首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the Florida State University Global Spectral Model (FSUGSM), in association with a high-resolution nested regional spectral model (FSUNRSM), is used for short-range weather forecasts over the Indian domain. Three-day forecasts for each day of August 1998 were performed using different versions of the FSUGSM and FSUNRSM and were compared with the observed fields (analysis) obtained from the European Center for Medium Range Weather Forecasts (ECMWF). The impact of physical initialization (a procedure that assimilates observed rain rates into the model atmosphere through a set of reverse algorithms) on rainfall forecasts was examined in detail. A very high nowcasting skill for precipitation is obtained through the use of high-resolution physical initialization applied at the regional model level. Higher skills in wind and precipitation forecasts over the Indian summer monsoon region are achieved using this version of the regional model with physical initialization. A relatively new concept, called the ‘multimodel/multianalysis superensemble’ is described in this paper and is applied for the wind and precipitation forecasts over the Indian subcontinent. Large improvement in forecast skills of wind at 850 hPa level over the Indian subcontinent is shown possible through the use of the multimodel superensemble. The multianalysis superensemble approach that uses the latest satellite data from the Tropical Rainfall Measuring Mission (TRMM) and the Defense Meteorological Satellite Program (DMSP) has shown significant improvement in the skills of precipitation forecasts over the Indian monsoon region.  相似文献   

2.
The present study describes an analysis of Asian summer monsoon forecasts with an operational general circulation model (GCM) of the European Centre for Medium Range Weather Forecasts (ECMWF), U.K. An attempt is made to examine the influence of improved treatment of physical processes on the reduction of systematic errors. As some of the major changes in the parameterization of physical processes, such as modification to the infrared radiation scheme, deep cumulus convection scheme, introduction of the shallow convection scheme etc., were introduced during 1985–88, a thorough systematic error analysis of the ECMWF monsoon forecasts is carried out for a period prior to the incorporation of such changes i.e. summer monsoon season (June–August) of 1984, and for the corresponding period after relevant changes were implemented (summer monsoon season of 1988). Monsoon forecasts of the ECMWF demonstrate an increasing trend of forecast skill after the implementation of the major changes in parameterizations of radiation, convection and land-surface processes. Further, the upper level flow is found to be more predictable than that of the lower level and wind forecasts display a better skill than temperature. Apart from this, a notable increase in the magnitudes of persistence error statistics indicates that the monsoon circulation in the analysed fields became more intense with the introduction of changes in the operational forecasting system. Although, considerable reduction in systematic errors of the Asian summer monsoon forecasts is observed (up to day-5) with the introduction of major changes in the treatment of physical processes, the nature of errors remain unchanged (by day-10). The forecast errors of temperature and moisture in the middle troposphere are also reduced due to the changes in treatment of longwave radiation. Moreover, the introduction of shallow convection helped it further by enhancing the vertical transports of heat and moisture from the lower troposphere. Though, the hydrological cycle in the operational forecasts appears to have enhanced with the major modifications and improvements to the physical parameterization schemes, certain regional peculiarities have developed in the simulated rainfall distribution over the monsoon region. Hence, this study suggests further attempts to improve the formulations of physical processes for further reduction of systematic forecast errors.  相似文献   

3.
Although previous literature have considered Southern Oscillation Index (SOI), Indian Dipole, and SST as the major teleconnection patterns to explain the variability of summer monsoon rainfall over India. South Asia low pressure and Indian Ocean high are the centers of action that dominates atmospheric circulations in Indian continent. This paper examines the possible impact of South Asian low pressure distribution on the variability of summer monsoon rainfall of India using centers of action approach. Our analysis demonstrates that the explanation of summer monsoon rainfall variability over Central India is improved significantly if the SOI is replaced by South Asian low heat. This contribution also explains the physical mechanisms to establish the relationships between the South Asian low heat and regional climate by examining composite maps of large-scale circulation fields using NCEP/NCAR Reanalysis data.  相似文献   

