首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A genetic algorithm inversion of receiver functions derived from a dense seismic network around Iwate volcano, northeastern Japan, provides the fine S wave velocity structure of the crust and uppermost mantle. Since receiver functions are insensitive to an absolute velocity, travel times of P and S waves propagating vertically from earthquakes in the subducting slab beneath the volcano are involved in the inversion. The distribution of velocity perturbations in relation to the hypocenters of the low-frequency (LF) earthquakes helps our understanding of deep magmatism beneath Iwate volcano. A high-velocity region (dVS/VS=10%) exists around the volcano at depths of 2–15 km, with the bottom depth decreasing to 11 km beneath the volcano’s summit. Just beneath the thinning high-velocity region, a low-velocity region (dVS/VS=−10%) exists at depths of 11–20 km. Intermediate-depth LF (ILF) events are distributed vertically in the high-velocity region down to the top of the low-velocity region. This distribution suggests that a magma reservoir situated in the low-velocity region supplies magma to a narrow conduit that is detectable by the hypocenters of LF earthquakes. Another broad low-velocity region (dVS/VS=−5 to −10%) occurs at depths of 17–35 km. Additional clusters of deep LF (DLF) events exist at depths of 32–37 km in the broad low-velocity zone. The DLF and ILF events are the manifestations of magma movement near the Moho discontinuity and in the conduit just beneath the volcano, respectively.  相似文献   

2.
The upper crustal (20 km)P-wave velocity beneath the Shillong Plateau and Nowgong area has been studied by the time-distance plot method. TheP-arrival data of the shallow (20 km) microearthquakes from three temporary networks are used, and the average velocity is found to be 5.55 km/s. The velocity ratio (V p /V s ) for the upper crust (0–20 km) as well as for the lower crust (21–40 km) are determined by the Wadati-plot method and station-by-station method. The average value obtained by the two methods is compatible; theV p /V s ranges between 1.74 to 1.76. A generalized seismic velocity model of the area is suggested by this study, which has been very useful for microearthquake location.  相似文献   

3.
Recent field tests illustrate the accuracy and consistency of calculating near-surface shear (S)-wave velocities using multichannel analysis of surface waves (MASW). S-wave velocity profiles (S-wave velocity vs. depth) derived from MASW compared favorably to direct borehole measurements at sites in Kansas, British Columbia, and Wyoming. Effects of changing the total number of recording channels, sampling interval, source offset, and receiver spacing on the inverted S-wave velocity were studied at a test site in Lawrence, Kansas. On the average, the difference between MASW calculated Vs and borehole measured Vs in eight wells along the Fraser River in Vancouver, Canada was less than 15%. One of the eight wells was a blind test well with the calculated overall difference between MASW and borehole measurements less than 9%. No systematic differences were observed in derived Vs values from any of the eight test sites. Surface wave analysis performed on surface data from Wyoming provided S-wave velocities in near-surface materials. Velocity profiles from MASW were confirmed by measurements based on suspension log analysis.  相似文献   

4.
Summary In a series of triaxial experiments we have measuredV p ,V s and volumetric strain simultaneously in dilating dry and saturated rocks. For the first time these data permit quantitative comparison of seismic velocities or their ratio and dilatant volumetric strain. In air-dry samplesV p /V s decreases by a few per cent at strains of 10–3; in saturated materials with high pore pressure,V p /V s increases by a comparable amount. Decreases in seismic velocity ratio are difficult to generate in initially saturated rocks even with low pore pressures and at strain rates of 10–4/sec. A liquid-vapor transition will not produce a significant drop inV p /V s . If dilatancy and fluid flow are responsible for seismic travel time anomalies prior to earthquakes, our results suggest that such anomalies will occur only in regions where pore fluid source to sink dimensions are of the order of 10 km or more, or in regions where the rocks are not saturated to begin with.  相似文献   

