首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
 The concept of radiative forcing has been extensively used as an indicator of the potential importance of climate change mechanisms. It allows a first order estimate of the global-mean surface temperature change; and it is possible to compare forcings from different mechanisms, on the assumption that similar global-mean forcings produce similar global-mean surface temperature changes. This study illustrates two circumstances where simple models show that the conventional definition of radiative forcing needs refining. These problems arise mainly with the calculation of forcing due to stratospheric ozone depletion. The first part uses simple arguments to produce an alternative definition of radiative forcing, using a time-dependent stratospheric adjustment method, which can give different forcings from those calculated using the standard definition. A seasonally varying ozone depletion can produce a quite different seasonal evolution of forcing than fixed dynamical heating arguments would suggest. This is especially true of an idealised and extreme “Antarctic ozone hole” type scenario where a sudden loss of ozone is followed by a sudden recovery. However, for observed ozone changes the annually averaged forcing is usually within 5% of the forcing calculated using the fixed dynamical heating approximation. Another problem with the accepted view of radiative forcing arises from the definition of the tropopause considered in the second part of this study. For a correct radiative forcing estimate the “tropopause” needs to separate the atmosphere into regions with a purely radiative response and those with a radiative-convective response. From radiative-convective model results it is found that radiative equilibrium conditions persist for several kilometres below the tropopause (the tropopause being defined as where the lapse rate reaches 2 K km-1). This region needs to be included in stratospheric adjustment calculations for an accurate calculation of forcing, as it is only the region between the surface and the top of the convection that can be considered as a single, forced, system. Including temperature changes in this region has a very large effect on stratospheric ozone forcing estimates, and can reduce the magnitude of the forcing by more than a factor of two. Although these experiments are performed using simple climate models, the results are of equal importance for the analysis of forcing-response relationships using general circulation models. Received: 25 October 1996/Accepted: 14 April 1997  相似文献   

2.
黑碳气溶胶辐射强迫全球分布的模拟研究   总被引:15,自引:3,他引:15  
张华  马井会  郑有飞 《大气科学》2008,32(5):1147-1158
利用一个改进的辐射传输模式,结合全球气溶胶数据集(GADS),计算晴空条件下冬夏两季黑碳气溶胶的直接辐射强迫在对流层顶和地面的全球分布。计算结果表明,与温室气体引起的整层大气都是正的辐射强迫不同,黑碳气溶胶的辐射强迫在对流层顶为正值,而在地面的辐射强迫却是负值。作者从理论上解释了造成这种结果的原因。对北半球冬季和夏季而言,在对流层顶黑碳气溶胶的全球辐射强迫的平均值分别为0.085W/m2和0.155 W/m2,在地面则分别为-0.37 W/m2和-0.63 W/m2。虽然气溶胶的辐射强迫主要依赖于其本身的光学性质和在大气中的浓度,太阳高度角和地表反照率对黑碳气溶胶的辐射强迫会产生很大的影响。研究指出:黑碳气溶胶在对流层顶正的辐射强迫和在地面负的辐射强迫的绝对值都随太阳天顶角的余弦和地表反照率的增加线性增大;地表反照率对黑碳气溶胶辐射强迫的强度和分布都有重要影响。黑碳气溶胶的辐射强迫分布具有明显的纬度变化特征,冬夏两季的大值区都位于30°N~90°N之间,表明人类活动是造成黑碳气溶胶辐射强迫的主要原因。  相似文献   

3.
The radiative impacts of the stratosphere in global warming simulations are investigated using abrupt CO2 quadrupling experiments of the Coupled Model Inter-comparison Project phase 5 (CMIP5), with a focus on stratospheric temperature and water vapor. It is found that the stratospheric temperature change has a robust bullhorn-like zonal-mean pattern due to a strengthening of the stratospheric overturning circulation. This temperature change modifies the zonal mean top-of-the-atmosphere energy balance, but the compensation of the regional effects leads to an insignificant global-mean radiative feedback (?0.02 ± 0.04 W m?2 K?1). The stratospheric water vapor concentration generally increases, which leads to a weak positive global-mean radiative feedback (0.02 ± 0.01 W m?2 K?1). The stratospheric moistening is related to mixing of elevated upper-tropospheric humidity, and, to a lesser extent, to change in tropical tropopause temperature. Our results indicate that the strength of the stratospheric water vapor feedback is noticeably larger in high-top models than in low-top ones. The results here indicate that although its radiative impact as a forcing adjustment is significant, the stratosphere makes a minor contribution to the overall climate feedback in CMIP5 models.  相似文献   

