首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Summary The Shillong Plateau of northeastern India hosts four Early Cretaceous (105–107Ma) ultramafic-alkaline-carbonatite complexes (UACC), which have been associated with the Kerguelen plume igneous activity. Petrological and geochemical characteristics of one of these UACC, the Sung Valley, are presented. The Sung Valley UACC was emplaced in to the Proterozoic Shillong Group of rocks and consists of ultramafics (serpentinized peridotite, pyroxenite, and melilitolite), alkaline rocks (ijolite and nepheline syenite), and carbonatites. Serpentinized peridotite, pyroxenite, and ijolitic rocks form the major part of the complex, the others constitute less than 5% of the total volume. Ijolite and melilitolite intrude peridotite and pyroxenite, while nepheline syenite and carbonatite intrude the ultramafic rocks as well as ijolite. Mineralogically, the carbonatites are classified as calcite carbonatite with minor apatite, phlogopite, pyrochlore and ilmenite. The serpentinized peridotites are wehrlitic. Chemical compositions of the silicate rocks do not show a distinct co-genetic relationship amongst them, nor do they show any geochemical relationships with the carbonatites. No noticeable fractionation trend is observed on the chemical variation diagrams of these rocks. It is difficult to establish the genetic evolution of the Sung Valley UACC through fractional crystallization of nephelinitic magma or through immiscible liquids. On the basis of petrological and geochemical data and previously published isotopic results from these rocks, it is suggested that they have been derived from a primary carbonate magma generated by the low-degree melting of a metasomatized mantle peridotite.  相似文献   

2.
Extrusive Carbonatites from the Uyaynah Area, United Arab Emirates   总被引:1,自引:0,他引:1  
Carbonatites occur in the Uyaynah area, United Arab Emirates,within a tectonic window of oceanic metasediments beneath theSemail Ophiolite Complex at the northern end of the Oman Mountains.The carbonatites form conformable layers, pods, and lenses,up to 10 m thick, associated with deep-sea sediments that includeradiolarian cherts and pillow lavas. Although disrupted duringdeformation, the carbonatites are internally undeformed andcontain abundant lapilli, indicating an extrusive, subaerialorigin, probably on a small volcanic island. The lapilli comprisecalcite, abundant Sr-bearing apatite and iron oxides in a calcitematrix. Alkali amphiboles, biotite, chlorite, and allanite wereproduced as a result of metamorphism but otherwise the primaryigneous carbonatite mineralogy remains. One distinct group ofrocks also contains primary calcic amphibole and biotite. Niobiantitanite, strontian baryte, and albite are also present, andrare earth elements are held in abundant allanite-(Ce) and raremonazite-(Ce). Analyses of 26 rocks define two groups whichare distinguishable in the field. One group consists of silico-carbonatitescontaining primary calcic amphibole, biotite, and abundant allanite,and is chemically similar to average intrusive ferrocarbonatite.The other group corresponds chemically to average intrusivecalciocarbonatite. Unlike other extrusive carbonatites describedin the literature, the Uyaynah carbonatites have higher incompatibleelement abundances than average intrusive carbonatites and arenotably rich in rare earth elements (up to 2?6 wt.%) and P2O5(average > 7 wt.%). The two carbonatite groups are consideredto be related magmatically one to the other, and the presenceof rare ferroan chromian spinel is interpreted as evidence fora direct mantle origin.  相似文献   

3.
The Early Cretaceous Sung Valley Ultramafic-Alkaline-Carbonatite (SUAC) complex intruded the Proterozoic Shillong Group of rocks and located in the East Khasi Hills and West Jaintia Hills districts of Meghalaya. The SUAC complex is a bowl-shaped depression covering an area of about 26 km2 and is comprised serpentinised peridotite forming the core of the complex with pyroxenite rim. Alkaline rocks are dominantly ijolite and nepheline syenite, occur as ring-shaped bodies as well as dykes. Carbonatites are, the youngest intrusive phase in the complex, where they form oval-shaped bodies, small dykes and veins. During the course of large scale mapping in parts of the Sung Valley complex, eleven carbonatite bodies were delineated. These isolated carbonatite bodies have a general NW-SE and E-W trend and vary from 20–125 m long and 10–40 m wide. Calcite carbonatite is the dominant variety and comprises minor dolomite and apatite and accessory olivine, magnetite, pyrochlore and phlogopite. The REE-bearing minerals identified in the Sung Valley carbonatites are bastnäsite-(Ce), ancylite-(Ce), belovite-(Ce), britholite-(Ce) and pyrochlore that are associated with calcite and apatite. The presence of REE carbonates and phosphates associated with REE-Nb bearing pyrochlore enhances the economic potential of the Sung Valley carbonatites. Trace-element geochemistry also reveals an enrichment of LREEs in the carbonatites and average ΣREE value of 0.102% in 26 bed rock samples. Channel samples shows average ΣREE values of 0.103 wt%. Moreover, few samples from carbonatite bodies has indicated relatively higher values for Sn, Hf, Ta and U. Since the present study focuses surface evaluation of REE, therefore, detailed subsurface exploration will be of immense help to determine the REE and other associated mineralization of the Sung Valley carbonatite prospect.  相似文献   