4.
In this article, the interannual variability of certain dynamic and thermodynamic characteristics of various sectors in the Asian summer monsoon domain was examined during the onset phase over the south Indian peninsula (Kerala Coast). Daily average (0000 and 1200 UTC) reanalysis data sets of the National Centre for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) for the period 1948–1999 were used. Based on 52 years onset date of the Indian summer monsoon, we categorized the pre-onset, onset, and post-onset periods (each an average of 5 days) to investigate the interannual variability of significant budget terms over the Arabian Sea, Bay of Bengal, and the Indian peninsula. A higher difference was noticed in low-level kinetic energy (850 hPa) and the vertically integrated generation of kinetic energy over the Arabian Sea from the pre-onset, onset, and post-onset periods. Also, significant changes were noticed in the net tropospheric moisture and diabatic heating over the Arabian Sea and Indian peninsula from the pre-onset to the post-onset period. It appears that attaining the magnitude of 40 m2 s−2 and then a sharp rise in kinetic energy at 850 hPa is an appropriate time to declare the onset of the summer monsoon over India. In addition to a sufficient level of net tropospheric moisture (40 mm), a minimum strength of low-level flow is needed to trigger convective activity over the Arabian Sea and the Bay of Bengal. An attempt was also made to develop a location-specific prediction of onset dates of the summer monsoon over India based on energetics and basic meteorological parameters using multivariate statistical techniques. The regression technique was developed with the data of May and June for 42 years (1948–1989) and validated with 10 years NCEP reanalysis from 1990 to 1999. It was found that the predicted onset dates from the regression model are fairly in agreement with the observed onset dates obtained from the Indian Meteorology Department.  相似文献   

5.
The circulation patterns over the Indian Ocean and the surrounding continents have been studied during June 2009 and July 2002 to explain the failure of Indian summer monsoon (ISM) rainfall. This study presents evidences that the failure of the ISM during these 2?months was probably due to the development of cyclonic circulation anomaly over the Western Asia and anticyclonic circulation anomalies downstream of Eastern Asia. These circulation anomalies were associated with the equatorward advection of cold air up to 10°N. This may be due to the equatorward intrusion of midlatitude Rossby waves. We hypothesize that the intrusion of midlatitude Rossby wave is responsible for breaking the east?Cwest circulation cell over the Indian region into two cells and weakening it. The weak east?Cwest cell reduces the strength of the easterly wind field usually present over the monsoonal region, thus reducing the cross-equatorial moisture transport into the Indian subcontinent and decreasing monsoon rainfall.  相似文献   

6.
隋伟辉  赵平 《第四纪研究》2005,25(5):645-654
文章利用Zhao等的模拟结果,进一步研究了在末次盛冰期(LGM)情景下汪品先和CLIMAP两种重建海洋表面温度(SST)资料差异对亚洲夏季风的影响。模拟结果表明:在LGM情景下西太平洋海域SST资料的不同对模拟的亚洲夏季风有着十分重要的作用。夏季,与CLGM方案相比,在WLGM方案中,当热带西太平洋SST较暖时,印度地区的大气热量出现显著增加,大气热量的这种变化,使得南非高压、南印度洋经向Hadley环流加强,伴随着索马里越赤道气流加强,也导致了印度季风区纬向季风环流的加强,从而造成了印度夏季风增强、降水增多;与较暖的热带西太平洋相对应,澳大利亚高压和120°E附近越赤道气流减弱,东亚季风区20°N以南经向季风环流加强、20°N以北经向季风环流减弱,指示着一个强的南海夏季风和较弱东亚副热带大陆夏季风。  相似文献   

7.
In this study, we elucidate the temporal characteristics of the onset and withdrawal of the Indian southwest monsoon, making use of the model integration and daily analyses of the National Centre for Medium Range Weather Forecasting, India. The onset of the Indian southwest monsoon over the Bay of Bengal is discernable by a gradual increase in the adiabatic generation of kinetic energy, while over the Arabian Sea it is first noticeable by a steep and abrupt increase of generation. The horizontal transport of heat indicates a convergence regime over the Bay of Bengal prior to onset, while over the Arabian Sea a convergence regime is indicated by a change from the divergence to the convergence regime. The withdrawal of the southwest monsoon is characterized by the horizontal transport of heat and moisture that evince a transition from the convergence to divergence regime; similarly, diabatic heating noticed during the active period changes to cooling. The withdrawal over the Arabian Sea is characterized by the divergence regime of the horizontal transport of moisture. This change precedes even the circulation changes over northwest India, which may be regarded as a precursor. The withdrawal is further supported by a monotonic decrease in the net tropospheric moisture over the Arabian Sea, followed by a similar change at land locations.  相似文献   