4.
The direct effects of sulfate aerosol, dust aerosol, carbonaceous aerosol, and total combined aerosols on the tropopause height are simulated with the Community Atmospheric Model version 3.1 (CAM3.1). A decrease of global mean tropopause height induced by sulfate, carbonaceous aerosol, and total combined aerosols is found, and a tropopause height increase is induced by dust aerosol. Sulfate aerosol decreases the tropospheric temperature and increases the stratospheric temperature. These effects cause a decrease in the height of the tropopause. In contrast, carbonaceous and total combined aerosols increase both the tropospheric and the stratospheric temperatures, and they also cause a decrease in the height of the tropopause. The changes in the tropopause height show highly statistically significant correlations with the changes in the tropospheric and stratospheric temperatures. The changes in the tropospheric and stratospheric temperatures are related to the changes in the radiative heat rate, cloud cover, and latent heat, but none of these factors absolutely dominate the temperature change.  相似文献   

5.
The radiative impact of greenhouse gases in warming the Earth varies significantly, depending on whether one considers the forcing at the tropopause or at the surface. Compared to the former, the surface forcing for some greenhouse gases is reduced by the interference of water vapour. Hence, we calculate alternative surface global warming potentials (SGWPs) that are derived from the surface forcing radiation of greenhouse gases for potential use in surface radiative energy balance models (SREBMs). For gases with a large water vapour overlap, the SGWPs are typically 30% smaller than current GWPs; for gases with relatively little overlap, the SGWPs are larger by more than 33%. These results may be used in conjunction with SREBMs as an additional means of calculating climate change, and may lead to an altered emissions budget compared to that outlined by the current Kyoto agreement.  相似文献   

6.
Releases of halocarbons into the atmosphere over the last 50 years are among the factors that have contributed to changes in the Earth’s climate since pre-industrial times. Their individual and collective potential to contribute directly to surface climate change is usually gauged through calculation of their radiative efficiency, radiative forcing, and/or Global Warming Potential (GWP). For those halocarbons that contain chlorine and bromine, indirect effects on temperature via ozone layer depletion represent another way in which these gases affect climate. Further, halocarbons can also affect the temperature in the stratosphere. In this paper, we use a narrow-band radiative transfer model together with a range of climate models to examine the role of these gases on atmospheric temperatures in the stratosphere and troposphere. We evaluate in detail the halocarbon contributions to temperature changes at the tropical tropopause, and find that they have contributed a significant warming of ~0.4 K over the last 50 years, dominating the effect of the other well-mixed greenhouse gases at these levels. The fact that observed tropical temperatures have not warmed strongly suggests that other mechanisms may be countering this effect. In a climate model this warming of the tropopause layer is found to lead to a 6% smaller climate sensitivity for halocarbons on a globally averaged basis, compared to that for carbon dioxide changes. Using recent observations together with scenarios we also assess their past and predicted future direct and indirect roles on the evolution of surface temperature. We find that the indirect effect of stratospheric ozone depletion could have offset up to approximately half of the predicted past increases in surface temperature that would otherwise have occurred as a result of the direct effect of halocarbons. However, as ozone will likely recover in the next few decades, a slightly faster rate of warming should be expected from the net effect of halocarbons, and we find that together halocarbons could bring forward next century’s expected warming by ~20 years if future emissions projections are realized. In both the troposphere and stratosphere CFC-12 contributes most to the past temperature changes and the emissions projection considered suggest that HFC-134a could contribute most of the warming over the coming century.  相似文献   

7.
平流层气溶胶的辐射强迫及其气候响应的水平二维分析   总被引:7,自引:0,他引:7  
利用比较先进的辐射模式计算了平流层气溶胶的辐射强迫,并对之进行了参数化。结果发现平流层气溶胶的辐射强迫的水平分布不仅与其本身的水平变化有关,而且与下垫面的反照率有很大的关系。利用近期开发的二维能量平衡模式模拟了皮纳图博火山气溶胶对地面平衡温度的影响,结果表明:皮纳图博火山至喷发后1年半左右降温达最大,至喷发后第5年降温已很小。  相似文献   

