共查询到20条相似文献,搜索用时 15 毫秒
1.
We present 2-D numerical models of quiescent solar prominences with normal magnetic polarity. These models represent an extension to the classical Kippenhahn-Schlüter model in that the prominence is treated as having finite width and height and the external coronal field is matched smoothly to the internal prominence field so that there are no current sheets at the prominence sides. Using typical prominence and coronal values we find solutions to the generalised Grad-Shafranov equation which illustrate the necessary magnetic support. We also discuss some extensions to the basic model. 相似文献
2.
D. W. Hughes S. A. E. G. Falle & P. Joarder 《Monthly notices of the Royal Astronomical Society》1998,298(2):433-444
Sunspots are caused by the eruption of magnetic flux tubes through the solar photosphere: current theories of the internal magnetic field of the Sun suggest that such tubes must rise relatively unscathed from the base of the convection zone. In order to understand how the structure of the magnetic field within a buoyant flux tube affects its stability as it rises, we have considered the quasi-two-dimensional rise of isolated magnetic flux tubes through an adiabatically stratified atmosphere. The magnetic field is initially helical; we have investigated a range of initial field configurations, varying the distribution and strength of the twist of the field. 相似文献
3.
U. Anzer 《Solar physics》1990,130(1-2):403-406
In this Letter several observational aspects of prominences with inverse magnetic polarity are summarised. It is shown that these features can be explained in a natural way if inverse polarity prominences result from the merging of two adjacent bipolar magnetic regions. 相似文献
4.
5.
A necessary and sufficient condition for the ideal magnetohydrodynamic stability of 2D current sheet models of prominences suspended in a potential coronal field with line-tying is developed using the energy method. This condition takes the form of two simple coupled second-order differential equations which may be integrated along a field line to find marginal stability. The two conditions (85) and (86) of Anzer (1969) are now only sufficient for stability. Two current sheet models are investigated and it is shown that for a potential coronal field allowing perturbed electric currents to flow, line-tying can completely stabilize the equilibria for realistic heights. 相似文献
6.
A class of 2-D models of solar quiescent prominences, with normal polarity, is presented. These represent an extension to the Kippenhahn-Schlüter model for which the prominence configuration matches smoothly onto an external non-potential coronal solution of a constant field. Using typical prominence values a model is constructed which also matches the coronal conditions. It is found that the magnetic field component along the prominence influences the internal structure of the prominence. A simple extension to the basic models is indicated as a means of taking a lower boundary of the prominence and eliminating parasitic polarities in the photosphere. 相似文献
7.
E. R. Priest 《Solar physics》1976,47(1):41-75
Current sheets have been suggested as the site for flare energy release because they can convert magnetic energy very rapidly into both heat and directed plasma energy. Also they contain electric fields with the potential of accelerating particles to high energies.The basic properties of current sheets are first reviewed. For instance, magnetic flux may be carried into a current sheet and annihilated. An exact solution for such a process in an infinitely long sheet has been found; it describes the annihilation of fields which are inclined at any angle, not just 180°. Moreover, field lines which are expelled from the ends of a current sheet can be described as having been reconnected. The only workable model for fast reconnection in the solar atmosphere, namely Petschek's mechanism, has recently been put on a firm foundation; it gives a reconnection rate which depends on the electrical conductivity but is typically a tenth or a hundredth of the Alfvén speed. A current sheet may be formed when the sources of an initially potential field start to move; a simple analytic technique for finding the position and shape of such a sheet in two dimensions now exists. Finally, a sheet with no transverse magnetic field component is subject to the tearing-mode instability, which rapidly produces a series of loops in the field.The main ways in which current sheets have been used for solar flare models is described. Syrovatskii's mechanism relies on the increase of the electric current density during the formation of a sheet, to a value in excess of the critical value j
* for the onset of microinstabilities. But Anzer has recently demonstrated that the critical value is most unlikely to be reached during the initial formation process. Sturrock, on the other hand, has advocated the occurrence of the tearing-mode instability in an open streamer-like configuration (which may result from the eruption of a force-free field). But recent observations do not point to that as the relevant configuration. Rather, they suggest that flares are triggered by the emergence of new magnetic flux from below the solar photosphere. This has led Heyvaerts, Priest, and Rust (1976) to propose a new emerging flux model, according to which, as more and more flux emerges, so reconnection occurs, producing some preflare heating. When the current sheet reaches such a height (around the transition region) that its current density exceeds j
*, then the impulsive phase of the flare is triggered. The main phase is caused by an enhanced level of magnetic energy conversion in a turbulent current sheet. The type of flare depends on the magnetic environment in which the emerging flux finds itself. A surge flare results if the flux appears near a strong unipolar region such as a simple sunspot, whereas a two ribbon flare may be produced by flux emergence near an active region filament, in which case the main phase energy is released from the field that surrounds the filament. 相似文献
8.