8.
Indian summer monsoon is a global scale phenomenon controlled by different land, ocean, and atmospheric parameters. Sea surface temperature (SST) and snow are two of the major parameters, which may alter the spatial and temporal patterns of circulation and rainfall during Indian summer monsoon. In the current paper, we study the monsoon variability using long integrations (20 years) of the Indian Institute of Technology Delhi (IITD) Spectral model at T80L18 resolution with observed and climatological SST and snow. Study shows response of IITD GCM in simulating the Indian summer monsoon rainfall and circulation relative to the snow and SST as boundary conditions. The model’s response to SST and snow is examined by conducting four types of experiments by varying observed and climatological values of snow and SST. This paper discusses the seasonal total rainfall for country as a whole and 850 and 200 hPa wind for the period of 20 years starting from 1985 to 2004. The model has been integrated in the ensemble mode with five different initial conditions from the last week of April and first week of May. The model is able to capture the climatological patterns of seasonal total rainfall and averaged wind at lower and upper levels. Observed snow in the presence of climatological SST as a boundary condition shows much impact on rainfall and circulation than observed SST in the presence of climatological snow. Model performance is good in simulating the normal and excess monsoon conditions; it shows poor skill in capturing deficit monsoon years.  相似文献   

9.
The impact of moisture anomalies on the circulation of the south-west Indian monsoon has been studied with a general circulation model. Newtonian relaxation is adopted to subject the model atmosphere under sustained moisture anomalies. The impact of negative anomalies of moisture was seen as a divergent circulation anomaly, while the positive anomaly was a stronger convergent anomaly. Although the humidity fields display a resilient behaviour, and relax back to normal patterns 1–2 days after the forcing terms in humidity are withdrawn, the circulation anomalies created by the moisture variation keeps growing. A feedback between positive moisture anomalies and low level convergence exists, which is terminated in the absence of external forcings.  相似文献   

10.
Realistic simulation/prediction of the Asian summer monsoon rainfall on various space–time scales is a challenging scientific task. Compared to mid-latitudes, a proportional skill improvement in the prediction of monsoon rainfall in the medium range has not happened in recent years. Global models and data assimilation techniques are being improved for monsoon/tropics. However, multi-model ensemble (MME) forecasting is gaining popularity, as it has the potential to provide more information for practical forecasting in terms of making a consensus forecast and handling model uncertainties. As major centers are exchanging model output in near real-time, MME is a viable inexpensive way of enhancing the forecasting skill and information content. During monsoon 2008, on an experimental basis, an MME forecasting of large-scale monsoon precipitation in the medium range was carried out in real-time at National Centre for Medium Range Weather Forecasting (NCMRWF), India. Simple ensemble mean (EMN) giving equal weight to member models, bias-corrected ensemble mean (BCEMn) and MME forecast, where different weights are given to member models, are the products of the algorithm tested here. In general, the aforementioned products from the multi-model ensemble forecast system have a higher skill than individual model forecasts. The skill score for the Indian domain and other sub-regions indicates that the BCEMn produces the best result, compared to EMN and MME. Giving weights to different models to obtain an MME product helps to improve individual member models only marginally. It is noted that for higher rainfall values, the skill of the global model rainfall forecast decreases rapidly beyond day-3, and hence for day-4 and day-5, the MME products could not bring much improvement over member models. However, up to day-3, the MME products were always better than individual member models.  相似文献   

