首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The early diagenetic chemical dissolution of skeletal carbonates has previously been documented as taking place within bioturbated, shallow water, tropical carbonate sediments. The diagenetic reactions operating within carbonate sediments that fall under the influence of iron‐rich (terrigenous) sediment input are less clearly understood. Such inputs should modify carbonate diagenetic reactions both by minimizing bacterial sulphate reduction in favour of bacterial iron reduction, and by the reaction of any pore‐water sulphide with iron oxides, thereby minimizing sulphide oxidation and associated acidity. To test this hypothesis sediment cores were taken from sites within Discovery Bay (north Jamaica), which exhibit varying levels of Fe‐rich bauxite sediment contamination. At non‐impacted sites sediments are dominated by CaCO3 (up to 99% by weight). Pore waters from the upper few centimetres of cores show evidence for active sulphate reduction (reduced SO4/Cl? ratios) and minor CaCO3 dissolution (increased Ca2+/Cl? ratios). Petrographic observations of carbonate grains (specifically Halimeda and Amphiroa) show clear morphological evidence for dissolution throughout the sediment column. In contrast, at bauxite‐impacted sites, the sediment is composed of up to 15% non‐carbonate and contains up to 6000 μg g?1 Fe. Pore waters show no evidence for sulphate reduction, but marked levels of Fe(II), suggesting that bacterial Fe(III) reduction is active. Carbonate grains show little evidence for dissolution, often exhibiting pristine surface morphologies. Samples from the deeper sections of these cores, which pre‐date bauxite influence, commonly exhibit morphological evidence for dissolution implying that this was a significant process prior to bauxite input. Previous studies have suggested that dissolution, driven by sulphate reduction and sulphide oxidation, can account for the loss of as much as 50% of primary carbonate production in localized platform environments. The finding that chemical dissolution is minor in a terrigenous‐impacted carbonate environment, therefore, has significant implications for carbonate budgets and cycling, and the preservation of carbonate grains in such sediment systems.  相似文献   

2.
Observations of the threshold of movement of loosely packed gravel in a tidal current are described. For gravel with equivalent ‘spherical’ diameters D in the range 0.2 ?D? 5.0cm the critical friction velocity u*c, corresponding to the initiation of sediment transport, is given by u*c=7.0 D0.2. At large values of D within the quoted range, the value u*c is significantly lower than would be obtained by a Shields experiment (u*cD0.5). By comparing our values of u*c with those obtained under well-controlled laboratory conditions, the discrepancy with Shields is shown to be due to the open spacing between, and exposure of, individual pebbles on the seabed. By comparing our results with those from upland gravel streams and flume experiments, it is suggested that Shields assumed an excessively large water depth to particle size ratio as a constraint within which the critical sediment entrainment number 0c is valid.  相似文献   

3.
The relationship between the lipid composition of organisms in the water column of an eutrophic lake and the lipid composition of underlying sediments, previously examined for n-alkanols and steroids, is now reported for hydrocarbons, ketones and carboxylic acids.The n-C7 alkane and alkenoic acids from two primary sources are rapidly metabolized in the water column and surficial sediment. Bacterial biomarkers, including hopenes and fatty acids, were detected in the photosynthetic bacterial layer occurring just above the sediment-water interface.Within the sediment the apparent conversion of free n-alkanes, alkan-2-ones and ω-hydroxy acids to the corresponding bound form is noted; microbiological oxidation of n-alkanes to alkan-2-ones is supported by the detection of the intermediate alkan-2-ols with a distribution similar to that of the ketones. The geochemistry of sediment deposited c. 1900, prior to biological study of the site, was interpreted from stable biomarkers and the diagenetic changes recognised in the study of contemporary deposition. A qualitative difference in algal input to the older sediment is inferred from the low Δ7-sterol content and presence of 2,6,10-trimethyl-7-(3-methylbutyl)-dodecane. However, there was still significant dinoflagellate input, as indicated by the presence of 4α-methylsterols. A difference in higher-plant input to the older sediment, indicated from the n-alkane, alkene and triterpenoid ketone distributions, is consistent with the recent development of tree cover.  相似文献   