8.
Increasing greenhouse gases and likely ozone recovery will be the two most important factors influencing changes in stratospheric temperatures in the 21st century. The radiative effect of increasing greenhouse gases will cause cooling in the stratosphere, while ozone recovery will lead to stratospheric warming. To investigate how stratospheric temperatures change under the two opposite forcings in the 21st century, we use observed ozone and reanalysis data as well as simulation results from four coupled oceanic and atmo- spheric general circulation models (GISS-ER, GFDL-CM20, NCAR-CCSM3, and UKMO-HadCM3) used in the IPCC (Intergovernment Panel for Climate Change) Fourth Assessment Report (AR4). Observational analysis shows that total column ozone and lower stratospheric temperatures all show increasing in the past 10 years, while middle stratospheric temperatures demonstrate cooling. IPCC AR4 simulations show that greenhouse forcing alone will lead to stratospheric cooling. However, with forcing of both increasing greenhouse gases and ozone recovery, the middle stratosphere will be cooled, while the lower stratosphere will be warmed. Warming magnitudes vary from one model to another. UKMO-HadCM3 generates relatively strong warming for all three greenhouse scenarios, and warming extends to 40 hPa. GFDL-CM20 and NCAR-CCSM3 produce weak warming, and warming mainly exists at lower levels, below about 60 hPa. In addition, we also discuss the effect of temperature changes on ozone recovery.  相似文献   

9.
Using the measurements from the Halogen Occultation Experiment(HALOE) and the European Centre for Medium-Range Weather Forecasts(ECMWF) Interim reanalysis data for the period 1994-2005, we analyzed the relationship between tropical tropopause temperature anomalies and stratospheric water vapor anomalies. It is found that tropical tropopause temperature is correlated with stratospheric water vapor, i.e., an anomalously high(low) tropical tropopause temperature corresponds to anomalously high(low) stratospheric water vapor during the period 1994-2005,except for 1996. The occurrence frequency and strength of deep convective activity during the‘mismatched'months is less and weaker than that during the‘matched'months in 1996. However, the instantaneous intensity of four short periods of deep convective activity, caused by strong surface cyclones and high sea surface temperatures, are greater during the ‘mismatched'months than during the ‘matched'months. Water vapor is transported from the lower troposphere to the lower stratosphere through a strong tropical upwelling, leading to an increase in stratospheric water vapor. On the other hand, deep convective activity can lift the tropopause and cool its temperature. In short, the key factor responsible for the poor correlation between tropical tropopause temperature and stratospheric water vapor in1996 is the instantaneous strong deep convective activity. In addition, an anomalously strong Brewer-Dobson circulation brings more water vapor into the stratosphere during the‘mismatched'months in 1996, and this exacerbates the poor correlation between tropical tropopause temperature and stratospheric water vapor.  相似文献   

10.
Increases in chlorinated and brominated halocarbons are believed to be responsible for the depletion of stratospheric ozone observed over much of the globe in the past decade or so. Ozone depletion is in turn believed to lead to a negative radiative forcing, tending to cool the stratosphere and the surface. We show that the increasing atmospheric concentrations of ozone-depleting halocarbons and onset of related ozone depletion likely led to a negative forcing of the climate system in the 1980s that slowed significantly the rate of change of total anthropogenic radiative forcing due to the combined effect of all greenhouse gases over that decade. Within the next decade, emissions of these halocarbons are expected to rapidly decrease, with corresponding impacts on ozone and radiative forcing. As the emissions of ozone-depleting gases are reduced and eventually phased out, the rate of ozone depletion is expected to decrease and eventually reverse. All other things being equal, we show that the change from deepening ozone depletion in the 1980s to ozone increases in the future should lead to a pronounced increase in the decadal rate of change of anthropogenic greenhouse forcing of the next few decades, perhaps to levels unprecedented in this century.  相似文献   

11.
To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height, and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infrared radiative cooling by water vapor is a pivotal factor in middle-lower stratospheric cooling. However, in the upper stratosphere (above 45 km), infrared radiation is not a factor in cooling; there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere, and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and signiffcantly affects temperature and ozone in winter over Arctic regions. Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However, ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric temperature change.  相似文献   

