首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For many years trajectory similarity research has focused on raw trajectories, considering only space and time information. With the trajectory semantic enrichment, emerged the need for similarity measures that support space, time, and semantics. Although some trajectory similarity measures deal with all these dimensions, they consider only stops, ignoring the moves. We claim that, for some applications, the movement between stops is as important as the stops, and they must be considered in the similarity analysis. In this article, we propose SMSM, a novel similarity measure for semantic trajectories that considers both stops and moves. We evaluate SMSM with three trajectory datasets: (i) a synthetic trajectory dataset generated with the Hermoupolis semantic trajectory generator, (ii) a real trajectory dataset from the CRAWDAD project, and (iii) the Geolife dataset. The results show that SMSM overcomes state-of-the-art measures developed either for raw or semantic trajectories.  相似文献   

2.
This article describes a novel approach for finding similar trajectories, using trajectory segmentation based on movement parameters (MPs) such as speed, acceleration, or direction. First, a segmentation technique is applied to decompose trajectories into a set of segments with homogeneous characteristics with respect to a particular MP. Each segment is assigned to a movement parameter class (MPC), representing the behavior of the MP. Accordingly, the segmentation procedure transforms a trajectory to a sequence of class labels, that is, a symbolic representation. A modified version of edit distance called normalized weighted edit distance (NWED) is introduced as a similarity measure between different sequences. As an application, we demonstrate how the method can be employed to cluster trajectories. The performance of the approach is assessed in two case studies using real movement datasets from two different application domains, namely, North Atlantic Hurricane trajectories and GPS tracks of couriers in London. Three different experiments have been conducted that respond to different facets of the proposed techniques and that compare our NWED measure to a related method.  相似文献   

3.
The analysis of interaction between movement trajectories is of interest for various domains when movement of multiple objects is concerned. Interaction often includes a delayed response, making it difficult to detect interaction with current methods that compare movement at specific time intervals. We propose analyses and visualizations, on a local and global scale, of delayed movement responses, where an action is followed by a reaction over time, on trajectories recorded simultaneously. We developed a novel approach to compute the global delay in subquadratic time using a fast Fourier transform (FFT). Central to our local analysis of delays is the computation of a matching between the trajectories in a so-called delay space. It encodes the similarities between all pairs of points of the trajectories. In the visualization, the edges of the matching are bundled into patches, such that shape and color of a patch help to encode changes in an interaction pattern. To evaluate our approach experimentally, we have implemented it as a prototype visual analytics tool and have applied the tool on three bidimensional data sets. For this we used various measures to compute the delay space, including the directional distance, a new similarity measure, which captures more complex interactions by combining directional and spatial characteristics. We compare matchings of various methods computing similarity between trajectories. We also compare various procedures to compute the matching in the delay space, specifically the Fréchet distance, dynamic time warping (DTW), and edit distance (ED). Finally, we demonstrate how to validate the consistency of pairwise matchings by computing matchings between more than two trajectories.  相似文献   

4.
Trajectory analysis has attracted growing attention in the research field of geography. Beyond traditional moving object trajectories, another type of trajectory exists in which the coordinates are object attributes rather than geographical coordinates. In this paper, a framework to analyse these so-called attribute trajectories is proposed that uses four techniques typically employed in the analysis of moving object trajectories: the Reeb graph, the similarity matrix, the convoy and the mega-convoy. The Reeb graph provides the ability to visualise the temporal dynamics of attribute similarities. The similarity matrix is a supplement of the Reeb graph whose purpose is to visualise the pairwise similarities among the attributes. Moreover, the similarity matrix forms a basis for clustering. The convoy highlights objects whose attributes remain similar for a sufficiently long period. The mega-convoy reduces the number of convoys and reveals their evolutionary histories by merging overlapping convoys. A small real-world meteorological dataset is used as an example to illustrate the attribute trajectory analysis framework and the techniques. This paper aims to form a starting point for applying trajectory analysis techniques in many research fields.  相似文献   