5.
Deep unconsolidated sediments in the Mississippi embayment will influence ground motions from earthquakes in the New Madrid seismic zone. Shear wave velocity profiles of these sediments are important input parameters for modeling wave propagation and site response in this region. Low-frequency, active-source surface wave velocity measurements were performed to develop small-strain shear wave velocity (VS) profiles at eleven deep soil sites in the Mississippi embayment, from north of New Madrid, Missouri to Memphis, Tennessee. A servo-hydraulic, low-frequency source was used to excite surface wave energy to wavelengths of 600 m, resulting in VS profiles to depths of over 200 m. The average VS profile calculated from the eleven sites is in good agreement with common reference VS profiles that have been used in seismic hazard studies of this region. The variability in VS profiles is shown to be associated with changes in formation depth and thickness from site-to-site. Using lithologic information at each site, average formation velocities were developed and compared to previous studies. We found average VS values of about 193 m/s for alluvial deposits, 400 m/s for the Upper Claiborne formations, and 685 m/s for the Memphis Sand formation.  相似文献   

6.
Three component recordings from an array of five ocean bottom seismographs in the northwestern part of the Vøring basin have been used to obtain a 2-D shear-wave (S-wave) velocity-depth model. The shear waves are identified by means of travel-time differences compared to the compressional (P) waves, and by analyzing their particle motions. The model has been obtained by kinematic (travel-time) ray-tracing modelling of the OBS horizontal components.The shear-wave modelling indicates that mode conversions occur at several high velocity interfaces (sills) in the 4–10 km depth range, previously defined by a compressional-wave velocity-depth model using the same data set.An averageV p /V s ratio of 2.1 is inferred for the layers above the uppermost sill, indicative of both poorly consolidated sediments and a low sand/shale ratio. A significant decrease in theV p /V s ratio (1.7) below the first sill may in part be atributed to well consolidated sediments, and to a change in lithology to more sandy sediments. This layer is interpreted to lie within the lower Cretaceous sequence. At 5–10 km depthV p /V s ratios of 1.85 indicate a lower sand/shale ratio consistent with the expected lithologies. The averageV p /V s ratio inferred for the crust is 1.75, which is consistent with values obtained north of Vøring, in the Lofoten area. An eastward thinning of the crystalline basement is supported by the shear-wave modelling.  相似文献   

7.
The relative contribution of scattering (Q s –1 ) and intrinsic (Q i –1 ) attenuation to the totalS-wave attenuation for the frequencies of 1.5, 3.0, 6.0 and 12.0 Hz has been studied by applying the radiative energy transfer theory, Data of local earthquakes which occurred in northern Greece and were recorded by the permanent telementered network of the Geophysical Laboratory of the University of Thessaloniki have been used. The results show that in this area the scattering attenuation is dominant over all frequencies while intrinsic attenuation is significantly lower. The estimatedQ s –1 andQ i –1 values have frequency dependences off –0.72 andf –0.45, respectively. The frequency dependence ofQ s –1 is the same as that of the codaQ c –1 , obtained by applying the single scattering model, which probably implies that the frequency dependence of the coda wave attenuation is attributed to the frequency dependence of the scattering attenuation.Q c –1 values are very close to scattering attenuation for short lapse times, (10–20 sec), and intermediate between scattering and intrinsic attenuation for the longer lapse times, (50–100 sec). This difference is explained as the result of the depth-dependent attenuation properties and the multiple scattering effects.  相似文献   

8.
In this paper we study the variation of Vp/Vs and Poisson's ratio (δ) in the Yellowstone National Park region, using earthquakes which were well recorded by a local seismic network. We find that the average Vp/Vs value within the geothermally active Yellowstone caldera is about 7% lower than in the area outside the caldera. Within the caldera itself there may be a further 2–7% reduction of Vp/Vs in the hydrothermally active Norris Geyser Basin, the Upper and Lower Geyser Basins, and the Yellowstone Lake and Mud Volcano regions. After considering various possible causes for Vp/Vs changes, such as geologic and structural differences, thermal effects, partial melting, and hydrothermal activity, we conclude that the most plausible explanation for the observed Vp/Vs reduction is the presence of hot-water at temperatures and pore-pressures near the water steam transition in the caldera geothermal reservoirs.  相似文献   