4.
Extrusive carbonatites: A brief review   总被引:1,自引:0,他引:1  
A.R. Woolley  A.A. Church 《Lithos》2005,85(1-4):1-14
49 known extrusive carbonatite occurrences are listed with brief details of their tectonic setting, structure, lithologies, associated silicate rocks, chemistry and presence or absence of included mantle materials. Half the occurrences appear to be related to tephra cones, tuff rings, diatremes and maars and the rest occur within strato-volcanoes. Pyroclastic carbonatitic rocks are present at all the localities, with carbonatite lava flows occurring at only 14 of them. The pyroclastic rocks, which include fallout tephra and deposits from pyroclastic surges and flows and products of phreatomagmatic eruptions, vary from rocks composed principally of carbonate to varieties with as little as 20% igneous carbonate. The most abundant silicate rocks associated with extrusive carbonatites are melilite-bearing rocks, nephelinite and/or ijolite, and phonolite and/or nepheline syenite; seven occurrences have no associated silicate rocks. 16 occurrences, most of them associated with small extrusive centres, contain mantle xenoliths or megacrysts, details of which are tabulated, with spinel lherzolite the most abundant rock type, but amphibole, phlogopite and garnet are also recorded. The lack of such materials in intrusive carbonatites may reflect their less energetic environment of emplacement. It is proposed that carbonatites are essentially of two types: (a) those rising energetically and rapidly from the mantle, which form small explosion craters, ash or tuff cones, or diatremes, have only low-volume associated silicate rocks, and entrain mantle debris, and (b) those which occur in strato-volcanoes, are associated with large volumes of silicate rocks and follow a more complex genesis, probably involving ponding and differentiation (separation from carbonate-bearing silicate magma) at higher levels in the mantle and/or crust. Most of the classic intrusive carbonatite complexes probably fall into the second category.  相似文献   

5.
The early Cretaceous (Albian–Aptian) Sung Valley ultramafic–alkaline–carbonatite complex is one of several alkaline intrusions that occur in the Shillong Plateau, India. This complex comprises calcite carbonatite and closely associated ultramafic (serpentinized peridotite, pyroxenite and melilitolite) and alkaline rocks (ijolite and nepheline syenite). Field relationship and geochemical characteristics of these rocks do not support a genetic link between carbonatite and associated silicate rocks. There is geochemical evidence that pyroxenite, melilitolite and ijolite of the complex are genetically related. Stable (C and O) and radiogenic (Nd and Sr) isotope data clearly indicate a mantle origin for the carbonatite samples. The carbonatite Nd (+0.7 to +1.8) and Sr (+4.7 to +7.0) compositions overlap the field for Kerguelen ocean island basalts. One sample of ijolite has Nd and Sr isotopic compositions that also plot within the field for Kerguelen ocean island basalts, whereas the other silicate–carbonatite samples indicate involvement with an enriched component. These geochemical and isotopic data indicate that the rocks of the Sung Valley complex were derived from and interacted with an isotopically heterogeneous subcontinental mantle and is consistent with interaction of a mantle plume (e.g. Kerguelen plume) with lithosphere. A U–Pb perovskite age of 115.1±5.1 Ma obtained for a sample of Sung Valley ijolite also supports a temporal link to the Kerguelen plume. The observed geochemical characteristics of the carbonatite rocks indicate derivation by low-degree partial melting (0.1%) of carbonated mantle peridotite. This melt, containing a substantial amount of alkali elements, interacted with peridotite to form metasomatic clinopyroxene and olivine. This process could progressively metasomatize lherzolite to form alkaline wehrlite.  相似文献   

