首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the ultra-high pressure metamorphic rocks with coesite and diamond indicators,which are formed under the condition of deep-subduction of continental crust,have been recognized[1―4],exsolution structures of the ultra-high pressure minerals such as pyroxene,olivine,garnet and sphene in the various kinds of rocks have attracted the great interests and attention of many researchers[5―18].Some exsolution structures,such as clinopyroxene+rutile+apatite[13]or quartz+rutile+apatite[15]exsolutio…  相似文献   

2.
A garnet-pyroxene bearing amphibolite as a xenolith hosted by the Mesozoic igneous rocks from Xuzhou-Suzhou area was dated by zircon SHRIMP U-Pb method, which yields a metamorphic age of 1918 ± 56 Ma. In addition, the zircons from a garnet amphibolite as a lens interbedded with marble in the Archean metamorphic complex named Wuhe group in the Bengbu uplift give a metamorphic U-Pb age of 1857 ± 19 Ma, and the zircons from Shimenshan deformed granite in the eastern margin of the Bengbu uplift give a magma crystallization U-Pb age of 2054 ± 22 Ma. Both the Xuzhou-Suzhou area and Bengbu uplift are located in the southeastern margin of the North China Craton. Therefore, these ages indicate that there is a Paleoproterozoic tectonic zone in the southeastern margin of the North China Craton, and its metamorphic and magmatic ages are consistent with those of the other three Paleoproterozoic tectonic zones in the North China Craton. In view of the large scale sinistral strike-slip movement occurred at the Mesozoic along the Tan-Lu fault zone, the position of the eastern Shandong area, which is a south section of the Paleoproterozoic Jiao-Liao-Ji Belt, was correlated to Xuzhou-Suzhou-Bengbu area prior to movement of the Tan-Lu fault zone. This suggests that the Xuzhou-Suzhou-Bengbu Paleoproterozoic tectonic zone might be a southwest extension of the Paleoproterozoic Jiao-Liao-Ji Belt. Supported by National Natural Science Foundation of China (Grant No. 40634023)  相似文献   

3.
Ultrahigh‐temperature (UHT) granulite facies rocks from the Achankovil Shear Zone area and the southern domain of the Madurai Granulite Block in South India contain monazite useful for in situ microprobe U–Pb dating. The UHT rocks examined consist of garnet + cordierite (retrograde) + quartz + mesoperthite + biotite + plagioclase + Fe‐Ti oxides ± orthopyroxene ± sillimanite and accessory zircon and monazite. Sillimanite occurs only as inclusions in garnet. Microstructural observations suggest garnet, orthopyroxene, spinel and mesoperthite are products of peak metamorphism. Post‐peak formation of cordierite ± orthopyroxene ± quartz and cordierite + spinel + Fe‐Ti oxides assemblages is also observed. Geothermobarometry on orthopyroxene and garnet‐orthopyroxene bearing assemblages suggest peak UHT conditions of T = 940–1040°C and P = 8.5–9.5 kbar. This was followed by a retrograde stage of 3.5–4.5 kbar and 720 ± 60°C, estimated from garnet‐cordierite assemblages. A small population of rounded, probably detrital, monazites in these rocks yield ages from Meso‐ to Neoproterozoic indicating a heterogeneous source. The youngest associated spot ages are 660–600 Ma suggesting protolith deposition up to ca 600 Ma. In contrast, the vast majority of monazites that crystallized during the latest metamorphic event show late Neoproterozoic to Cambrian ages. Probability‐density plots of monazite age data show a ‘peak’ between 533 and 565 Ma, but this peak need not reflect a particular thermal event. Collating ages from homogenous metamorphic monazites associated with minerals stable at peak P‐T conditions suggests peak metamorphism in these rocks occurred at 580–600 Ma. Together with a re‐evaluation of available data from adjacent granulite blocks in southern India, these data suggest the main metamorphic event coinciding with the suturing of India with the Gondwana amalgam probably occurred 580–600 Ma. The 500–550 Ma ages commonly reported in previous studies might represent post‐peak thermal events.  相似文献   