5.
With a huge volume of trajectories being collected and stored in databases, more and more researchers try to discover outlying trajectories from trajectory databases. In this article, we propose a novel framework called relative distance-based trajectory outliers detection (RTOD). In RTOD, we first employed relative distances to measure the dissimilarity between trajectory segments, and then formally defined the outlying trajectories based on distance measures. In order to improve the time performance, we proposed an optimization method that employs R-tree and local feature correlation matrix to eliminate unrelated trajectory segments. Finally, we conducted extensive experiments to estimate the advantages of the proposed approach. The experimental results show that our proposed approach is more efficient and effective at identifying outlying trajectories than existing algorithms. Particularly, we analyzed the effect of each parameter in theory.  相似文献   

6.
Unusual behavior detection has been of interest in video analysis, transportation systems, movement trajectories, and so on. In movement trajectories, only a few works identify unusual behavior of objects around pre-defined points of interest (POI), such as surveillance cameras, commercial buildings, etc., that may be interesting for several application domains, mainly for security. In this article, we define new types of unusual behaviors of moving objects in relation to POI, including surround, escape, and return. Based on these types of unusual behavior, we (i) present an algorithm to compute these behaviors, (ii) define a set of functions to weight the degree of unusual behavior of every moving object in the database, and (iii) rank the moving objects according to the degree of unusual behavior in relation to a set of POIs. We evaluate the proposed method with real trajectory data and show that the closest work does not detect the proposed behaviors and ranks objects considering only one type of unusual movement.  相似文献   

7.
城市道路数据的完整性和实时性是保障位置服务和规划导航路径的关键支撑。该文提出一种基于共享单车轨迹数据的新增自行车骑行道路自动检测和更新方法:首先,结合缓冲区方法和轨迹—路网几何特征检测增量轨迹;其次,基于分段—聚类—聚合策略提取更新路段,利用多特征融合密度聚类算法与最小外包矩形骨架线法提取增量道路中心线;最后,基于拓扑规则完成道路更新。以广州市共享单车轨迹为例,将该方法与传统栅格细化法进行实验对比,结果表明:该方法能有效更新道路网络,且在2 m和5 m精细尺度范围内提取的新增道路覆盖精度提升14%左右;在7 m尺度下精度达90%以上,在10 m尺度下精度达96%以上。  相似文献   

8.
ABSTRACT

The increasing popularity of Location-Based Social Networks (LBSNs) and the semantic enrichment of mobility data in several contexts in the last years has led to the generation of large volumes of trajectory data. In contrast to GPS-based trajectories, LBSN and context-aware trajectories are more complex data, having several semantic textual dimensions besides space and time, which may reveal interesting mobility patterns. For instance, people may visit different places or perform different activities depending on the weather conditions. These new semantically rich data, known as multiple-aspect trajectories, pose new challenges in trajectory classification, which is the problem that we address in this paper. Existing methods for trajectory classification cannot deal with the complexity of heterogeneous data dimensions or the sequential aspect that characterizes movement. In this paper we propose MARC, an approach based on attribute embedding and Recurrent Neural Networks (RNNs) for classifying multiple-aspect trajectories, that tackles all trajectory properties: space, time, semantics, and sequence. We highlight that MARC exhibits good performance especially when trajectories are described by several textual/categorical attributes. Experiments performed over four publicly available datasets considering the Trajectory-User Linking (TUL) problem show that MARC outperformed all competitors, with respect to accuracy, precision, recall, and F1-score.  相似文献   

9.
This paper proposes a technique for improving the accuracy of mobile device movement trajectory reconstruction using passive mobile positioning data. The major sources of uncertainty in trajectory reconstruction are imprecise cell shape data and ‘ping-pong’ effects caused by cell handovers. We used a novel technique for improved ‘ping-pong’ effect suppression by compensating for some cell shape distortions based on temporal cell-to-cell transit statistics. The results were evaluated by estimating traffic flow using trajectory reconstruction. The proposed technique improved the accuracy of results compared to ‘ping-pong’ suppression algorithms found in the literature.  相似文献   