6.
Results from the first detailed radiolarian biostratigraphic study conducted in Luzon are reported. The data were obtained from cherts associated with the Casiguran Ophiolite, a dismembered ophiolite mass consisting of serpentinized peridotites, gabbros, dolerite dikes and pillow basalts exposed along the eastern coast of the Northern Sierra Madre, Luzon, Philippines. Cherts and limestone interbeds conformably overlie the ophiolite. The radiolarian assemblages from the cherts constrain the stratigraphic range of the cherts to the Lower Cretaceous (upper Barremian–lower Aptian to Albian). This new biostratigraphic result is in contrast with the Upper Cretaceous stratigraphic range previously reported in the region.Radiolarian biostratigraphic results from the Casiguran Ophiolite provide additional evidence for the existence of Mesozoic oceanic substratum upon which Luzon and neighboring regions within the Philippine archipelago were likely built. Interestingly, the result closely resembles those reported for the ophiolite in southeastern Luzon as well as the oceanic crust of the Huatung Basin situated east of Taiwan and the ophiolites in eastern Indonesia. In light of this, along with previously gathered geochemical data from the ophiolites, a common provenance is being looked into for these crust–upper mantle sequences in the western Pacific region.  相似文献   

7.
The Khaluta carbonatite deposit located in the western Transbaikal region was formed during the Late Mesozoic rifting in the southern framework of the Siberian Craton. Carbonatite is associated with shonkinite and syenite and is accompanied by fenitization. The composition of mica in more than 160 samples of country rocks, carbonatites, silicate rocks, and fenites was studied. The Fe3+ and Fe2+ contents, as well as oxygen isotopic composition, were determined. The Mg and Fe contents increase, whereas the Ti and Al contents decrease in micas when passing from silicate rocks and fenites to carbonatites. Micas from carbonatites are depleted in Al, enriched in Fe3+, and distinguished by high Si and F contents. According to our calculations, in some cases Al replaces Si in the tetrahedral site instead of replacement of Fe3+ as is characteristic of tetraferriphlogopite. Formally, the mica from carbonatites falls within the tetraferriphlogopite field, but typical inverse pleochroism is not always observable. The δ18O values of micas from carbonatite, shonkinite, syenite, and fenite are similar to those of mantle-derived silicate minerals. The δ18O values in the minerals coexisting with phlogopite testify to their isotopic equilibrium and make it possible to calculate the crystallization temperature of carbonatite.  相似文献   

8.
Concentrations of Rb, Sr, and REE (rare earth elements), and Sr-isotopic ratios in rocks of the Cambrian alkaline complexes in the Wet Mountains area, Colorado, show that rocks formed as end-products of a variety of magmas generated from different source materials. The complexes generally contain a bimodal suite of cumulus mafic-ultramafic rocks and younger leucocratic rocks that include nepheline syenite and hornblende-biotite syenite in the McClure Mountain Complex, nepheline syenite pegmatite in the Gem Park Complex, and quartz syenite in the complex at Democrat Creek. The nepheline syenite and hornblende-biotite syenite at McClure Mountain (535±5m.y.) are older than the syenitic rocks at Democrat Creek (511±8m.y.). REE concentrations indicate that the nepheline syenite at McClure Mountain cannot be derived from the hornblende-biotite syenite, which it intrudes, or from the associated mafic-ultramafic rocks. REE also indicate that mafic-ultramafic rocks at McClure Mountain have a source distinct from that of the mafic-ultramafic rocks at Democrat Creek.In the McClure Mountain Complex, initial87Sr/86Sr ratios for mafic-ultramafic rocks (0.7046±0.0002) are similar to those of hornblende-biotite syenite (0.7045±0.0002), suggesting a similar magmatic source, whereas ratios for carbonatites (0.7038±0.0002) are similar to those of nepheline syenite (0.7038±0.0002). At Democrat Creek, initial ratios of syenitic rocks (0.7032±0.0002) and mafic-ultramafic rocks (0.7028±0.0002) are different from those of corresponding rocks at McClure Mountain.  相似文献   