4.
A combined study using LA-ICP-MS U-Pb dating, Hf isotopes, trace elements and the Ti-in-zircon geo-thermometer was carried out on zircons from the metamorphosed basic-ultrabasic rocks in the meta-morphic basement of the Cathaysia Block, southwestern Zhejiang Province. The formation and meta-morphic ages of the rocks from the metamorphic basement of the Cathaysia Block were determined based on zircon U-Pb geochronology. The age for the magmatic crystalline zircons from the protolith is about 1.85 Ga. The εHf(t) values of the older zircons were from ?7 to ?3, with two-stage model Hf ages (TDM2LC) of about 2.9 to 3.4 Ga, indicating that the source material was derived from anatexis and recy-cling of the Archean crust. The newly formed metamorphic zircons yielded U-Pb ages of 260―230 Ma. The metamorphic temperature calculated using the Ti-in-zircon geothermometer ranged from 610 to 720℃, consistent with the results from petrographic observations, indicating that the Cathaysia Block experienced an amphibolite facies metamorphism during the Indosinian. Results from this study pro-vided an important timeframe for the tectonic evolution in South China and the Southeast Asia during the Late Permian and Early Triassic times.  相似文献   

5.
Experimental study of spinel-garnet phase transition was carried out using natural mineral and rock specimens from xenolith of mantle rocks in Cenozoic basalt as starting materials. From the result it was found that the condition of spinel Iherzolite-garnet Ihenolite phase transition (T = 1 100°C andP = 1.8–2.0 GPa) is consistent with theP-T equilibrium condition of the five-phase assemblage spinel/garnet Iherzolite in eastern China, suggesting that there may exist a spinel-garnet Iherzolite phase transition zone with the thickness of a few km to several ten km at the depth of 55–70 km in the continental upper mantle of eastern China. The depth of phase transition from spinel pyroxenite to garnet pyroxenite is found to be less than 55 km. Experiment results also show that water promotes metasomatism on one hand but suppresses phase transition on the other. Zoning of mineral composition was also discussed. Project supported by the National Natural Science Foundation of China.  相似文献   

6.
This study presents the chronological evolution of the upper amphibolite facies Orue Unit in NW Namibia. Metasedimentary and meta-igneous rocks of the Orue Unit were investigated using the Pb–Pb stepwise leaching technique on garnet and rutile, U–Pb multi-grain analysis on rutile, Sm–Nd–Lu–Hf leaching technique on garnet, SHRIMP analysis on zircon and Ar–Ar dating on amphibole. Each of these techniques pertains to different processes that occurred before, during, or after the metamorphic peak. Our age data can be integrated with petrological constraints to provide a more complete understanding of the metamorphic cycle. Our pre-peak metamorphic zircon ages, peak metamorphic garnet ages and peak to late peak metamorphic amphibole 39Ar–40Ar ages bracket the upper amphibolite facies metamorphic event including hydration or dehydration processes into a time span of only ca. 20 Ma. The age data obtained by peak metamorphic mineral analyses cluster around 1340–1320 Ma. Based on age data and field observation, we interpret the upper amphibolite facies metamorphism as a large-scale regional mid-crustal event. Spot analyses of inherited zircon cores obtained by SHRIMP reflect the sedimentary origin of the respective rocks of the Orue Unit and derivation from Palaeoproterozoic protoliths. The metamorphic rocks south of the anorthositic Kunene Intrusive Complex (KIC) have previously been ascribed to the Palaeoproterozoic Epupa Complex at the SW margin of the Congo craton and were thus thought to be older than the Mesoproterozoic KIC. Our data show that the high-grade metamorphic overprint took place 30–50 Ma after emplacement of the KIC. Rutile growth ages of 1248 Ma in one sample reflect fluid activity which seems to be a local phenomenon since there is no other evidence of geological activity throughout the Orue Unit at that time. The rutile ages predate the emplacement of satellite intrusions in that area by 30 Ma and there is no causal relation between these two events.  相似文献   

7.
Crustal structure of Dabieshan orogenic belt   总被引:2,自引:0,他引:2  
The crustal structures ofP velocity and density on the deep seismic sounding profile across the Ilabieshan orogenic belt are presented. There is a 5-km-thick crustal “root” between the Yuexi and Xiaotian where the elevation is highest on the profile. An apparent Moho offset of 4. 5 km beneath the Xiaotian-Mozitan fault marks the paleo-suture of the Triassic collision. A high-velocity anomaly zone at the depth below 3 km beneath the ultra-high pressure (UHP) zone may be correlated to the higher content of UHP metamorphic rocks. Project supported by the National Natural Science Foundation of China and the Joint Earthquake Science Foundation.  相似文献   