4.
The progressive bond breakage of artificially cemented sands induced by shear straining was investigated through conventional isotropically consolidated drained triaxial compression tests. Sand specimens were prepared with a low degree of cementation by adopting a chemical grout. Test results were interpreted in terms of two stress–dilatancy theories for cohesive-frictional materials proposed in literature. The influence of debonding on the stress–dilatancy behaviour of cemented sands was analysed with particular emphasis on the ‘delayed dilatancy’ phenomenon. A bonding degradation curve was determined for each test relating the interparticle cohesion (c) to the magnitude of the total plastic strain vector (εd) and a bond degradation rate factor (Dc) was assessed from each curve. The maximum value of interparticle cohesion (c0) before the onset of bond degradation under shearing was found to correspond with a sharp decrease in the soil stiffness of the specimens. The influence of the effective confining stress (pc) on both c0 and Dc parameters gathered from each test was also ascertained.  相似文献   

5.
Optical constituents as suspended particulate matter (SPM), chlorophyll (Chl-a), colored dissolved organic matter (CDOM), and grain sizes were obtained on a transect in the arctic fjord-type estuary Kangerlussuaq (66°) in August 2007 along with optical properties. These comprised diffuse attenuation coefficient of downwelling PAR (K d(PAR)), upwelling PAR (K u(PAR)), particle beam attenuation coefficient (c p), and irradiance reflectance R(−0, PAR). PAR is white light between 400 and 700 nm. The estuary receives melt water from the Greenland Inland Ice and stations covered a transect from the very high turbid melt water outlet to clear marine waters. Results showed a strong spatial variation with high values as for suspended matter concentrations, CDOM, diffuse attenuation coefficient K d(PAR), particle beam attenuation coefficients (c p), and reflectance R(−0, PAR) at the melt water outlet. Values of optical constituents and properties decreased with distance from the melt water outlet to a more or less constant level in central and outer part of the estuary. There was a strong correlation between inorganic suspended matter (SPMI) and diffuse attenuation coefficient K d(PAR) (r 2 = 0.92) and also for particle beam attenuation coefficient (c p; r 2 = 0.93). The obtained SPMI specific attenuation—K d*(PAR) = 0.13 m2 g−1 SPMI—and the SPMI specific particle beam attenuation—c p* = 0.72 m2 g−1—coefficients were about two times higher than average literature values. Irradiance reflectance R(−0, PAR) was comparatively high (0.09−0.20) and showed a high (r 2 = 0.80) correlation with K u(PAR). Scattering dominated relative to absorption—b(PAR)/a(PAR) = 12.3. Results strongly indicated that the high values in the optical properties were related to the very fine particle sizes (mean = 2–6 μm) of the suspended sediment. Data and results are discussed and compared to similar studies from both temperate and tropical estuaries.  相似文献   

6.
High performance liquid chromatography-mass spectrometry has permitted the identification of a homologous series of novel alkylsulfide derivatives of chlorophyll a containing between one and five carbon atoms, in sediment from a coastal Antarctic lake. The sulfur-containing compounds are present in varying abundance in stratigraphic horizons representing a phase when the lake was a marine basin. Throughout this marine phase photic zone anoxia is recorded by the presence of bacteriochlorophyll c and d-derivatives. Distributional variations between sulfurised and non-sulfurised chlorophyll a-derivatives throughout the sediment section studied indicate that the extent of sulfurisation is not controlled by chlorophyll a abundance alone.  相似文献   