12.
沙尘气溶胶辐射强迫全球分布的模拟研究   总被引:7,自引:2,他引:5  
张华  马井会  郑有飞 《气象学报》2009,67(4):510-521
为了定景了解沙尘气溶胶对气候的影响,文中利用一个改进的辐射传输模式,结合伞球气溶胶数据集(G-ADS),计算了晴空条件下,冬夏两季沙尘气溶胶的直接辐射强迫在对流层顶和地面的全球分布,并讨论了云对沙尘气溶胶辐射强迫的影响.计算结果表明,对北半球冬季和夏季而言,在对流层顶沙尘气溶胶的全球短波辐射强迫的平均值分别为-0.477和-0.501 W/m2;长波辐射强迫分别为0.11和0.085 W/m2;全球平均短波地面辐射强迫冬夏两季分别为-1.362和-1.559 W/m2;长波辐射强迫分别为0.274和0.23 W/m2.沙尘气溶胶在对流层顶和地面的负辐射强迫的绝对值郁随太阳天顶角的余弦和地表反照率的增加而增大;地表反照率对沙尘气溶胶辐射强迫的强度和分布都有重要影响.研究指出:云对沙尘气溶胶的直接辐射强迫的影响不仅取决于云量,而且取决于云的高度和云水路径,以及地面反照率和太阳高度角等综合因素.中云和低云对沙尘气溶胶在对流层顶的短波辐射强迫的影响比高云明显.云的存在都使对流层顶长波辐射强迫减少,其中低云的影响最为明显.因此,在估算沙尘气溶胶总的直接辐射强迫时,云的贡献不可忽视.  相似文献   

13.
相对湿度对气溶胶辐射特性和辐射强迫的影响   总被引:14,自引:4,他引:14  
张立盛  石广玉 《气象学报》2002,60(2):230-337
采用已有的气溶胶折射指数等资料 ,计算了在不同的相对湿度条件下硫酸盐气溶胶的辐射特性。结合两种不同化学输送模式 (CTM )的模拟结果及LASGGOALS/AGCM模式 ,模拟估算了考虑相对湿度影响后全球硫酸盐气溶胶的辐射强迫。结果表明 :(1)随着相对湿度的增加 ,硫酸盐气溶胶的质量消光效率因子在短波波段有所减小 ,单次散射反照率仅在长波波段有所增加 ,不对称因子在整个波段均有所增加 ;(2 )用两个CTM资料模拟辐射强迫的结果相差较大 ,其全球平均辐射强迫分别为 - 0 .2 6 8和 - 0 .816W/m2 ;(3)在考虑相对湿度的影响后 ,硫酸盐气溶胶辐射强迫的分布类型与相应干粒子的强迫分布类型基本相同 ,但全球平均的强迫值减少了 6 %左右。  相似文献   

14.
The regional climate model (RegCM3) and a tropospheric atmosphere chemistry model (TACM) were coupled, thus a regional climate chemistry modeling system (RegCCMS) was constructed, which was applied to investigate the spatial distribution of anthropogenic nitrate aerosols, indirect radiative forcing, as well as its climatic effect over China. TACM includes the thermodynamic equilibrium model ISORROPIA and a condensed gas-phase chemistry model. Investigations show that the concentration of nitrate aerosols is relatively high over North and East China with a maximum of 29 μg m-3 in January and 8 μg m-3 in July. Due to the influence of air temperature on thermodynamic equilibrium, wet scavenging of precipitation and the monsoon climate, there are obvious seasonal differences in nitrate concentrations. The average indirect radiative forcing at the tropopause due to nitrate aerosols is -1.63 W m-2 in January and -2.65 W m-2 in July, respectively. In some areas, indirect radiative forcing reaches $-$10 W m-2. Sensitivity tests show that nitrate aerosols make the surface air temperature drop and the precipitation reduce on the national level. The mean changes in surface air temperature and precipitation are -0.13 K and -0.01 mm d-1 in January and -0.09 K and -0.11 mm d-1 in July, respectively, showing significant differences in different regions.  相似文献   

15.
Understanding the historical and future response of the global climate system to anthropogenic emissions of radiatively active atmospheric constituents has become a timely and compelling concern. At present, however, there are uncertainties in: the total radiative forcing associated with changes in the chemical composition of the atmosphere; the effective forcing applied to the climate system resulting from a (temporary) reduction via ocean-heat uptake; and the strength of the climate feedbacks that subsequently modify this forcing. Here a set of analyses derived from atmospheric general circulation model simulations are used to estimate the effective and total radiative forcing of the observed climate system due to anthropogenic emissions over the last 50 years of the twentieth century. They are also used to estimate the sensitivity of the observed climate system to these emissions, as well as the expected change in global surface temperatures once the climate system returns to radiative equilibrium. Results indicate that estimates of the effective radiative forcing and total radiative forcing associated with historical anthropogenic emissions differ across models. In addition estimates of the historical sensitivity of the climate to these emissions differ across models. However, results suggest that the variations in climate sensitivity and total climate forcing are not independent, and that the two vary inversely with respect to one another. As such, expected equilibrium temperature changes, which are given by the product of the total radiative forcing and the climate sensitivity, are relatively constant between models, particularly in comparison to results in which the total radiative forcing is assumed constant. Implications of these results for projected future climate forcings and subsequent responses are also discussed.  相似文献   