An analysis is made of the Martens-Kuin filament eruption model in relation to observations of coronal mass ejections (CMEs). The field lines of this model are plotted in the vacuum or infinite resistivity approximation with two background fields. The first is the dipole background field of the model and the second is the potential streamer model of Low. The assumption is made that magnetic field evolution dominates compression or other effects which is appropriate for a low- coronal plasma. The Martens-Kuin model predicts that, as the filament erupts, the overlying coronal magnetic field lines rise in a manner inconsistent with observations of CMEs associated with eruptive filaments. Initially, the bright arc of a CME broadens in time much more slowly than the dark cavity between it and the filament, whereas in the model they broaden at the same rate or the bright arc broadens more rapidly than the dark cavity, depending on the background field. Thus, this model and, by generalization the whole class of so-called Kuperus-Raadu configurations in which a neutral point occurs below the filament, are of questionable utility for CME modeling. An alternate case is considered in which the directions of currents in the Martens-Kuin model are reversed resulting in a so-called normal polarity configuration of the filament magnetic field. In this case, a neutral line occurs above the current-carrying filament. The background field lines now distort to support the filament and help eject it. While the vacuum field results make this configuration appear very promising, a full two- or more-dimensional MHD simulation is required to properly analyze the dynamics resulting from this configuration.Presently NRC Senior Research Associate at NOAA, Space Environment Laboratory, Boulder, Colorado, U.S.A.At the NASA National Space Data Center. 相似文献
9.
B. Roberts 《Solar physics》1983,87(1):77-93
The nature of non-adiabatic wave propagation in a slender magnetic flux tube is explored. The results of the theory are compared with the observations of Giovanelli et al. (1978), and found to be in general agreement. Those observations, of tubes in the photosphere-chromosphere, show outwardly propagating waves, with periods of 300 s, which take some 19 s to propagate from one level of line formation to another level higher in the atmosphere. In sharp contrast to this, is the time of 7 s for a similar disturbance outside the tube to propagate between the same two levels of line formation, estimated to be some 600 km apart in the field-free atmosphere. It is argued that the sharply contrasting propagation times for the tube and its environment is principally due to the elasticity of the tube and its subsequent propensity for propagation. A non-adiabatic disturbance may be essentially propagating within the tube but essentially non-propagating outside, with considerably slower phase speeds thus arising inside the tube. The theory suggests that the observed disturbances are non-adiabatic, acoustic-gravity waves channelled along a magnetic flux tube and modulated by external pressure variations. 相似文献
10.
The energy balance equation for the upper chromosphere or lower corona contains a radiative loss term which is destabilizing, because a slight decrease in temperature from the equilibrium value causes more radiation and hence a cooling of the plasma; also a slight increase in temperature has the effect of heating the plasma. In spite of this tendency towards thermal instability, most of the solar atmosphere is remarkably stable, since thermal conduction is very efficient at equalizing any temperature irregularity which may arise. However, the effectiveness of thermal conduction in transporting heat is decreased considerably in a current sheet or a magnetic flux tube, since heat can be conducted quickly only along the magnetic field lines. This paper presents a simple model for the thermal equilibrium and stability of a current sheet. It is found that, when its length exceeds a certain maximum value, no equilibrium is possible and the plasma in the sheet cools. The results may be relevant for the formation of a quiescent prominence. 相似文献
11.