7.
Turbidity currents, initiated from spring runoffs of an influent river, were observed in the upper region of a reservoir in Hokkaido, Japan, by measuring water temperature, velocity and suspended-sediment concentration. Their profiles offer some physical parameters for the sedimentary conditions, assuming the turbidity currents to be quasi-uniform. The bottom sediment deposited by the turbidity currents was then collected by a portable core sampler. The bottom sediment consists of more than 90% silt and clay, and thus offers a hydraulically smooth bed for shear flow; a plane bed as a bed configuration was formed on the reservoir bed, probably because of the low shear velocity and small grain size of sediment. Using a graphic method with log-normal probability paper, the bottom sediment is divided into several overlapping log-normal subpopulations. Grain-size analysis indicates that the bottom sediment may be regarded as cohesionless; criteria for ‘complete deposition’ of transported grains can then be incorporated into the ‘extended Shields diagram’ giving the minimum shear stress to erode bottom sediment. Applying the new diagram to the grain size distribution of the bottom sediment, it is suggested that each of the log-normal subpopulations was deposited in each of four different ‘modes of deposition’, i.e. ‘traction’, ‘saltation (or intermittent suspension)’, ‘suspension’ and ‘suspension under equilibrium’. The last mode may be observed under a sedimentary condition where upward flux of suspended sediment by eddy diffusion is almost equal to its depositional flux due to gravity. The mean and critical grain sizes for bottom sediment and each of the corresponding subpopulations decrease consistently with an increase of Ψ=Fd2 log10Re (Fd is the densimetric Froude number and Re is the flow Reynolds number). Ψ correlates inversely with shear velocity, which bears a linear relationship to mean velocity. These results lead to the conclusion that relatively fine suspended sediment is deposited as a result of decreasing bottom friction with a relative decrease of turbulent energy.  相似文献   

8.
Simulations of the erosion, transport and deposition of fine-grained sediment, such as that of Greenberg & Amos and the Hydraulics Research Station, have illustrated a general lack of reliable field data. Consequently, some standard equations and constants used in modelling the sedimentation character of fine-grained cohesive sediment were evaluated based on data from two field studies and a flume experiment with undisturbed sediment from the Bay of Fundy. Initial results showed that the resistance to erosion of intertidal fine-grained sediment is controlled largely by the degree of subaerial exposure and the consequent dehydration and compaction. The sediment shear strength was high (4 kPa), but generally decreased seawards across the intertidal zone. The resistance of intertidal mud to erosion can be 80 times greater than sub-tidal counterparts. The rate of sediment erosion varied as a complex function of the applied bottom shear stress. At stresses immediately above the critical, the erosion rate decreased asymptotically with time. At higher excess stresses, the erosion rate was linear with respect to time. Thus sediment erosion cannot be represented by a single coefficient. The Krone method of computing sedimentation rates of suspended material was shown, by comparisons with direct measurement, to overpredict by 29%. All variables used in his method were measured in the evaluation with the exception of the critical deposition stress (τd). The closest comparisons were obtained when τd was assigned a value of 0.1 N m?2 following Creutzberg & Postma. The in situ still-water particle settling rate (Vo) was constant with respect to time (2.1 × 10?3 m s?1). However, the settling tube measures of settling rate, compared to in situ results, underpredicted particle settling by an order of magnitude (2.7 × 10?4 m s?1). The reason for this discrepancy is not apparent from our results.  相似文献   

9.
The particle-solution (Kd) relationships of Pu(III,IV) in the Esk Estuary are investigated, using new experimental data together with a synthesis of our earlier work. Adsorption of 236Pu(IV) by a suspension of intertidal mud (40 mg L−1) from the Esk Estuary was determined after 1 h, as a function of salinity and pH, in a series of controlled laboratory experiments. Desorption of 239, 240Pu(III,IV) from this environmentally contaminated sediment was determined concurrently. The short term (i.e., within a tidal cycle) non-conservative behaviour of Pu(III,IV) in both the laboratory experiments and the estuary appears to be dominated by a rapid, reversible surface complexation reaction, although only a small fraction (<5%) of the 239,240Pu(III,IV) activity of the environmentally contaminated sediment is able to participate in the reaction. The existence of this exchangeable or labile fraction can explain the apparent dependence of Pu(III,IV) Kd on sediment concentration. Thus, a single Kd value is able to describe both the observed adsorption and desorption behaviour and the effect of sediment concentration, when desorption is expressed with respect to the labile 239,240Pu(III,IV) fraction. For example, in R. Esk water, the adsorption of 236Pu(III,IV) and the desorption of 236,240Pu(III,IV), over a two order of magnitude concentration range of unwashed Esk Estuary sediment, can be accounted for by a single Kd of ∼3 × 103 L kg−1. The Kd for the labile Pu(III,IV) fraction varies mainly as a function of salinity. pH is not an important factor over the pH range 4–9, although H+ ion exchange does occur, probably through a similar surface complexation reaction. The kinetic and equilibrium characteristics of the Pu (III,IV) sorption behaviour conform to the pattern observed by Jannasch et al. (1988) and other workers for a range of trace elements.  相似文献   