11.
With an objective to understand the influence of surface marine meteorological parameters in relation to the extreme monsoon activity over the Indian sub-continent leading to flood/drought, a detailed analysis of the sea level pressure over the Southern Hemisphere and various surface meteorological parameters over the Indian seas is carried out. The present study using the long term data sets (Southern Hemispheric Sea Level Pressure Analysis; Comprehensive Ocean Atmospheric Data Set over the Indian Seas; Surface Station Climatology Data) clearly indicates that the sea surface temperature changes over the south eastern Pacific (El Ninõ/La Niña) have only a moderate impact (not exceeding 50% reliability) on the Indian summer monsoon activity. On the other hand, the sea level pressure anomaly (SOI) over Australia and the south Pacific has a reasonably high degree of significance (more than 70%) with the monsoon activity over India. However, these two parameters (SLP and SST) do not show any significant variability over the Indian seas in relation to the summer monsoon activity. Over the Indian seas, the parameters which are mainly associated with the convective activity such as cloud cover, relative humidity and the surface wind were found to have a strong association with the extreme monsoon activity (flood/drought) and thus the net oceanic heat loss over the Indian seas provides a strong positive feed-back for the monsoon activity over India.  相似文献   

12.
郑伟鹏  俞永强 《第四纪研究》2009,29(6):1135-1145
本文分析了一个耦合模式FGOALS_g1.0对工业革命前气候(0ka)和中全新世时期(6ka)亚洲夏季风的模拟结果。在该研究中我们主要分析季风降水变率较大的区域,即东亚夏季风区(20°~45°N,110°~120°E)和印度夏季风区(10°~30°N,70°~80°E)。尽管耦合模式的普遍偏差依然存在,该模式反映出亚洲季风系统是海陆热力性质差异的结果,并较好地模拟出了0ka亚洲夏季风大尺度环流的特点和季节变化的特征。6ka和0ka比较分析的结果表明,6ka时期欧亚大陆增暖,海陆温度梯度加强; 印度夏季风降水从南亚大陆北移到 30°N 附近,位于青藏高原南侧的降水大值中心降水加强; 东亚季风区降水则表现为华北地区减少,长江流域和华南地区降水增加的特点。但合理地模拟季风爆发仍然是耦合气候系统模式的难点之一。
6ka时期亚洲夏季风变化是和大尺度季风环流的变化联系在一起的,而其根本原因是中全新世时期地球轨道参数变化所引起的太阳辐射变化,北半球季节循环的振幅加强。海陆热力性质的差异所导致海陆温差加大使得北半球的季风环流加强,印度夏季风高空东风在 20°~30°N 加强,低层赤道东风加强,跨赤道后的西南气流向北推移,从而使得印度夏季风降水雨带北移到 30°N 附近。东亚季风区的高低空温度场的配置使得副热带高空急流减弱,位置偏南,从而有利于华北地区的高空出现异常的辐合,中层为异常的辐散,抑制了季风降水的发展; 长江流域和华南地区则相反,季风降水降水加强。  相似文献   

13.
The change in the type of vegetation fraction can induce major changes in the local effects such as local evaporation, surface radiation, etc., that in turn induces changes in the model simulated outputs. The present study deals with the effects of vegetation in climate modeling over the Indian region using the MM5 mesoscale model. The main objective of the present study is to investigate the impact of vegetation dataset derived from SPOT satellite by ISRO (Indian Space Research Organization) versus that of USGS (United States Geological Survey) vegetation dataset on the simulation of the Indian summer monsoon. The present study has been conducted for five monsoon seasons (1998–2002), giving emphasis over the two contrasting southwest monsoon seasons of 1998 (normal) and 2002 (deficient). The study reveals mixed results on the impact of vegetation datasets generated by ISRO and USGS on the simulations of the monsoon. Results indicate that the ISRO data has a positive impact on the simulations of the monsoon over northeastern India and along the western coast. The MM5-USGS has greater tendency of overestimation of rainfall. It has higher standard deviation indicating that it induces a dispersive effect on the rainfall simulation. Among the five years of study, it is seen that the RMSE of July and JJAS (June–July–August–September) for All India Rainfall is mostly lower for MM5-ISRO. Also, the bias of July and JJAS rainfall is mostly closer to unity for MM5-ISRO. The wind fields at 850 hPa and 200 hPa are also better simulated by MM5 using ISRO vegetation. The synoptic features like Somali jet and Tibetan anticyclone are simulated closer to the verification analysis by ISRO vegetation. The 2 m air temperature is also better simulated by ISRO vegetation over the northeastern India, showing greater spatial variability over the region. However, the JJAS total rainfall over north India and Deccan coast is better simulated using the USGS vegetation. Sensible heat flux over north-west India is also better simulated by MM5-USGS.  相似文献   