9.
The dispersion of exhaust products of rocket fuel in the direction perpendicular to the motion of a rocket is investigated in this work. A comparison of the results of numerical calculations with a self-similar approximation of a strong cylindrically symmetric explosion is fulfilled. It is shown that at sufficiently high rocket velocity V , which exceeds the sum of gas exhaust velocity V e from the nozzle and sound speed V s (V > V e +V s ), a gasdynamic hole can arise around the rocket trajectory in the upper atmosphere, inside which the total concentration of gas becomes less than the equilibrium concentration of gas at a given altitude. The dynamics of the profiles of density and temperature of the exhaust products inside a rocket plume is calculated.  相似文献   

10.
A numerical model of deep, uniform, oscillatory, rough-turbulent boundary-layer flow is described. The model is based upon the governing horizontal momentum equation and a closure scheme involving the turbulent-energy equation and various turbulence-scaling laws. Finite difference solutions of these equations are obtained for a range of values of the ‘relative roughness’ (A0/ks), whereA0 is the excursion amplitude of the water particles in the free-stream flow andks is the ‘equivalent bed roughness’. Typical vertical profiles of horizontal velocity, turbulence energy and eddy viscosity, and time-series of the bed shear stress are presented. The model results are then used to determine the wave drag coefficient, boundary-layer thickness and phase lead of the bed shear stress over the free-stream velocity, each as a function ofA0/ks. These results are shown to be in generally good agreement with previous experimental and theoretical results. Finally, the model is used to test for the existence of a universal velocity distribution for uniform oscillatory (sinusoidal) rough-turbulent flow. The ‘law of the wall’ and the ‘defect law’ proposed by Jonsson (1980, Ocean Engineering, 7, 109–152) are well supported by the model, and the existence of a logarithmic ‘velocity overlap layer’ in which both of these laws are valid is demonstrated forAo/ks30.  相似文献   

11.
Phase velocities of Rayleigh waves for the Adriatic Sea area are obtained in the period range 25–190 sec along the path (l'Aquila-Trieste) AQU-TRI and 20–167 sec along the path (Trieste-Bari) TRI-BAI.The phase velocities are systematically higher than the known values for the surrounding regions. The data inversion indicates the presence of a lithosphere typical of stable continental areas with clear high-velocity lid (V s 4.6 km/sec) overlying a well developed low velocity zone (V s 4.2 km/sec).P. F. Geodinamica C.N.R., Roma Pubbl. N. 189.  相似文献   

12.
An attempt is made to obtain a combined geophysical model along two regional profiles: Black Sea— White Sea and Russian Platform—French Central Massif. The process of the model construction had the following stages: 1. The relation between seismic velocity (Vp, km/s) and density (σ, g/cm3) in crustal rocks was determined from seismic profiles and observed gravity fields employing the trial and error method. 2. Relations between heat production HP (μW/m3), velocity and density were established from heat flow data and crustal models of old platforms where the mantle heat flow HFM is supposed to be constant. The HFM value was also determined to 11 ± 5 mW/m2. 3. A petrological model of the old platform crust is proposed from the velocity-density models and the observed heat flow. It includes 10–12 km of acid rocks, 15–20 km of basic/metamorphic rocks and 7–10 km of basic ones. 4. Calculation of the crustal gravity effects; its substraction from the observed field gave the mantle gravity anomalies. Extensively negative anomalies have been found in the southern part of Eastern Europe (50–70 mgal) and in Western Europe (up to 200 mgal). They correlate with high heat flow and lower velocity in the uppermost mantle. 5. A polymorphic advection mechanism for deep tectonic processes was proposed as a thermal model of the upper mantle. Deep matter in active regions is assumed to be transported (advected) upwards under the crust and in its place the relatively cold material of the uppermost mantle descends. The resulting temperature distribution depends on the type of endogeneous regime, on the age and size of geostructure. Polymorphic transitions were also taken into account.  相似文献   

13.
剪切波速与地基土的抗剪强度、剪切模量和卓越周期等参数密切相关,是地震安全性评价中判定场地类别的一个主要指标和参数。鉴于海域工程中剪切波速往往难以直接由原位测得,而室内实验结果又常常与野外现场物探测试值存在较大差异,因此,如何通过其他途径有效获取满足工程需要的剪切波速参数在海域工程的地震安全性评价等方面具有迫切的实用需求。为此本文通过对渤海海域数十个石油平台项目中一系列饱和黏性土样品的剪切波速与抗剪强度实验数据的统计分析,尝试采用多种可能的函数来拟合确定二者之间的经验关系。结果表明:对于渤海海域黏性土剪切波速V_s与抗剪强度S_u之间的最佳统计经验关系为幂函数V_s=53.751S_u~(0.376)。此关系可为渤海海域工程中通过不排水抗剪强度估算剪切波速提供一种简便可行的实用性方法。  相似文献   