10.
《Sedimentology》2018,65(4):1390-1411
The earliest diagenetic post‐mortem exposure of biogenic carbonates at the sea floor and in the uppermost sediment column results in the colonization of hard‐part surfaces by bacterial communities. Some of the metabolic redox processes related to these communities have the potential to alter carbonate shell properties, and hence affect earliest diagenetic pathways with significant consequences for archive data. During a three‐month in vitro study, shell subsamples of the ocean quahog Arctica islandica (Linnaeus, 1767) were incubated in natural anoxic sediment slurries and bacterial culture medium of the heterotrophic Shewanella sediminis HAW ‐EB 3. Bulk analyses of the liquid media from the Shewanella sediminis incubation revealed an over ten‐fold increase in total alkalinity, dissolved inorganic carbon and ΩAragonite, and the alteration of the Mg/Ca, Mg/Sr and Sr/Ca ratios relative to control incubations without cultures. Ion ratios were most affected in the incubation with anoxic sediment, depicting a 25% decrease in Mg/Ca relative to the control. Shell sample surfaces that were exposed to both incubations displayed visible surface dissolution features, and an 8 wt% loss in calcium content. No such alteration features were detected in control shells. Apparently, alteration of shell carbonate properties was induced by microbially driven decomposition of shell intercrystalline organic constituents and subsequent opening of pathways for pore fluid–crystal exchange. This study illustrates the potential influence of benthic bacterial metabolism on biogenic carbonate archives during the initial stages of diagenetic alteration within a relatively short experimental duration of only three months. These results suggest that foremost the biological effect of bacterial cation adsorption on divalent cation ratios has the potential to complicate proxy interpretation. Results shown here highlight the necessity to consider bacterial metabolic activities in marine sediments for the interpretation of palaeo‐environmental proxies from shell carbonate archives.  相似文献   

11.
Geologic, petrographic and petrochemical studies of the late Mesozoic K-rich melanocratic dykes, including lamprophyres, andesite porphyrites and dacite-porphyry in the gold field system in the Jiaodong Peninsula, China, have shown that these dykes are characterized by rich potassium and alkali but poor titanium. They belong to an ultra-high potassic, shoshonitic and high potassic calc-alkaline rock series. The parental magma has relatively high initial strontium ratios ((87Sr/86Sr)i=0.70895-0.71140) and low (143Nd/144Nd)i ratios (varying from 0.51135 to 0.51231); and its δ18OSMow. whole rock values vary from +5.8‰ to +10.6‰ with a mean of+7.1‰. These features suggest that the source region of the magma is an enriched mantle wedge transformed from a continental lithosphere mantle which has experienced metasomatism by mantle-derived fluids with H2O-dominated fluids that were provided during the underthrusting of an ocean crust. The initial magma was generated by low-degree partial melting of the enri  相似文献   