10.
The widespread adoption of location-aware technologies (LATs) has afforded analysts new opportunities for efficiently collecting trajectory data of moving individuals. These technologies enable measuring trajectories as a finite sample set of time-stamped locations. The uncertainty related to both finite sampling and measurement errors makes it often difficult to reconstruct and represent a trajectory followed by an individual in space–time. Time geography offers an interesting framework to deal with the potential path of an individual in between two sample locations. Although this potential path may be easily delineated for travels along networks, this will be less straightforward for more nonnetwork-constrained environments. Current models, however, have mostly concentrated on network environments on the one hand and do not account for the spatiotemporal uncertainties of input data on the other hand. This article simultaneously addresses both issues by developing a novel methodology to capture potential movement between uncertain space–time points in obstacle-constrained travel environments.  相似文献   

11.
Monitoring and predicting traffic conditions are of utmost importance in reacting to emergency events in time and for computing the real-time shortest travel-time path. Mobile sensors, such as GPS devices and smartphones, are useful for monitoring urban traffic due to their large coverage area and ease of deployment. Many researchers have employed such sensed data to model and predict traffic conditions. To do so, we first have to address the problem of associating GPS trajectories with the road network in a robust manner. Existing methods rely on point-by-point matching to map individual GPS points to a road segment. However, GPS data is imprecise due to noise in GPS signals. GPS coordinates can have errors of several meters and, therefore, direct mapping of individual points is error prone. Acknowledging that every GPS point is potentially noisy, we propose a radically different approach to overcome inaccuracy in GPS data. Instead of focusing on a point-by-point approach, our proposed method considers the set of relevant GPS points in a trajectory that can be mapped together to a road segment. This clustering approach gives us a macroscopic view of the GPS trajectories even under very noisy conditions. Our method clusters points based on the direction of movement as a spatial-linear cluster, ranks the possible route segments in the graph for each group, and searches for the best combination of segments as the overall path for the given set of GPS points. Through extensive experiments on both synthetic and real datasets, we demonstrate that, even with highly noisy GPS measurements, our proposed algorithm outperforms state-of-the-art methods in terms of both accuracy and computational cost.  相似文献   

12.
ABSTRACT

Regionalization attempts to group units into a few subsets to partition the entire area. The results represent the underlying spatial structure and facilitate decision-making. Massive amounts of trajectories produced in the urban space provide a new opportunity for regionalization from human mobility. This paper proposes and applies a novel regionalization method to cluster similar areal units and visualize the spatial structure by considering all trajectories in an area into a word embedding model. In this model, nodes in a trajectory are regarded as words in a sentence, and nodes can be clustered in the feature space. The result depicts the underlying socio-economic structure at multiple spatial scales. To our knowledge, this is the first regionalization method from trajectories with natural language processing technology. A case study of mobile phone trajectory data in Beijing is used to validate our method, and then we evaluate its performance by predicting the next location of an individual’s trajectory. The case study indicates that the method is fast, flexible and scalable to large trajectory datasets, and moreover, represents the structure of trajectory more effectively.  相似文献   

13.
ABSTRACT

Datasets collecting the ever-changing position of moving individuals are usually big and possess high spatial and temporal resolution to reveal activity patterns of individuals in greater detail. Information about human mobility, such as ‘when, where and why people travel’, is contained in these datasets and is necessary for urban planning and public policy making. Nevertheless, how to segregate the users into groups with different movement and behaviours and generalise the patterns of groups are still challenging. To address this, this article develops a theoretical framework for uncovering space-time activity patterns from individual’s movement trajectory data and segregating users into subgroups according to these patterns. In this framework, individuals’ activities are modelled as their visits to spatio-temporal region of interests (ST-ROIs) by incorporating both the time and places the activities take place. An individual’s behaviour is defined as his/her profile of time allocation on the ST-ROIs she/he visited. A hierarchical approach is adopted to segregate individuals into subgroups based upon the similarity of these individuals’ profiles. The proposed framework is tested in the analysis of the behaviours of London foot patrol police officers based on their GPS trajectories provided by the Metropolitan Police.  相似文献   