14.
Seismic Ground Motion in Napoli for the 1980 Irpinia Earthquake   总被引:3,自引:0,他引:3  
— The seismic ground motion in the urban area of Napoli has been computed for the 1980 earthquake (Ms = 6.9) with a hybrid technique based on the mode summation and the finite difference methods. The detailed geological setting of each quarter has been reconstructed from several stratigraphies and six geological zones have been recognized. Shear-wave velocity profiles have been assigned, based on hole tests and inversion of Rayleigh group velocities artificially generated. Realistic SH and P-SV wave seismograms have been computed along the representative cross sections of each zone, by assuming selected velocity profiles. Spectral amplifications of 2–4 have been computed at frequencies roughly corresponding to the eigenfrequencies of the most damaged buildings. Moreover, following the intensity-PGA correlations found for the Italian territory, the predicted peak ground accelerations, 0.04–0.10 g correspond to the intensity range VII-VIII on the MCS scale, in agreement with the observed data.  相似文献   

15.
Ground motions recorded within sedimentary basins are variable over short distances. One important cause of the variability is that local soil properties are variable at all scales. Regional hazard maps developed for predicting site effects are generally derived from maps of surficial geology; however, recent studies have shown that mapped geologic units do not correlate well with the average shear-wave velocity of the upper 30 m, Vs(30). We model the horizontal variability of near-surface soil shear-wave velocity in the San Francisco Bay Area to estimate values in unsampled locations in order to account for site effects in a continuous manner. Previous geostatistical studies of soil properties have shown horizontal correlations at the scale of meters to tens of meters while the vertical correlations are on the order of centimeters. In this paper we analyze shear-wave velocity data over regional distances and find that surface shear-wave velocity is correlated at horizontal distances up to 4 km based on data from seismic cone penetration tests and the spectral analysis of surface waves. We propose a method to map site effects by using geostatistical methods based on the shear-wave velocity correlation structure within a sedimentary basin. If used in conjunction with densely spaced shear-wave velocity profiles in regions of high seismic risk, geostatistical methods can produce reliable continuous maps of site effects.  相似文献   

16.
Flow velocity is one of the most important hydrodynamic variables for both channelized (rill and gullies) and interrill erosive phenomena. The dye tracer technique to measure surface flow velocity Vs is based on the measurement of the travel time of a tracer needed to cover a known distance. The measured Vs must be corrected to obtain the mean flow velocity V using a factor αv = V/Vs which is generally empirically deduced. The Vs measurement can be influenced by the method applied to time the travel of the dye-tracer and αv can vary in different flow conditions. Experiments were performed by a fixed bed small flume simulating a rill channel for two roughness conditions (sieved soil, gravel). The comparison between a chronometer-based (CB) and video-based (VB) technique to measure Vs was carried out. For each slope-discharge combination, 20 measurements of Vs, characterized by a sample mean Vm, were carried out. For both techniques, the frequency distributions of Vs/Vm resulted independent of slope and discharge. For a given technique, all measurements resulted normally distributed, with a mean equal to one, and featured by a low variability. Therefore, Vm was considered representative of surface flow velocity. Regardless of roughness, the Vm values obtained by the two techniques were very close and characterized by a good measurement precision. The developed analysis on αv highlighted that it is not correlated with Reynolds number for turbulent flow regime. Moreover, αv is correlated neither with the Froude number nor with channel slope. However, the analysis of the empirical frequency distributions of the correction factor demonstrated a slope effect. For each technique (CB, VB)-roughness (soil, gravel) combination, a constant correction factor was statistically representative even if resulted in less accurate V estimations compared to those yielded by the slope-specific correction factor.  相似文献   