12.
The Altınekin Complex in south central Turkey forms part of the south‐easterly extension of the Tavşanlı Zone, a Cretaceous subduction complex formed during the closure of the Neo‐Tethys ocean. The protoliths of metamorphic rocks within the Altınekin Complex include peridotites, chromitites, basalts, ferruginous cherts and flysch‐facies impure carbonate sediments. Structurally, the complex consists of a stack of thrust slices, with massive ophiolite tectonically overlying a Cretaceous sediment‐hosted ophiolitic mélange, in turn overlying a sequence of Mesozoic sediments. Rocks within the two lower structural units have undergone blueschist–facies metamorphism. Petrographic, mineral–chemical and thermobarometric studies were undertaken on selected samples of metasedimentary and metabasic rock in order to establish the time relations of deformation and metamorphism and to constrain metamorphic conditions. Microstructures record two phases of plastic deformation, one predating the metamorphic peak, and one postdating it. Estimated peak metamorphic pressures mostly fall in the range 9–11 kbar, corresponding to burial depths of 31–38 km, equivalent to the base of a continental crust of normal thickness. Best‐fit peak metamorphic temperatures range from 375 to 450°C. Metamorphic fluids had high H2O:CO2 ratios. Peak metamorphic temperature/depth ratios (T/d values) were low (c. 10–14°C/km), consistent with metamorphism in a subduction zone. Lawsonite‐bearing rocks in the southern part of the ophiolitic mélange record lower peak temperatures and T/d values than epidote blueschists elsewhere in the unit, hinting that the latter may consist of two or more thrust slices with different metamorphic histories. Differences in peak metamorphic conditions also exist between the ophiolitic mélange and the underlying metasediments. Rocks of the Altınekin Complex were subducted to much shallower depths, and experienced higher geothermal gradients, than those of the NW Tavşanlı Zone, possibly indicating dramatic lateral variation in subduction style. Retrograde PT paths in the Altınekin Complex were strongly decompressive, resulting in localized overprinting of epidote blueschists by greenschist–facies assemblages, and of lawsonite blueschists by pumpellyite–facies assemblages. The observation that the second deformation was associated with decompression is consistent with, but not proof of, exhumation by a process that involved deformation of the hanging‐wall wedge, such as gravitational spreading, corner flow or buoyancy‐driven shallowing of the subduction zone. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
The morphology and migration rate of tidal bedforms are important because of their use in interpretation of modern and ancient sediment transport regimes. Tidal flow, megaripple morphology and migration were studied in the mesotidal Mawddach Estuary, North Wales, to examine the veracity of published flow-bedform relationships, quantify spatial variations in migration and assess consequences for palaeoflow reconstruction. Two transects were surveyed along a megarippled intertidal shoal (mean grain size 280 μm) for a period of 22 semi-diurnal tidal cycles. A vertical array of current meters recorded tidal current profiles at the centre of one of the transects. Flood tidal currents dominate at Fegla Fach shoal, with peak velocities over 1 m s?1 at spring tides, and 0.5 m s ?1 at neaps, and bed sediment transport was also flood-dominated. Over the lunar cycle, the morphology of the megaripples on the survey lines was divisible into three phases: 1 the neap mode-consisting of near-moribund two-dimensional (2-D) flood-orientated megaripples of wavelength c. 6 m and height c. 0.2 m; 2 a transitional mode-where, on rising tidal ranges, scour pits formed and developed into 3-D megaripples which underwent net migration with the flood tide; 3 the spring mode-consisting of 3-D megaripples of wavelength c. 4 m and height c. 0.2 m. Despite complete re-orientation by the ebb tide, these were recognizable from one low water survey to the next, and net migration was c. 1 m per tide with the flood tide. We infer the presence of the equilibrium ‘spring tidal form’ occurring as flood-orientated megaripples during the flood tide. The data support previously reported separation of 2-D and 3-D megaripples at a depth to grain size ratio of 8000, and at a depth-mean velocity of the dominant tide (Umaxdom) of 0.75-0.8 m s?1. A migration threshold exists at Umaxdom of c. 0.53-0.57 m s?1. Measures of migration which might be used on preserved sections have been applied to the data. These measures systematically overestimated bedform migration at most stages of the lunar cycle (by <25% at spring tides and <140% in the post-spring transition period), but were accurate when the megaripples had developed into their 'spring tidal form’. There is significant variation of migration rates within the survey populations. We conclude that whilst the occurrence of megaripple cross-sets may be used as a palaeoflow indicator, and sedimentary structures associated with 2-D to 3-D transitions may also be indicative of palaeoflows, there are likely to be significant uncertainties involved in using tidal bundles as an indication of sediment transport rates.  相似文献   