14.
A 650-m-thick sequence of fluvio-lacustrine sediments from the Yuanmou Basin in southwest China was analyzed at 20-cm intervals for grain-size distribution to provide a high-resolution terrestrial record of Indian summer monsoon variations during the Pliocene. The concentrations of the clay and clay-plus-fine-silt fractions are inferred to reflect the water-level status of the lake basin related to the intensity of the Indian summer monsoon and high concentrations reflect high lake levels resulting from the intensified summer monsoon. The frequency of individual lacustrine mud beds is considered to reveal the frequency of the lakes developed in the basin associated with the variability of the Indian summer monsoon and an increased frequency of the lakes reveals an increased variability of the summer monsoon. The proxy data indicate that the Indian summer monsoon experienced two major shifts at 3.57 and 2.78 Ma and two secondary shifts at 3.09 and 2.39 Ma during the Pliocene. The summer monsoon displayed a general trend of gradual intensification during the period of 3.57–2.78 Ma, coeval with an accelerated uplift of the Tibetan Plateau, implying a close link between the monsoon intensification and the plateau uplift. At 2.78 Ma, the summer monsoon was markedly weakened, synchronous with the formation of extensive Northern Hemisphere ice sheets, denoting a quick response of the monsoon regime to the Northern Hemisphere glaciation. The variability of the summer monsoon decreased at 3.09 Ma and increased at 2.39 Ma, presumably suggesting that variations of the Indian monsoon would be modulated by the initiation and periodic fluctuations of ice-sheet covers in Northern Hemisphere high latitudes.  相似文献   

15.
The impact of different land-surface parameterisation schemes for the simulation of monsoon circulation during a normal monsoon year over India has been analysed. For this purpose, three land-surface parameterisation schemes, the NoaH, the Multi-layer soil model and the Pleim-Xiu were tested using the latest version of the regional model (MM5) of the Pennsylvania State University (PSU)/National Center for Atmospheric Research (NCAR) over the Indian summer monsoon region. With respect to different land-surface parameterisation schemes, latent and sensible heat fluxes and rainfall were estimated over the Indian region. The sensitivity of some monsoon features, such as Somali jet, tropical easterly jet and mean sea level pressure, is discussed. Although some features of the Indian summer monsoon, such as wind and mean sea level pressure, were fairly well-simulated by all three schemes, many differences were seen in the simulation of the typical characteristics of the Indian summer monsoon. It was noticed from the results that the features of the Indian summer monsoon, such as strength of the low-level westerly jet, the cross-equatorial flow and the tropical easterly jet were better simulated by NoaH compared with verification analysis than other land-surface schemes. It was also observed that the distribution of precipitation over India during the peak period of monsoon (July) was better represented with the use of the NoaH scheme than by other schemes.
U. C. MohantyEmail:
  相似文献   

16.
There is a close relationship between interannual variability of the Indian summer monsoon rainfall and the El Niño/Southern Oscillation (ENSO) (drought conditions over India accompany warm ENSO events and vice versa). However, recent observations suggest a weakening of this ENSO-monsoon relationship that may be linked to global warming. We report here an analysis of the ENSO-monsoon relationship within the framework of a 1000-year control simulation of the MRI-coupled general circulation model (GCM), MRI-CGCM2.2. An overall correlation between the June-July-August (JJA) Nino3.4 sea surface temperature and the JJA Indian monsoon rainfall is –0.39, with reasonable circulation characteristics associated with the modeled ENSO. The simulated ENSO-monsoon relationship reveals long-term variations, from –0.71 to +0.07, in moving 31-year windows. This modulation in the ENSO-monsoon relationship is associated with decadal variability of the climate system.  相似文献   