S. S. Hasan 《Astrophysics and Space Science》1996,243(1):155-158
The interaction of an intense flux tube, extending vertically through the photosphere, with p-modes in the ambient medium is modelled by solving the time dependent MHD equations in the thin flux tube approximation. It is found that a resonant interaction can occur, which leads to the excitation of flux tube oscillations with large amplitudes. The resonance is not as sharp as in the case of an unstratified atmosphere, but is broadened by a factor proportional toH
–2, whereH is the local pressure scale height. In addition, the inclusion of radiative transport leads to a decrease in the amplitude of the oscillations, but does not qualitatively change the nature of the interaction. 相似文献
12.
P. R. Wilson 《Solar physics》1972,22(2):434-442
Savage has suggested that an energy flux of 2 × 1010 erg cm–2 s–1 passes through the umbra of a sunspot in the form of hydromagnetic waves. In this paper some of the consequences of this flux are considered. It is first shown that it is not inconsistent with the energy requirements for the heating of umbral dots and for solar wind storms, assuming in the latter case that the flux tubes emerging from about one tenth of the area of a large spot are open-ended.However, the hypothesis also requires that Alfvén waves travel along the closed flux tubes linking the umbra either with the umbra of another spot or with the surrounding faculae and passing through regions of variable field strength and density. It is shown that, for a very simplified model, standing waves are possible in a symmetrical field configuration. For velocities of 3 km/s in the umbra, the maximum particle velocity in the loop is of order 80 km/s which strains the perturbation assumption severely. However, it is pointed out that periodic velocities of this order are observed in the chromosphere near sunspots.It is further shown that mechanical dissipation of these waves in local regions of the flux tube may contribute to the heating of faculae. 相似文献
13.
P. S. Cally 《Solar physics》1986,103(2):277-298
An extensive analysis, both analytic and numerical, of waves in flux tubes imbedded in (possibly) magnetic surroundings is given. It is shown that any wave confined to the tube and its neighbourhood can be put into one of seven categories. Simple criteria for deciding the existence of each type in any particular case are derived. Many other (leaky) modes are found which excite waves in the external medium and thereby lose energy to the surroundings. A number of asymptotic analyses allow much information to be gained about these without the need for numerical solution of the complicated equations involved. Three particular cases, pertaining to photospheric flux tubes, H fibrils, and coronal loops, are considered in detail. 相似文献
14.
L. C. Garcia de Andrade 《Astrophysics and Space Science》2007,310(1-2):25-29
Riemannian geometrical effects on the expansion of the electron magnetohydrodynamical (EMH) superconductivity modeled twisted
nonplanar thin magnetic flux tubes are considered. A solution is found which represents almost incompressible plasma flows,
where the twist of flux tube is computed in terms of the continuous variation of its cross-section. It is shown that the twist
increases in regions where twisted flux tube expands as in Parker’s conjecture. From computation of compression along the
tube we show that when the torsion is weak a centrifugal or vorticity effect on the longitudinal direction of the tube enhances
the screening effect on the “superconductor”. Throughout the paper we consider helical flux tubes where torsion and curvature
of the tube are constants. Thus we show that the Parker’s conjecture is valid in a continuos manner for these type II superconducting
twisted flux tubes. Throughout the paper we adopt the approximation that the radial component of the magnetic field varies
so slowly along the tube axis that it can be approximated to zero along the tube. It is suggested that the models discussed
here may also be applied to DNA and nanotubes. 相似文献
15.
Photometric and Doppler imaging observations of active binaries indicate the existence of starspots at preferred longitudes (position angles with respect to the companion star). We investigate the stability of magnetic flux tubes in the convection zone of close, fast‐rotating binary stars and explore whether the observed preferred longitudes could be caused by tidal forces and the deformation of the active star. We assume a synchronized binary system with spin axes perpendicular to the orbital plane and a rotation period of a few days. The tidal force and the deviation from spherical structure are considered in lowest‐order perturbation theory. The magnetic field is in the form of toroidal magnetic flux rings, which are stored in mechanical equilibrium within the stably stratified overshoot region beneath the convection zone until the field has grown sufficiently strong for the undulatory instability to initiate the formation of rising loops. Frequencies and geometry of stable as well as growth rates of unstable eigenmodes are determined by linear stability analysis. Particular consideration is given to the question whether the effects of tidal forces and perturbations of the stellar structure can force a rising flux loop to enter the convection zone at specific longitudes. 相似文献
16.