14.
The stability of sublittoral, fine-grained sediments in a subarctic estuary   总被引:1,自引:0,他引:1  
The erodibility of natural estuarine sediments was measured in sit along a longitudinal transect of Manitounuk Sound, Hudson Bay, using the benthic flume Sea Carousel. Sedimentation processes along the transect varied from continuous, rapid, post-glacial sedimentation in the inner Sound, to glacial outcrops and seabed reworking of the outer Sound. The grain size and physical bulk properties reflect changes in depositional environment and correlate with sediment erosion threshold stress (τc), erosion rate (E), erosion type and still-water mass settling rate. There was a steady increase in τc (0·8–2·0 Pa) with distance down the Sound in parallel with the decreasing sedimentation rate (0·003–0·001 m yr?1) and increasing sediment bulk density (1650–2010 kg m?3). The near-surface friction coefficient varied up to 68° in proportion to the clay content of post-glacial material. Glacial sediments were characterized by variable results and generally higher friction coefficients. Seabed erosion in Sea Carousel began with surface creep of loose aggregates, pellets and organic debris. This was followed by Type I bed erosion at rates that varied between 0·0002 and 0·0032 kg m?2 s?1 (mean 0·0015). Type I peak erosion rate was inversely related to applied bed shear stress (τo). Type II erosion succeeded Type I, often after a broad transitional period. Simulations of suspended sediment concentration in Sea Carousel were made using four commonly used erosion (E) algorithms. The best results were obtained using Krone's dimensionless ratio relationship: E=Moc-1). Simulations were highly sensitive to the definition of erosion threshold with sediment depth [τc(z)]. Small errors in definition of τc(z) caused large errors in the prediction of suspended sediment concentration which far exceeded differences between the methods tested.  相似文献   

15.
Roman cisterns served as rainwater storage devices for centuries and are densely distributed in parts of northern Jordan. A major earthquake hit the region ca. A.D. 750 and in a short time many settlements were abandoned. As a consequence, most cisterns were not maintained, and they filled with sediments that today provide a postabandonment depositional record. In two field surveys, we mapped the locations of more than 100 cisterns in the Wadi Al‐Arab basin and selected two for detailed stratigraphic analysis that included 14C and optically stimulated luminescence dating. Catchment basin area for each cistern was determined by differential GPS. Both cisterns filled with sediments after the great earthquake and consequent abandonment of the region. Calculated sediment volumes are translated to long‐term average sediment export rates of 2.6–6.6 t ha−1a−1, which are comparable to erosion and sediment yield rates from other studies within the Mediterranean region. Our pilot study suggests that this approach can be applied elsewhere to calculate long‐term sediment export rates on hill slopes containing relict cisterns.  相似文献   

16.
Bulk dissolution rates for sediment from ODP Site 984A in the North Atlantic are determined using the 234U/238U activity ratios of pore water, bulk sediment, and leachates. Site 984A is one of only several sites where closely spaced pore water samples were obtained from the upper 60 meters of the core; the sedimentation rate is high (11-15 cm/ka), hence the sediments in the upper 60 meters are less than 500 ka old. The sediment is clayey silt and composed mostly of detritus derived from Iceland with a significant component of biogenic carbonate (up to 30%).The pore water 234U/238U activity ratios are higher than seawater values, in the range of 1.2 to 1.6, while the bulk sediment 234U/238U activity ratios are close to 1.0. The 234U/238U of the pore water reflects a balance between the mineral dissolution rate and the supply rate of excess 234U to the pore fluid by α-recoil injection of 234Th. The fraction of 238U decays that result in α-recoil injection of 234U to pore fluid is estimated to be 0.10 to 0.20 based on the 234U/238U of insoluble residue fractions. The calculated bulk dissolution rates, in units of g/g/yr are in the range of 4 × 10−7 to 2 × 10−6 yr−1. There is significant down-hole variability in pore water 234U/238U activity ratios (and hence dissolution rates) on a scale of ca. 10 m. The inferred bulk dissolution rate constants are 100 to 104 times slower than laboratory-determined rates, 100 times faster than rates inferred for older sediments based on Sr isotopes, and similar to weathering rates determined for terrestrial soils of similar age. The results of this study suggest that U isotopes can be used to measure in situ dissolution rates in fine-grained clastic materials.The rate estimates for sediments from ODP Site 984 confirm the strong dependence of reactivity on the age of the solid material: the bulk dissolution rate (Rd) of soils and deep-sea sediments can be approximately described by the expression Rd ≈ 0.1 Age−1 for ages spanning 1000 to 5 × 108 yr. The age of the material, which encompasses the grain size, surface area, and other chemical factors that contribute to the rate of dissolution, appears to be a much stronger determinant of dissolution rate than any single physical or chemical property of the system.  相似文献   