17.
The output from Global Forecasting System (GFS) T574L64 operational at India Meteorological Department (IMD), New Delhi is used for obtaining location specific quantitative forecast of maximum and minimum temperatures over India in the medium range time scale. In this study, a statistical bias correction algorithm has been introduced to reduce the systematic bias in the 24–120 hour GFS model location specific forecast of maximum and minimum temperatures for 98 selected synoptic stations, representing different geographical regions of India. The statistical bias correction algorithm used for minimizing the bias of the next forecast is Decaying Weighted Mean (DWM), as it is suitable for small samples. The main objective of this study is to evaluate the skill of Direct Model Output (DMO) and Bias Corrected (BC) GFS for location specific forecast of maximum and minimum temperatures over India. The performance skill of 24–120 hour DMO and BC forecast of GFS model is evaluated for all the 98 synoptic stations during summer (May-August 2012) and winter (November 2012–February 2013) seasons using different statistical evaluation skill measures. The magnitude of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) for BC GFS forecast is lower than DMO during both summer and winter seasons. The BC GFS forecasts have higher skill score as compared to GFS DMO over most of the stations in all day-1 to day-5 forecasts during both summer and winter seasons. It is concluded from the study that the skill of GFS statistical BC forecast improves over the GFS DMO remarkably and hence can be used as an operational weather forecasting system for location specific forecast over India.  相似文献   

18.
Large-scale interannual variability of the northern summer southwest monsoon over India is studied by examining its variation in the dry area during the period 1871–1984. On the mean summer monsoon rainfall (June to September total) chart the 800 mm isohyet divides the country into two nearly equal halves, named as dry area (monsoon rainfall less than 800 mm) and wet area (monsoon rainfall greater than 800 mm). The dry area/wet area shows large variations from one year to another, and is considered as an index for assessing the large-scale performance of the Indian summer monsoon. Statistical and fluctuation characteristics of the summer monsoon dry area (SMDA) are reported. To identify possible causes of variation in the Indian summer monsoon, the correlation between the summer monsoon dry area and eleven regional/global circulation parameters is examined. The northern hemisphere surface air temperature, zonal/hemispheric/global surface air and upper air temperatures, Southern Oscillation, Quasi-biennial oscillation of the equatorial lower stratosphere, April 500-mb ridge along 75°E over India, the Indian surface air temperature and the Bombay sea level pressure showed significant correlation. A new predictor parameter that is preceding year mean monsoon rainfall of a few selected stations over India has been suggested in the present study. The stations have been selected by applying the objective technique ‘selecting a subset of few gauges whose mean monsoon rainfall of the preceding year has shown the highest correlation coefficient (CC) with the SMDA’. Bankura (Gangetic West Bengal), Cuddalore (Tamil Nadu) and Anupgarh (West Rajasthan) entered the selection showing a CC of 0.724. Using a dependent sample of 1951–1980 a predictive model (multiple CC = 0.745) has also been developed for the SMDA with preceding year mean monsoon rainfall of the three selected stations and the sea level pressure tendency at Darwin from Jan–Feb to Mar–May as independent parameters.  相似文献   

19.
根据1993年夏季在希夏邦马峰抗物热冰川考察时取得的部分气象要素观测资料,结果表明,尽管夏季气温相对较高,但由于降水频繁,冰川表面降雪,通过增加冰面反射,削弱冰面消融,导致冰川水文循环水平低。温度观测揭示出受西南季风影响,夏季冰川区处于高温环境中;又由于相对远离主山脉,且无明显的山谷形态,该冰川区局地环流不发育,整个观测期间均受制于东南和南风控制之下  相似文献   

20.
Detailed analysis of the surface winds over the Indian Ocean derived from ERS-1 scatterometer data during the years 1993 and 1994 has been used to understand and unambiguously identify the onset phase of south-west monsoon. Five day (pentad) averaged wind vectors for the period April to June during both years have been examined to study the exact reversal of wind direction as well as the increase in wind speed over the Arabian Sea in relation to the onset of monsoon over the Indian west coast (Kerala). The related upper level humidity available from other satellites has also been analysed. The results of our analysis clearly show a consistent dramatic reversal in wind direction over the western Arabian Sea three weeks in advance of the onset of monsoon. The wind speed shows a large increase coinciding with the onset of monsoon. These findings together show the dominant role of sea surface winds in establishing the monsoon circulation. The study confirms that the cross equatorial current phenomenon becomes more important after the onset of monsoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号