14.
人类活动轨迹的分类、模式和应用研究综述   总被引:4,自引:3,他引:1  
各种传感器的应用与发展,如车载GPS、手机、公交卡、银行卡等,记录了人类的活动轨迹。这些海量的人类活动轨迹数据中蕴含着人类行为的时空分布模式。通过对这些轨迹的研究可以挖掘个体轨迹模式,理解人类动力学特征,进而为对轨迹预测、城市规划、交通监测等提供支持。因此,研究各类传感器记录的人类活动轨迹数据成为当前的研究热点。本文对人类活动轨迹的获取与表达方式进行剖析,并将人类的活动轨迹按照采样方式和驱动因素的不同分为基于时间间隔采样、基于位置采样和基于事件触发采样等3类轨迹数据。由于各类轨迹数据均由起始点、锚点和一般节点等构成,因而将轨迹模式挖掘的研究按照锚点、出行范围、形状模式、OD流模式、时间模式等进行组织,研究成果揭示人类活动轨迹在时间、空间的从聚模式、周期性等特点。在此基础上,将人类活动轨迹在城市研究中的应用,按照用户轨迹预测、城市动态景观、城市交通模拟与监控、城市功能单元识别以及城市中其他方面的研究应用进行系统综述,认为人类活动模式挖掘是城市规划、城市交通、公共安全等方面应用的基础。  相似文献   

15.
李欣 《地理研究》2021,40(1):230-246
多中心化是分散城市人口,疏解交通拥堵,调节职住失衡,应对"大城市病"的重要手段.针对轨迹大数据,先利用词向量描述其空间特征和行为规律,再结合数据场理论表达城市区域对轨迹的吸引强度,并完成多中心识别,最后借鉴复杂网络理论对多中心空间交互规律进行探索和挖掘.结果表明:①郑州市轨迹吸引强度呈核心强、外围弱、沿线蔓延的圈层空间...  相似文献   

16.
Mobile devices are becoming very popular in recent years, and large amounts of trajectory data are generated by these devices. Trajectories left behind cars, humans, birds or other objects are a new kind of data which can be very useful in the decision making process in several application domains. These data, however, are normally available as sample points, and therefore have very little or no semantics. The analysis and knowledge extraction from trajectory sample points is very difficult from the user's point of view, and there is an emerging need for new data models, manipulation techniques, and tools to extract meaningful patterns from these data. In this paper we propose a new methodology for knowledge discovery from trajectories. We propose through a semantic trajectory data mining query language several functionalities to select, preprocess, and transform trajectory sample points into semantic trajectories at higher abstraction levels, in order to allow the user to extract meaningful, understandable, and useful patterns from trajectories. We claim that meaningful patterns can only be extracted from trajectories if the background geographical information is considered. Therefore we build the proposed methodology considering both moving object data and geographic information. The proposed language has been implemented in a toolkit in order to provide a first software prototype for trajectory knowledge discovery.  相似文献   

17.
Why GPS makes distances bigger than they are   总被引:1,自引:0,他引:1  
Global navigation satellite systems such as the Global Positioning System (GPS) is one of the most important sensors for movement analysis. GPS is widely used to record the trajectories of vehicles, animals and human beings. However, all GPS movement data are affected by both measurement and interpolation errors. In this article we show that measurement error causes a systematic bias in distances recorded with a GPS; the distance between two points recorded with a GPS is – on average – bigger than the true distance between these points. This systematic ‘overestimation of distance’ becomes relevant if the influence of interpolation error can be neglected, which in practice is the case for movement sampled at high frequencies. We provide a mathematical explanation of this phenomenon and illustrate that it functionally depends on the autocorrelation of GPS measurement error (C). We argue that C can be interpreted as a quality measure for movement data recorded with a GPS. If there is a strong autocorrelation between any two consecutive position estimates, they have very similar error. This error cancels out when average speed, distance or direction is calculated along the trajectory. Based on our theoretical findings we introduce a novel approach to determine C in real-world GPS movement data sampled at high frequencies. We apply our approach to pedestrian trajectories and car trajectories. We found that the measurement error in the data was strongly spatially and temporally autocorrelated and give a quality estimate of the data. Most importantly, our findings are not limited to GPS alone. The systematic bias and its implications are bound to occur in any movement data collected with absolute positioning if interpolation error can be neglected.  相似文献   