17.
The S.W. Nabitah Mobile Belt, Saudi Arabia, contains a Proterozoic island-arc complex. In the Qadda area, the metavolcanic-dominated supracrustal sequence records amphibolite facies regional metamorphism of high-T , low-P type. Calcsilicate rocks and aluminous dolomitic marbles within the supracrustal sequence have been studied in detail to refine estimates of peak metamorphic P–T conditions and assess the role of fluids during prograde and retrograde metamorphism. Fluid-independent thermobarometers (including the calcite–dolomite thermometer and P-sensitive equilibria involving grossular, wollastonite, anorthite, meionite, quartz and calcite) yield peak P–T conditions of c. 650–660 °C, 4 kbar, both higher than previous estimates, giving a revised average thermal gradient of c. 45 °C km–1. The close match between the peak temperatures implied by calcite–dolomite thermometry and those recorded by univariant devolatilization equilibria suggests that the calcareous rocks were fluid-bearing during late-prograde and peak metamorphic stages. These fluids were essentially binary H2O–CO2 mixtures with low NaCl and HF concentrations. Most were H2O-rich, with XCO2 between 0.02 and 0.2, but values of c. 0.6 are recorded by two samples. High modal abundances of the solid products of decarbonation reactions (e.g. c. 10–50% wollastonite) in many of the rocks that record low-XCO2 equilibrium fluids implies infiltration of significant quantities of externally derived aqueous fluid during late-prograde metamorphism, but not enough to exhaust the buffering capacity of the rocks. Calculated minimum time-integrated fluid-to-rock ratios of five wollastonite-bearing calcsilicate rocks range from 0.7±0.22 to 1.39±0.46 (1σ); those of six marbles range from c. 0 to 4±1.4. The latter variation occurs on a metre-scale, implying focusing of fluid flow. Diopside-rich rocks record fluid-to-rock ratios of up to 88±48. Penetrative wollastonite lineations indicate a temporal link between infiltration and distributed ductile deformation. Infiltrating fluids were probably derived both from the prograde dehydration of adjacent metabasalts and metatuffs and from crystallization of voluminous pretectonic granitoid intrusions. In general, fluid-to-rock ratios deduced for the metavolcanic-dominated Qadda area are similar to those recorded by rocks in the metasediment-dominated terrane of N. New England. The occurrence of post-tectonic retrograde hydration textures in both carbonate-bearing and carbonate-free rocks otherwise lacking hydrous minerals testifies to infiltration of aqueous fluids during retrograde metamorphism in the absence of penetrative deformation. Minimum fluid-to-rock ratios calculated for secondary grossular reaction rims in some calcsilicates are c. 0.04. Later patchy hydration of scapolite probably utilized static, pore-filling fluids remaining after the early retrograde infiltration.  相似文献   

18.
Sedimentology and budget of a Recent carbonate mound, Florida Keys   总被引:2,自引:0,他引:2  
The sedimentology of a Recent carbonate mound is investigated to further our understanding of mound building communities, surface and subsurface mound sediments, and the overall sediment budget of mounds. Nine sedimentary facies of the surface of Tavernier mound, Florida Keys are described. These sediments are composed of Neogoniolithon, Halimeda, Porites, mollusc and foraminiferal grains, and lime mud. Muds rich in aragonite and high magnesian calcite show little mineralogical variation over the mound surface. Geochemical evidence suggests that the mud is mainly formed from breakdown of codiacean algae and Thalassia blade epibionts. Production rates of the facies are established from in situ growth rate experiments and standing-crop surveys. Annual calcium carbonate production is c. 500gm-2, intermediate between reef and other bay and lagoonal environment production rates in the Caribbean. The internal structure of the mound, studied from piston cores and sediment probes, indicates that seven facies can be identified. Five of these can be related to the present-day facies, and occur in the upper part of the mound (gravel-mound stage). The remaining two facies, characterized by molluscs and aragonite-rich muds, occur in the lower part of the mound (mud-mound stage), and are most similar to facies from typical Florida Bay mud mounds. Mangrove peats within the mound indicate former intertidal areas and C14 dates from these peats provide a time framework for mound sedimentation. The mound appears to have formed because of an initial valley in the Pleistocene surface which accumulated mud in a shallow embayment during the Holocene transgression. A sediment budget for the mound is presented which compares production rates from present-day facies with subsurface sediment masses. During the mud mound stage production rates were similar to accumulation rates and the mound was similar to the present-day mounds of Florida Bay. During the gravel mound stage (3400 yr BP-present day), conditions were more normal marine and the establishment of Porites and Neogoniolithon on the mound increased production rates 10% over accumulation rates. This excess sediment is thought to be transported off the mound to the surrounding seabed. Models are proposed which divide carbonate mounds on the basis of internal versus external sediment supply. Comparisons are made with other Recent and ancient mounds. Similarities exist between the roles of the biotic components of late Palaeozoic mounds but major differences are found when structures and early diagenesis are compared.  相似文献   

