrient Beaufort gyre circulation, leading to a dominance of smaller prasinophytes and chlorophytes. The correlation of large-sized fucoxanthin containing phytoplankton with the higher primary production measurements shows promise for trophic status to be estimated using accessory pigment ratios.  相似文献   

13.
杨建斌  姚鹏  张晓华 《海洋学报》2020,42(10):132-143
生源要素是海洋初级生产的基础,其在海洋环境中的循环受到多种物理、化学和生物过程的影响,对其浓度分布、结构特点及影响因素的认识是理解海洋生态系统动力学的基础。于2019年2月在南海北部神狐海域进行了现场考察和海水样品采集,对海水中的溶解态无机营养盐浓度进行了分析,并结合温度、盐度、叶绿素a(Chl a)、pH和溶解氧(DO)等水文环境参数,研究了神狐海域海水中营养盐浓度与结构的分布特征及影响因素等。在0~30 m的海水中各营养盐浓度均很低,随着深度的增加,营养盐浓度逐渐增大。在水深3 000 m左右处,无机氮、磷酸盐和硅酸盐浓度分别达到了38.02 μmol/L、2.71 μmol/L和149.07 μmol/L。温度、pH和DO与各营养盐浓度均具有显著的相关性,表明环境因素影响着营养盐的生物地球化学过程。此外,在75 m深度,研究区域东北方向的站位营养盐浓度相对较低,并呈现向西南方向逐渐增大的变化趋势,可能与高温、高盐和低营养盐的黑潮水入侵有关。根据端元混合模型计算所得保守混合浓度与实测值的差值显示,在75 m深度硅酸盐和磷酸盐以生物消耗为主,而硝酸盐存在添加。随磷酸盐浓度增加,各站位无机氮浓度呈线性升高,但硅酸盐浓度则以幂函数式升高,表明不同营养盐之间再生速率和再利用效率有所不同。神狐海域的N/P比与Si/N比和Si/P比呈现出截然相反的变化趋势。在0~30 m,N/P比较小而Si/N比和Si/P比较大;在75 m,受不同生物作用影响,N/P比变大,Si/N比和Si/P比变小;在75 m以下N/P比逐渐降低至14.44,而Si/N比和Si/P比则逐渐升高;在1 000 m以下,各营养盐比例均保持稳定。氮异常指数的计算结果显示,神狐海域300 m以上的海水中固氮作用强于反硝化作用,而300 m以下反硝化作用增强。神狐海域营养盐浓度与结构的分布特征表明黑潮入侵和生物活动显著影响了此区域营养盐的生物地球化学过程。  相似文献   

14.
The concentration of nutrients was measured during the spring phytoplankton bloom in Funka Bay over a 5-year period (1988–92). During the winter mixing period, nutrient concentrations were similar in every year except in 1990 when a high concentration of silicate was observed. There was interannual variation in the onset of the bloom, presumably depending on the stability of the water column. The bloom developed in early March when the Oyashio water (OW), which has a lower density than the existing winter water, flowed into the bay and the pycnocline formed near the bottom of the euphotic zone. In this case, high chl a was found only in the euphotic zone and nutrient utilization was limited to this zone. In the year when the inflow of OW was not observed by April, the bloom took place at the end of March without strong stratification and high chl a was found in the whole water column, accompanied by a decrease in nutrients. Interannual differences were found not only at the beginning of the decrease, but also in the thickness of the layer which showed a decrease in nutrients. Primary production from the beginning to the end of the spring bloom was estimated from the nutrient budget before and after the spring bloom. The integrated production over the spring bloom period ranged from 25 to 73 g C m-2, which accounts for 19–56% of the annual production in this bay. We found that the timing of the bloom was strongly dependent on the inflow of OW, but the amount of production was not clearly related to this timing.  相似文献   