On many of its passes through the Io torus the Galileo spacecraft has detected the presence of what appear to be thin magnetic flux tubes with fields somewhat higher than their surroundings. On these flux tubes the magnetic pressure is sufficiently above the pressure of neighboring tubes that it is possible the plasma contributions to the pressure within these tubes are depleted. Due to their short duration, they are only detectable in high time-resolution magnetometer data. Herein we survey all high time-resolution data that are available over the full Galileo mission and present a final statistical study. These tubes occupy 0.32% of the torus outside the orbit of Io. None are found inside. Their strength indicates that the ratio of the thermal pressure to magnetic pressure in the outer torus is about 2%. Comparison of the observed electron density in the neighborhood of these tubes indicates that the ion temperature is in the range 30-100 eV, consistent with other estimates. The amount of magnetic flux transported by these thin tubes could supply the amount of magnetic flux mass-loaded and transported to the magnetotail if the inward velocity is about 300 times that of the outward transport. Finally, the thin flux tubes are found in clusters, as they would occur if they resulted from the breakup of larger flux tubes. 相似文献
17.
Nonlinear resonant interactions of different kinds of fast magnetosonic (FMS) waves trapped in the inhomogeneity of a low- plasma density, stretched along a magnetic field (as, for example, in coronal loops) are investigated. A set of equations describing the amplitudes of interactive modes is derived for an arbitrary density profile. The quantitative characteristics of such interactions are found. The decay instability of the wave with highest frequency is possible in the system. If amplitudes of interactive modes have close values, the long-period temporal and spatial oscillations are in the system.For a quantitative illustration, the parabolic approximation of the transverse density profile has been chosen. Dispersion relations of FMS waves trapped in a low- plasma slab with a parabolic transverse density profile are found. The transverse structure of the waves in this case can be expressed through Hermitian polynomials. The interaction of kink and sausage waves is investigated. The sausage wave, with a sufficiently large amplitude, may be unstable with respect to the decay into two kink waves, in particular. The spatial scale of a standing wave structure and the time spectrum of radiation are formed due to the nonlinear interactions of loop modes which contain information about the parameters of the plasma slab. 相似文献
18.
T. Granzer 《Astronomische Nachrichten》2004,325(5):417-423
The possibility of understanding stellar activity as an up‐scaled version of the activity of our Sun is investigated. A theoretical model to explain properties of sunspots is used for explaining observed latitudes of star spots. The model is based on thin‐flux‐tube simulations that study the path of magnetic flux tubes from their origin in a stellar overshoot layer to photospheric layers. A direct comparison of the simulation results with individual stars is given. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
19.
《New Astronomy》2016
Nonlinear modulated both axisymmetric and non-axisymmetric MHD wave propagation in magnetic flux tubes is studied. In the cylindrical coordinates, ordinary differential equation with cubic nonlinearity is derived. In both cases of symmetry, the equation has solitary solutions. Modulation stability of the solutions is studied. The results of the study show that the propagation of axisymmetric soliton causes rising of plasma temperature in peripheral regions of a magnetic flux tube. In the non-axisymmetric case, it gives also temperature rising effect. Results of theoretical study are examined on idealized model of chromospheric spicule. 相似文献
20.
Some recent observations at Pic-du-Midi (Mulleret al., 1992a) suggest that the photospheric footpoints of coronal magnetic field lines occasionally move rapidly with typical velocities of the order 3 km s–1 for about 3 or 4 min. We argue that such occasional rapid footpoint motions could have a profound impact on the heating of the quiet corona. Qualitative estimates indicate that these occasional rapid motions can account for the entire energy flux needed to heat the quiet corona. We therefore carry out a mathematical analysis to study in detail the response of a vertical thin flux tube to photospheric footpoint motions in terms of a superposition of linear kink modes for an isothermal atmosphere. We find the resulting total energy that is asymptotically injected into an isothermal atmosphere (i.e., an atmosphere without any back reflection). By using typical parameter values for fast and slow footpoint motions, we show that, even if the footpoints spend only 2.5% of the time undergoing rapid motions, still these rapid motions could be more efficient in transporting energy to the corona than the slow motions that take place most of the time. 相似文献