9.
The origin and sources of the Il’mensky-Vishnevogorsky miaskite-carbonatite complex, one of the world’s largest alkaline complexes, with unique rare-metal and colored-stone mineralization and Nb, Zr, and REE deposits, are discussed in this paper. Geochemical and isotopic studies, including of Nd, Sr, C, and O isotopes, as well as estimation of PT formation conditions, of miaskites and carbonatites from various deposits of the Il’mensky-Vishnevogorsky Complex have been carried out. The Vishnevogorsky, Potaninsky, and Buldym Nb-REE deposits and the Il’mensky, Baidashevo, and Uvil’dy occurrences related to carbonatites were investigated. Their geological setting, composition, and ore resource potential are characterized. The genetic models and typical features of the Il’mensky-Vishnevogorsky Complex are considered. The rocks of the Il’mensky-Vishnevogorsky Complex were formed at T = 1000?230°C and P = 2–5 kbar. Carbonated miaskite melt was divided into immiscible silicate and carbonate liquids at T = 1000°C and P = 5 kbar. Miaskite crystallized at T = 850?700°C and P = 3.5–2.5 kbar. The formation temperature of carbonatite I of the Vishnevogorsky pluton was close to the temperature of miaskite crystallization (700–900°C). The crystallization temperature of carbonate-silicate rock and carbonatite I in the Central alkaline tract was 650–600°C. The formation temperature of carbonatite II varied from 590 to 490°C. Dolomite-calcite carbonatite III and dolomite carbonatite IV of the Buldym massif were formed at T = 575?410°C and T = 315?230°C, respectively. The geochemical features of carbonatites belonging to the Il’mensky-Vishnevogorsky Complex differ from those of carbonatites related to alkaline ultramafic rocks and are close to those of carbonatites related to nepheline syenite or carbonatites localized in linear fracture zones. A high Sr content in early carbonatites along with relatively low Ba, Nb, Ta, Ti, Zr, and Hf contents and a certain enrichment in HREE (a low La/Yb ratio) in comparison with carbonatites of the alkaline ultramafic association are typical. The geochemistry of carbonatites of the Il’mensky-Vishnevogorsky Complex corresponds to the trend of geochemical evolution of carbonatitic melts and their fluid derivatives. The Sr, Nd, C, and O isotopic compositions indicate a mantle magmatic source of the Il’mensky-Vishnevogorsky Complex and participation of moderately depleted mantle (DM) and enriched mantle EM1 in magma generation. Carbonatite and miaskite of the Vishnevogorsky pluton are related to the DM magma source, and carbonatite of the Buldym massif, to the EM1 source, probably, involved in the plume ascent.  相似文献   

10.
The Elchuru alkaline igneous intrusion is an arcuate-shaped ring complex, approximately 16 km2 in area, cropping out in the Eastern Ghats high grade metamorphic series. It is part of an alkaline province composed of a number of intrusions which range from ijolite-melteigite to alkali gabbro (viz. malignite, melalusitanite, shonkinite) and then to hypersolvus nepheline syenite followed by subsolvus nepheline syenite. The complex is cut by late lamprophyric dykes. A nephelinized alkaline gneiss, within the investigated complex, is the only deformed rock type and is regarded as an older unit not related to the comagmatic series. The remainder of the complex was emplaced post-tectonically. Sovitic carbonatite is a conspicuous Iithologic unit associated with the complex. Chemical analyses of 19 selected samples for 13 major oxides and 5 trace elements (Rb, Ba, Sr, Zr and Nb) are presented to establish a geochemical model for the investigated complex. The mineralogy, petrography and geochemistry of the rocks of the Elchuru Alkaline Complex suggest that it was formed by differentiation of an initially alkali-rich ijolitic magma as reflected in the crystallization of nepheline, kaersutitic amphibole and alkali feldspar. With progressive increase in alkali feldspar content (volume percentage) the ijolite passes to malignite and then nepheline syenites. Amphibole shows sodic enrichment from a dominant calcic variety. Pyroxene, likewise, shows sodic enrichment following the scheme salite-ferrosalite to aegirine-augite. The igneous cycle closes with the intrusion of biotite lamprophyre. There is a systematic increase in total alkalies (Na2O+K2O) and decrease in CaO from the early mafic rocks to the syenitic rocks. The alkali-lime index of the complex is 48 indicating its strongly alkaline nature (Peacock 1931), and they are miaskitic in character (agpaicity index <1, Currie 1976). Such miaskitic complexes are associated with carbonatites (Heinrich 1966).  相似文献   