18.
通过相邻图像减法获得了清晰的沙粒运动图像。在此基础上,分别提出了通过人工目视解译与计算机追踪相结合进行跃移颗粒数字轨迹追踪的多帧图像匹配算法以及更适用于计算跃移沙粒群运动瞬时速度场的两帧图像匹配算法。结果表明:与前人研究采用的单纯的人工匹配计算相比,多帧图像匹配算法在保证数据准确性的同时,极大的提高了工作效率。两帧图像匹配算法克服了传统的PTV匹配算法对流场内粒子群运动特征的要求,更加适宜于跃移沙粒群的速度测量,不仅拥有较高的匹配率,而且全过程实现全自动计算,具有较高的计算速度,能够为跃移相整体运动特性研究提供具有代表性的数据。因此,此方法有助于高速摄影技术在研究跃移沙粒运动中的优势更加明显。  相似文献   

19.
The efficiency of taxi services in big cities influences not only the convenience of peoples’ travel but also urban traffic and profits for taxi drivers. To balance the demands and supplies of taxicabs, spatio-temporal knowledge mined from historical trajectories is recommended for both passengers finding an available taxicab and cabdrivers estimating the location of the next passenger. However, taxi trajectories are long sequences where single-step optimization cannot guarantee the global optimum. Taking long-term revenue as the goal, a novel method is proposed based on reinforcement learning to optimize taxi driving strategies for global profit maximization. This optimization problem is formulated as a Markov decision process for the whole taxi driving sequence. The state set in this model is defined as the taxi location and operation status. The action set includes the operation choices of empty driving, carrying passengers or waiting, and the subsequent driving behaviors. The reward, as the objective function for evaluating driving policies, is defined as the effective driving ratio that measures the total profit of a cabdriver in a working day. The optimal choice for cabdrivers at any location is learned by the Q-learning algorithm with maximum cumulative rewards. Utilizing historical trajectory data in Beijing, the experiments were conducted to test the accuracy and efficiency of the method. The results show that the method improves profits and efficiency for cabdrivers and increases the opportunities for passengers to find taxis as well. By replacing the reward function with other criteria, the method can also be used to discover and investigate novel spatial patterns. This new model is prior knowledge-free and globally optimal, which has advantages over previous methods.  相似文献   

20.
Lane-level road network updating is crucial for urban traffic applications that use geographic information systems contributing to, for example, intelligent driving, route planning and traffic control. Researchers have developed various algorithms to update road networks using sensor data, such as high-definition images or GPS data; however, approaches that involve change detection for road networks at lane level using GPS data are less common. This paper presents a novel method for automatic change detection of lane-level road networks based on GPS trajectories of vehicles. The proposed method includes two steps: map matching at lane level and lane-level change recognition. To integrate the most up-to-date GPS data with a lane-level road network, this research uses a fuzzy logic road network matching method. The proposed map-matching method starts with a confirmation of candidate lane-level road segments that use error ellipses derived from the GPS data, and then computes the membership degree between GPS data and candidate lane-level segments. The GPS trajectory data is classified into successful or unsuccessful matches using a set of defuzzification rules. Any topological and geometrical changes to road networks are detected by analysing the two kinds of matching results and comparing their relationships with the original road network. Change detection results for road networks in Wuhan, China using collected GPS trajectories show that these methods can be successfully applied to detect lane-level road changes including added lanes, closed lanes and lane-changing and turning rules, while achieving a robust detection precision of above 80%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号