16.
中国地区气溶胶的辐射强迫及其气候响应试验   总被引:15,自引:3,他引:12  
胡荣明  石广玉 《大气科学》1998,22(6):917-525
根据国内测定的排放因子数据和国家、部委及各省市统计年鉴公布的排放源数据,得到的中国大陆的1°×1°网格精度的SO2的排放分布,计算了中国地区人为扰动气溶胶的辐射强迫。应用近期开发的二维能量平衡模式计算了由该种气溶胶所引起的中国地区地面温度变化。模式结果表明,最大辐射强迫和最大地面温度变化都集中在中国的沿海和四川地区。最大辐射强迫达3 W/m2。  相似文献   

17.
This study provides a comprehensive global analysis of the climate radiative feedbacks and the adjusted radiative forcing for a CO2 increase perturbation in the CNRM-CM5 climate model using the partial radiative perturbations (PRP) method. Some methodological key points of the PRP are investigated, with a particular focus on the consideration of the effect of fast adjustments. First, the standard PRP method is applied by neglecting certain fast adjustments. The effect of the field decorrelation is highlighted by performing a PRP across two different periods of a control experiment and by analyzing second-order terms. Sensitivity tests to the field substitution frequency, the sampling period and the perturbed experiment used are performed. The impact of the definition of the top of the climate system (top-of-the-atmosphere or tropopause) in the feedback estimate is also discussed. Secondly, the fast adjustment processes are taken into account by combining the PRP framework with the method of linear regression of the partial net radiative flux change against the mean surface air temperature change using a step forcing experiment. This method allows us to quantify the contribution of the different constituents to the forcing adjustment and to improve the estimation of the radiative feedbacks. It is shown that such decomposition allows the retrieval of the adjusted radiative forcing, the radiative feedbacks and the climate sensitivity as estimated with the linear regression method with a high level of accuracy, validating the partial decomposition.  相似文献   

18.
我国对流层臭氧增加对气温的影响   总被引:5,自引:1,他引:5  
利用耦台的区域气候模式和大气化学模式模拟对流层臭氧的产生、分布和对辐射传输、地表温度、气温等的影响。通过对比模拟发现:对流层中臭氧的增加基本使大气顶晴空辐射强迫为正;对流层中的臭氧含量变化能影响云量且进一步影响温度。由于对流层臭氧增加导致的晴空辐射强迫在4月份最大、1月份最小。  相似文献   

19.
Summary The response of the climatic system to changes in its radiative forcing has been the subject of much study. Climate models of various complexity have been used to demonstrate that a small increase in the solar constant, or doubling of the atmospheric CO2, would lead to a warmer surface. Very little scientific attention, however, has been given to the effect such a change in radiative balance might have on climatic variability. That is, would an earth warmed in this way be more temperate or more variable? To move one step closer to answering this question, we employed a simple one-dimensional surface energy balance climate model and forced it with random Gaussian white noise to simulate interannual variability. We integrated the model using 0, 2, and 4% increases in the solar constant. The results of these numerical experiments indicate that, under a warmer surface radiative balance, interannual variability of the surface temperature is reduced.  相似文献   

20.
The radiative forcing and climate response due to black carbon(BC) in snow and/or ice were investigated by integrating observed effects of BC on snow/ice albedo into an atmospheric general circulation model(BCC AGCM2.0.1) developed by the National Climate Center(NCC) of the China Meteorological Administration(CMA).The results show that the global annual mean surface radiative forcing due to BC in snow/ice is +0.042 W m 2,with maximum forcing found over the Tibetan Plateau and regional mean forcing exceeding +2.8 W m 2.The global annual mean surface temperature increased 0.071 C due to BC in snow/ice.Positive surface radiative forcing was clearly shown in winter and spring and increased the surface temperature of snow/ice in the Northern Hemisphere.The surface temperatures of snow-covered areas of Eurasia and North America in winter(spring) increased by 0.83 C(0.6 C) and 0.83 C(0.46 C),respectively.Snowmelt rates also increased greatly,leading to earlier snowmelt and peak runoff times.With the rise of surface temperatures in the Arctic,more water vapor could be released into the atmosphere,allowing easier cloud formation,which could lead to higher thermal emittance in the Arctic.However,the total cloud forcing could decrease due to increasing cloud cover,which will offset some of the positive feedback mechanism of the clouds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号