11.
川西冕宁-德昌REE成矿带是中国最重要的REE成矿带之一,包括牦牛坪超大型REE矿床、大陆槽大型REE矿床:木落寨中型REE矿床和里庄小型REE矿床等。REE成矿作用与碳酸岩-碱性杂岩体有关,受印度-亚洲大陆碰撞带的一系列新生代走滑断裂系统控制。碳酸岩-碱性岩杂岩体主要侵位于元古代结晶基底岩石和古生代-中生代沉积盖层。碳酸岩主要为方解石碳酸岩,碱性正长岩以英碱正长岩为主,两者微量元素分布模式及Sr-Nd同位素组成特征相一致,表明两者为岩浆不混溶产物,因此两者的成岩时代应该基本相近。然而,前人研究成果表明,牦牛坪碳酸岩中钠铁闪石K-Ar年龄为31.7Ma,正长岩全岩K—Ar年龄为40.8Ma,两者相差10Ma。此外,研究表明,大陆槽、木落寨和里庄REE矿床碳酸岩-正长岩杂岩体成岩年龄与其相应的成矿年龄基本一致,而牦牛坪REE矿床两者相差甚远。本文利用碳酸岩中方解石进行了Sm—Nd等时线年龄测定,结合前人资料,重新厘定了牦牛坪REE矿床碳酸岩的成岩年龄和矿床的成矿年龄,分别为29.9Ma和26~27Ma,两者在误差范围内相一致。  相似文献   

12.
Summary Crystallization temperatures of the oceanic carbonatites of Fuerteventura, Canary Islands, have been determined from oxygen isotope fractionations between calcite, silicate minerals (feldspar, pyroxene, biotite, and zircon) and magnetite. The measured fractionations have been interpreted in the light of late stage interactions with meteoric and/or magmatic water. Cathodoluminescence characteristics were investigated for the carbonatite minerals in order to determine the extent of alteration and to select unaltered samples. Oxygen isotope fractionations of minerals of unaltered samples yield crystallization temperatures between 450 and 960°C (average 710°C). The highest temperature is obtained from pyroxene–calcite pairs. The above range is in agreement with other carbonatite thermometric studies.This is the first study that provides oxygen isotope data coupled with a CL study on carbonatite-related zircon. The CL pictures revealed that the zircon is broken and altered in the carbonatites and in associated syenites. Regarding geological field evidences of syenite–carbonatite relationship and the close agreement of published zircon U/Pb and whole rock and biotite K/Ar and Ar–Ar age data, the most probable process is early zircon crystallization from the syenite magma and late-stage reworking during magma evolution and carbonatite segregation. The oxygen isotope fractionations between zircon and other carbonatite minerals (calcite and pyroxene) support the assumption that the zircon would correspond to the early crystallization of syenite–carbonatite magmas.  相似文献   

13.
The study of radioactive element distribution in the rocks of the Guli Complex revealed an increase of uranium and thorium contents in the final products of magmatic differentiation. In the carbonatite complex, the radioactive elements are mainly accumulated in the early rocks—phoscorites, while their contents in the late phases, dolomitic carbonatites, decrease. The Th/U ratio increases from near-chondritic values in the weakly differentiated highly-magnesian primary magmas to the late rocks—phoscorites, calcitic carbonatites, and dolomitic carbonatites. The majority of radioactive elements are hosted in rare-metal accessory minerals: perovskite, pyrochlore, calzirtite, and apatite. Rock-forming minerals are characterized by extremely low contents of radioactive elements.  相似文献   