15.
We measured benthic and water column fluxes in a hypersaline coastal system (Baffin Bay, Texas) in 1996–1997, a period of decreasing salinity (increased freshwater input) and turbidity. Salinity decreased from a mean of 60 to 32 practical salinity units (psu) and turbidity decreased from a mean of 78 to 25 NTU over the study period. Associated with hydrological changes, there were important changes in nutrient fluxes and metabolism. There was a shift of total respiration from the water column to the sediments and an increased amount of the benthic metabolism (2–67%) was attributed to sulfate reduction in this system when salinity was lowest, perhaps a consequence of increased benthic light levels and photosynthetic production of labile carbon in the sediments. The sediments were a large sink for both N and P. Sediment particulate C:N (9.8) and C:P (119) ratios were lower than those in the water column. However, ammonium:phosphate fluxes increased coincident with increased sulfate reduction rates and porewater sulfide concentrations. Efficient N-retention mediated through dissimilative nitrate reduction to ammonium, and high rates of N-fixation in shallow, hypersaline systems may facilitate transitions from N-limitation to P-limitation. During the most hypersaline period, seston exhibited some of the most extreme nutrient ratios ever reported for a marine ecosystem (C:N 10–37 and C:P 200–1200) and suggest that plankton are likely to be P-limited or are very well adapted to low P availability. When salinity and N:P and C:P ratios were highest, the plankton was dominated by a brown tide alga (Aureoumbra lagunensis), supporting evidence that this organism is adapted to low P, long residence time systems.  相似文献   

16.
The repeated occurrence of a monospecific bloom of the plankton diatom Rhizosolenia delicatula at Roscoff (western English Channel) was made the subject of an interdisciplinary research programme. Samples were taken at daily intervals from April to July and at longer intervals during the remaining part of the year 1985. Routine physical parameters, light transmission, nutrients, dissolved oxygen, particle load, particulate N and P, chlorophyll content, phytoplankton counting, and zooplankton biomass were measured as a basis for more specific studies (to follow as subsequent papers in this series).The area is characterized by: high tidal range, permanent mixing throughout the year, low attenuation coefficients, moderate nutrient supply, and the dominance of benthic algae over phytoplankton. The spring bloom is significantly delayed with respect to the usual model for the temperate seas. Tidal cycles are expected to exert the main influence on bloom dynamics at the time scale of phytoplankton growth.  相似文献   

17.
To investigate the impacts of nutrient concentrations and N:P:Si ratios on the ecosystem of the Huanghai Sea (Yellow Sea), the current status and long-term variation of nutrients concentrations and ratios as well as phytoplankton community structure in the Huanghai Sea were collected and analyzed. The results reveal great annual and seasonal fluctuations in the nutrient concentrations and N:P:Si ratios during 1998-2008 with no clear pattern observed in the whole region. Yet on a seasonal scale of spring and in the coastal regions such as the Jiaozhou Bay and Sanggou Bay, the increase of DIN concentration and N:P ratio as well as the decrease of phosphate and silicate concentrations and Si:N ratios were relatively significant. Many pelagic ecosystem changes have occurred concurrent with these changes of the nutrient regime, such as the recent increase of primary production, changes of phytoplankton chlorophyll a biomass and abundance, an increase of eutrophication, and occurrence of HABs. In addition, new trends in the variation of nutrients seem to be developing in some particular transect such as 36°N, which suggests that long-term and systematic ecosystem monitoring in the Huanghai Sea is necessary.  相似文献   