19.
In order to determine time-dependent changes in estuarine pore-water chemistry and flux variations across the sediment-water interface, sediment cores of an intertidal mud flat in the Weser Estuary were taken monthly over a one-year period. Sediment temperature, pH, Eh, Cl, O2, NO 3 , and SO 4 2– pore-water concentrations were measured and showed variations that relate to the changes of surface temperature and estuarine water composition. Fick's first law was applied to quantify diffusive fluxes from concentration gradients in the diffusive boundary layer and in the pore water. Total nitrate fluxes were calculated from flux chamber experiments. Diffusive oxygen fluxes increased from 5 mmol m–2 d–1 in winter to 18 mmol m–2 d–1 in early summer, while nitrate fluxes into the sediment increased from 3 mmol m–2 d–1 in winter to 60 mmol m–2 d–1 in early summer. Oxygen and nitrate fluxes into the sediment correlated linearly to sediment temperature. Sulfate fluxes increased from 0.5 mmol m–2 d–1 in winter to 10 mmol m–2 d–1 in August and September. Converted into carbon fluxes, the sum of these oxidants ranged from 10 mmol m–2 d–1 in winter to 80 mmol m–2 d–1 in summer. An estimation of the upper limit of the annual nitrate flux into the sediment showed that about 10% of the 250,000 t of nitrate discharged annually by the river may be decomposed within the inner Weser Estuary.  相似文献   

20.
Subseabed disposal of radioactive waste applies a multiple-barrier concept with the sediment being the most important barrier for preventing a release of nuclides into the biosphere. While many investigations have been carried out to analyze the risk potential in this type of disposal, the effects of sediment consolidation and associated fluid flow have not fully been taken into consideration. Here, possible effects of consolidational fluid flow in the penetrator disposal option and possible consequences to the transport of nuclides in the sediment are analyzed. Results of numerical experiments demonstrate that consolidation contributes to the transport of radioactive nuclides released from containers buried in the sediment and to the release of nuclides at the sediment-water interface. Both depend on geological conditions and to a large extent on possible alterations of hydraulic conductivity i of the sediment in the vicinity of the entry path of a penetrator.Symbols c concentration ml m–3 - c a concentration of adsorbed solute mg kg–1 (relative to dry weight of sorbing substance) - c in solute concentration of source q mg m–3 - c 0 initial concentration mg m–3 - ID dispersion tensorm 2s–1 - ID * diffusion tensor m2s–1 - D coefficient of dispersion m2s–1 - d 0 coefficient of molecular diffusion m2s–1 - d coefficient of effective diffusion m2s–1 - g gravity m2s–1 - h piezometric pressure m - k hydraulic conductivity m2s–1 - m mass kg - p pressure Pa - q source/sink m3s–1 - S 0 specific surface m2m–3 - t time s - v velocity m s–1 - x, z cartesian coordinates m - compressibiliy of sediment m2N–1 - L longitudinal dispersivity m - effective porosity (decimal fraction) - density kg m–3 - s density of sediment kg m–3 - w density of water kg m–3 - decay constant per s - kinematic viscosity m2s–1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号