14.
B. A. Worley  A. F. Cooper  C. E. Hall 《Lithos》1995,35(3-4):183-199
Chemically-evolved carbonate-bearing nepheline syenites are intruded into basement metasediments of the Koettlitz Group on Dismal and Radian Ridges in the Pipecleaner Glacier region of Southern Victoria Land, Antarctica. Whole rock XRF data from the Dismal Nepheline Syenite defines a broad trend which is consistent with the removal of a cumulate fraction of approximate composition 70% hedenbergite, 15% nepheline, 10% titanite and 5% apatite. Stable isotope, major and trace element and mineralogical characteristics of the syenites are very similar to those of cross-cutting calcite-rich dykes indicating derivation from closely-related source magmas. The general association of carbonatites and nepheline syenites with extensional environments, suggests that the Dismal and Radian Ridge nepheline syenites and carbonatite dykes indicate a period of early Paleozoic (531 Ma) rifting or intrusion into localised tensional structures in an overall compressional regime. Assimilation of marble by the syenite magmas is evidenced by abundant rafts and xenoliths within the Dismal Nepheline Syenite, however, carbon and oxygen isotopic ratios from syenite and carbonatite calcites are distinctly lighter than values from the marble country rock indicating a magmatic source. Graphite and calcite commonly occur as aggregates in the Dismal Nepheline Syenite suggesting equilibrium between these two carbon-bearing phases. Isotopic fractionation between calcite and graphite, via the equilibrium: C + O2 = CO2 has resulted in enrichment of the 13C isotope in calcites from the Dismal Nepheline Syenite.  相似文献   

15.
Carbonatite magmas precipitate silicates, in addition to the abundant carbonates, oxides, and phosphates. Calculated silica activities for equilibria involving silicates and a silica component in magmatic liquids predict specific assemblages for silicate and oxide phases in carbonatites. These assemblages provide tests of alternative sources (carbonatite magma, coeval silicate magma, or older rock) for silicate minerals in carbonatites. Quartz, feldspars, and orthopyroxene are unlikely to be primary magmatic phases in carbonatites, because the silica activity in carbonatite magmas is too low to stabilize these minerals. Zircon and titanite should be unstable relative to baddeleyite and perovskite, respectively, but they do occur in carbonatites. Liquids dominated by carbonate are strongly nonideal with respect to dissolved silica. Consequently, activity coefficients for a silica component in carbonatite liquids are >>1, so that small mole fractions of SiO2 translate into silica activities sufficient to stabilize phlogopite, clinopyroxene, amphibole, monticellite, and forsterite, among other silicates. Examination of silicate mineral assemblages in carbonatites in the light of silica activity indicates that many carbonatites are contaminated by solid silicate phases from external sources but these xenocrysts can be discriminated from magmatic minerals.  相似文献   

16.
Mawpyut igneous suite in Jaintia Hills of Meghalaya plateau comprises differentiated suite of ultramafic–mafic rocks. The complex differs from other ultramafic–alkaline–carbonatite igneous emplacements of Shillong plateau and Mikir Hills like Jesra, Sung, Samchampi complexes, by the absence of alkaline–carbonatite rocks as major litho-units. Melanite garnet-bearing nepheline syenite, occurs as late phase minor intrusion in Mawpyut igneous complex, posseses alkaline character and shows inubiquitous relation with the host ultramafic–mafic rocks. On the other hand, this alkaline intrusive bodies of the Mawpyut igneous complex shows chemico-mineralogical resemblance with garnet-bearing nepheline syenite, ijolite litho-members of Jesra, Sung, Samchampi complexes of the region. It is interpreted that melanite garnet-bearing nepheline syenite intrusion in Mawpyut is contemporaneous with Jesra, Sung, Samchampi ultramafic–alkaline–carbonatite complexes and the host rocks of Mawpyut complex is an earlier magmatic activity possibly from a comparatively least enriched source.  相似文献   

17.
http://www.sciencedirect.com/science/article/pii/S1674987110000125   总被引:3,自引:0,他引:3  
<正>Carbonatites are commonly related to the accumulation of economically valuable substances such as REE.Cu,and P.The debate over the origin of carbonatites and their relationship to associated silicate rocks has been ongoing for about 45 years.Worldwide,the rocks characteristically display more geochemical enrichments in Ba,Sr and REE than sedimentary carbonate rocks.However,carbonatite's geochemical features are disputed because of secondary mineral effects.Rock-forming carbonates from carbonatites at Qinling.Panxi region,and Bayan Obo in China show REE distribution patterns ranging from LREE enrichment to flat patterns.They are characterized by a Sr content more than 10 times higher than that of secondary carbonates.The coarse- and fine-grained dolomites from Bayan Obo H8 dolomite marbles also show similar high Sr abundance,indicating that they are of igneous origin.Some carbonates in Chinese carbonatites show REE(especially HREE) contents and distribution patterns similar to those of the whole rocks.These intrusive carbonatites display lower platinum group elements and stronger fractionation between Pt and Ir relative to high-Si extrusive carbonatite.This indicates that most intrusive carbonatites may be carbonate cumulates.Maoniuping and Daluxiang in Panxi region are large REE deposits.Hydrothermal fluorite ore veins occur outside of the carbonatite bodies and are emplaced in wallrock syenite.The fiuorite in Maoniuping has Sr and Nd isotopes similar to carbonatite.The Daluxiang fiuorite shows Sr and REE compositions different from those in Maoniuping.The difference is reflected by both the carbonatites and rock-forming carbonates,indicating that REE mineralization is related to carbonatites.The cumulate processes of carbonate minerals make fractionated fluids rich in volatiles and LREE as a result of low partition coefficients for REE between carbonate and carbonatite melt and an increase from LREE to HREE.The carbonatite-derived fluid has interacted with wallrock to form REE ore veins.The amount of carbonatite dykes occurring near the Bayan Obo orebodies may support the same mineralization model,i.e.that fluids evolved from the carbonatite dykes reacted with H8 dolomite marble,and thus the different REE and isotope compositions of coarse- and fine-grained dolomite may be related to reaction processes.  相似文献   