18.
Water circulation, water column nutrients and plankton productivity were studied in a tropical bay with high rates of water exchange (60% to 90% per tide) and short residence times (3 to 4 h). The water circulation is predominantly affected by the semi-diurnal tides, which cause strong and reversing currents in the mangrove creeks (0.60 m·s−1) and currents of low magnitude in the neighbouring seagrass and coral reef zones (< 0.30 m·s−1). Tidal asymmetry, with relatively stronger ebb than flood flows in the mangrove creeks, promotes the net export of nutrients from the river mouth and of organic matter from the mangroves to the seagrass beds. The main sources of the dissolved inorganic nutrients are two rivers (the Kidogoweni and Mkurumuji) which discharge (up to 17.0 m3·s−1) in the upper and lower regions of the bay. The increased input of nutrients did not cause eutrophic conditions since nutrients were rapidly flushed out of the bay. The mangrove biotope generated small amounts of dissolved nutrients which are likely to be used for primary production within the mangrove zone. The production of nutrients in the mangrove zone was masked by high rates of flushing, such that no appreciable nutrient signal was detected in the dry season when the influence of the rivers diminished. The rates of primary production were low in the mangrove, seagrass, and coral reef biotopes in the dry season. Primary production increased slightly during the rainy season. The level of chlorophyll a in the mangrove biotope increased during ebb tides and decreased during flood tides. The highest zooplankton densities, which could not be related directly to primary production in the water-column, occurred at the seagrass station during the wet season.  相似文献   

19.
The seasonal dynamics of inorganic nutrients and phytoplankton biomass (chlorophyll a), and its relation with hydrological features, was studied in the NW Alboran Sea during four cruises conducted in February, April, July and October 2002. In the upper layers, the seasonal pattern of nutrient concentrations and their molar ratios (N:Si:P) was greatly influenced by hydrological conditions. The higher nutrient concentrations were observed during the spring cruise (2.54 μM NO3, 0.21 μM PO43− and 1.55 μM Si(OH)4, on average), coinciding with the increase of salinity due to upwelling induced by westerlies. The lowest nutrient concentrations were observed during summer (<0.54 μM NO3, 0.13 μM PO43− and 0.75 μM Si(OH)4, on average), when the lower salinities were detected. Nutrient molar ratios (N:Si:P) followed the same seasonal pattern as nutrient distribution. During all the cruises, the ratio N:P in the top 20 m was lower than 16:1, indicating a NO3 deficiency relative to PO43−. The N:P ratio increased with depth, reaching values higher than 16:1 in the deeper layers (200–300 m). The N:Si ratio in the top 20 m was lower than 1:1, excepting during spring when N:Si ratios higher than 1:1 were observed in some stations due to the upwelling event. The N:Si ratio increased with depth, showing a maximum at 50–100 m (>1.5:1), which indicates a shift towards Si-deficiency in these layers. The Si:P ratio was much lower than 16:1 throughout the water column during the four cruises. In general, the spatial and seasonal variation of phytoplankton biomass showed a strong coupling with hydrological and chemical fields. The higher chlorophyll a concentrations at the depth of the chlorophyll maximum were found in April (2.57 mg m−3 on average), while the lowest phytoplankton biomass corresponded to the winter cruise (0.74 mg m−3 on average). The low nitrate concentrations together with the low N:P ratios found in the upper layers (top 20 m) during the winter, summer and autumn cruises suggest that N-limitation could occur in these layers during great part of the year. However, N-limitation during the spring cruise was temporally overcome by nutrient enrichment caused by an intense wind-driven upwelling event.  相似文献   

20.
Distributions of dissolved nutrients and Chl. a were investigated in the Sangga Besar River Estuary in the well-managed Matang Mangrove Forest in West Malaysia. In the estuary, spring tide concentrations of ammonium, silicate and phosphate were higher than those in the neap tide, which suggests that these nutrients are flushed from the mangrove area by the inundation and tidal mixing of the spring tide. Ammonium comprised over 50% of the dissolved inorganic nitrogen in the spring tide, while nitrite tended to dominate in the neap tide, indicating the predominance of nitrification inside the estuary in neap tides. Nutrient concentrations in the creek water were higher than those of estuarine water, indicating the nutrient outwelling from the mangrove swamp and ammonium regeneration from mangrove litter in the creek sediments. The maximum concentration of Chl. a in spring tides reached 80 g/l while it was below 20 g/l in the neap tides. These variations in the phytoplankton biomass and nutrients probably reflect the greater nutrient availability in the spring tide due to outwelling from the mangrove swamp and creek.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号