17.
A practical method is presented for determining three‐dimensional S‐wave velocity (VS) profile from microtremor measurements. Frequency–wave number (fk) spectral analyses of microtremor array records are combined, for this purpose, with microtremor horizontal‐to‐vertical (H/V) spectral ratio techniques. To demonstrate the effectiveness of the proposed method, microtremor measurements using arrays of sensors were conducted at six sites in the city of Kushiro, Japan. The spectral analyses of the array records yield dispersion characteristics of Rayleigh waves and H/V spectra of surface waves, and joint inversion of these data results in VS profiles down to bedrock at the sites. Conventional microtremor measurements were performed at 230 stations within Kushiro city, resulting in the H/V spectra within the city. Three‐dimensional VS structure is then estimated from inversion of the H/V spectra with the VS values determined from the microtremor array data. This reveals three‐dimensional VS profile of Kushiro city, together with an unknown hidden valley that crosses the central part of the city. The estimated VS profile is consistent with available velocity logs and results of subsequent borings, indicating the effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Fracturing and hydrothermal alteration in normal fault zones   总被引:9,自引:0,他引:9  
Large normal fault zones are characterized by intense fracturing and hydrothermal alteration. Displacement is localized in a slip zone of cataclasite, breccia and phyllonite surrounding corrugated and striated fault surfaces. Slip zone rock grades into fractured, but less comminuted and hydrothermally altered rock in the transition zone, which in turn grades abruptly into the wall rock. Fracturing and fluid flow is episodic, because permeability generated during earthquakes is destroyed by hydrothermal processes during the time between earthquakes.Fracture networks are described by a fracture fabric tensor (F). The permeability tensor (k) is used to estimate fluid transport properties if the trace of F is sufficiently large. Variations in elastic moduli and seismic velocities between fault zone and wall rock are estimated as a function of fracture density (). Fracturing decreases elastic moduli in the transition zone by 50–100% relative to the country rock, and similar or even greater changes presumably occur in the slip zone.P-andS-wave velocity decrease, andV p /V s increases in the fault zone relative to the wall rock. Fracture permeability is highly variable, ranging between 10–13 m2 and 10–19 m2 at depths near 10 km. Changes in permeability arise from variations in effective stress and fracture sealing and healing.Hydrothermal alteration of quartzo-feldspathic rock atT>300°C creates mica, chlorite, epidote and alters the quartz content. Alteration changes elastic moduli, but the changes are much less than those caused by fracturing.P-andS-wave velocities also decrease in the hydrothermally altered fault rock relative to the country rock, and there is a slight decrease inV p /V s , which partially offsets the increase inV p /V s caused by fracturing.Fracturing and hydrothermal alteration affect fault mechanics. Low modulus rock surrounding fault surfaces increases the probability of exceeding the critical slip distance required for the onset of unstable slip during rupture initiation. Boundaries between low modulus fault rock and higher modulus wall rock also act as rupture guides and enhance rupture acceleration to dynamic velocity. Hydrothermal alteration at temperatures in excess of 300°C weakens the deeper parts of the fault zone by producingphyllitic mineral assemblages. Sealing of fracture in time periods between large earthquakes generates pods of abnormally pressured fluid which may play a fundamental role in the initiation of large earthquakes.  相似文献   

20.
四川、甘肃地区VS30经验估计研究   总被引:1,自引:0,他引:1       下载免费PDF全文
目前我国建筑工程抗震设计规范中对于工程场地条件的判断依据主要是地表以下20m深度范围内土层的等效剪切波速,简称VS20。相比之下,国外应用较广的是地表以下30m深度范围内的等效剪切波速,简称VS30。这种差别导致国内科研工作者在应用国外的地震工程、工程抗震模型时经常遇到对场地条件描述不准确的困难。为了解决这个问题,本文根据147个四川、甘肃地区国家强震动台站20m左右深度的钻孔剪切波速数据,利用延拓方法、场地分类统计方法以及基于地形特征的VS30估计方法研究各台站VS30与VS20的经验关系,对比发现基于速度梯度延拓的结果最为可取。参考国际上通用的Geomatrix Classification场地分类标准,最终得到四川、甘肃地区各类场地的平均VS30,此结果可以为缺乏钻孔数据的工程场地的VS30估计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号