18.
Textural, electron microprobe and whole rock geochemical evidence from carbonatites and associated silicate rocks on Alnö Island, Sweden, suggest that the carbonatite, at the time of emplacement, could have been an (almost) pure CaCO3 liquid with a high volatile (H2O–CO2) content and that most silicate minerals, which are ubiquitously present, are either (1) assimilated from the surrounding wall rock, by progressive and coupled fragmentation and corrosion; or (2) by‐products of corrosive interaction between the carbonatite liquid and the wall rock. This interpretation is supported by balancing a reaction to describe interaction between carbonatite and a cpx + ne‐bearing (ijolite) wall rock. Although our analysis does not preclude the possibility that fenitizing agents (e.g. Na, Fe) were transported by the carbonatite liquid, these components are not required to drive the observed mineralogical changes in the carbonatite.  相似文献   

19.
The Samchampi-Samteran alkaline igneous complex (SAC) is a near circular, plug-like body approximately 12 km2 area and is emplaced into the Precambrian gneissic terrain of the Karbi Anglong district of Assam. The host rocks, which are exposed in immediate vicinity of the intrusion, comprise granite gneiss, migmatite, granodiorite, amphibolite, pegmatite and quartz veins. The SAC is composed of a wide variety of lithologies identified as syenitic fenite, magnetite ± perovskite ± apatite rock, alkali pyroxenite, ijolite-melteigite, carbonatite, nepheline syenite with leucocratic and mesocratic variants, phonolite, volcanic tuff, phosphatic rock and chert breccia. The magnetite ± perovskite ± apatite rock was generated as a cumulus phase owing to the partitioning of Ti, Fe at a shallow level magma chamber (not evolved DI = O1). The highly alkaline hydrous fluid activity indicated by the presence of strongly alkalic minerals in carbonatites and associated alkaline rocks suggests that the composition of original melt was more alkalic than those now found and represent a silica undersaturated ultramafic rock of carbonated olivine-poor nephelinite which splits with falling temperature into two immiscible fractions—one ultimately crystallises as alkali pyroxenite/ijolite and the other as carbonatite. The spatial distribution of varied lithotypes of SAC and their genetic relationships suggests that the silicate and carbonate melts, produced through liquid immiscibility, during ascent generated into an array of lithotypes and also reaction with the country rocks by alkali emanations produced fenitic aureoles (nephelinisation process). Isotopic studies (δ18O and δ13C) on carbonatites of Samchampi have indicated that the δ13C of the source magma is related to contamination from recycled carbon.  相似文献   

20.
Two discriminant function models are constructed in order to distinguish major- and trace-element geochemical patterns characteristic for radiolarian cherts from the Zagorje–Mid-Transdanubian Zone ophiolite mélange of NW Croatia. The models are subsequently used to assign new samples from the adjacent magmatic–sedimentary complex extending from the Central Dinaridic Ophiolite Belt in NW Bosnia and thereby to test their applicability in similar cases when clear field relations are absent. In both models the first discriminant function explains the most part of the system variability. However, between the two, the trace-element model proves itself as a more helpful predictive tool presenting a straightforward example of correct classification of samples into three pre-defined groups (Triassic-basin, Triassic-slope and Jurassic radiolarian cherts). This result is extended further, with allocation of all samples from the test region into a single group (Jurassic) according to their trace-element geochemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号