8.
H. Tabata  S. Maruyama  & Z. Shi 《Island Arc》1998,7(1-2):142-158
The ultrahigh- and high-pressure (UHP–HP) metamorphic belt of the Dabie Mountains, central China, formed by the Triassic continental subduction and collision, is divided into four metamorphic zones; from south to north, the greenschist facies zone, epidote amphibolite to amphibolite facies zone, quartz eclogite zone, and coesite eclogite zone, based on metabasite mineral assemblages. Most of the coesite-bearing eclogites consist mainly of garnet and omphacite with homogeneous compositions and have partially undergone hydration reactions to form clinopyroxene + plagioclase + calcic amphibole symplectites during amphibolite facies overprinting. However, the least altered eclogites sometimes contain garnet and omphacite that preserve compositional zoning patterns which may have originated during their growth at peak temperature conditions of ∼ 750 °C, suggesting a short duration of UHP metamorphic conditions and/or consequent rapid cooling during exhumation. Systematic investigation on peak metamorphic temperatures of coesite eclogite have revealed that, contrary to the general trend of metamorphic grade in the southern Dabie unit, the coesite eclogite zone shows rather flat thermal structure (T = 600 ± 50 °C) with the highest temperature reaching up to 850 °C and no northward increase in metamorphic temperature, which is opposed to the previous interpretations. This feature, along with the preservation of compositional zonation, implies complicated differential movement of each eclogite mass during UHP metamorphism and the return from the deeper subduction zone at mantle depths to the surface.  相似文献   

9.
Abstract Petrological studies of a serpentinized garnet lherzolite body in Rongcheng of the Su-Lu region of eastern China revealed unusually high pressure. Spinel lherzolite probably in a subducting slab was transformed to garnet lherzolite at mantle depth. During exhumation, they were subsequently subjected to the granulite and then amphibolite overprinting and a phase of serpentinization. The peak P–T conditions of the garnet lherzolite estimated after detailed analysis of the metamorphic texture are 4–5 GPa and 820°C or 5–6 GPa and 780°C, depending on the chosen geothermobarometers. The lower dP/dT of the garnet lherzolite can be interpreted as the results of subduction of an old (say 100 Ma older than the time of collision) and cold, slab underneath the margin of the Sino–Korean craton.  相似文献   

10.
The timing of ultra-high pressure (UHP) metamorphism has been difficult to determine because of a lack of age constraints on crucial events, especially those occurring on the prograde path. New Sensitive High-Resolution Ion Microprobe (SHRIMP) U–Pb age and rare-earth element (REE) data of zircon are presented for UHP metamorphic rocks (eclogite, garnet peridotite, garnet pyroxenite, jadeite quartzite and garnet gneiss) along the Dabie–Sulu UHP complex of China. With multiphase metamorphic textures and index mineral inclusions within zircon, the Dabie data define three episodes of eclogite-facies metamorphism, best estimated at 242.1 ± 0.4 Ma, 227.2 ± 0.8 Ma and 219.8 ± 0.8 Ma. Eclogite-facies zircons of the Sulu UHP complex grew during two major episodes at 242.7 ± 1.2 and 227.5 ± 1.3 Ma, which are indistinguishable from corresponding events in the Dabie UHP complex. A pre-eclogite metamorphic phase at 244.0 ± 2.6 Ma was obtained from two Sulu zircon samples which contain low pressure–temperature (plagioclase, stable below the quartz/Ab transformation) and hydrous (e.g., amphibole, stable below  2.5 Gpa) mineral inclusions. In terms of Fe–Mg exchange of trapped garnet–clinopyroxene pairs within zircon domains, we are able to determine the Pressure–Temperature (PT) conditions for a specific episode of metamorphic zircon growth. We suggest that mineral phase transformations and associated dehydration led to episodic eclogite-facies zircon growth during UHP metamorphism ( 2.7 Gpa) began at 242.2 ± 0.4 Ma (n = 74, pooling the Dabie–Sulu data), followed by peak UHP metamorphism (>  4 Gpa) at 227.3 ± 0.7 Ma (n = 72), before exhumation (<  220 Ma) to quartz stability (~ 1.8 Gpa). The Dabie–Sulu UHP metamorphism lasted for about 15 Ma, equivalent to a minimum subduction rate of 6 mm/year for the descending continental crust.  相似文献   

11.
The basic granulites from Xuanhua and Miyun have similar mineral assemblages but very different reactionary textures. Through comparison of the metamorphic reaction space between the basic granulites of the two areas, it is further confirmed that theP-T evolution of Xuanhua basic granulites and that of Miyun basic granulites are different. The former is of type CW-ITD. The latter is of ACW-IBC. Project supported by the National Natural Science Foundation of China and the Research Grant for Doctoral Degree from the State Education Commission of China.  相似文献   

12.
High-pressure mafic granulites occurring as lenticular bodies within garnet-amphibolites in Kangxiwar Fault have been first reported in this paper. The P-T conditions of two metamorphic stages were ob-tained using calibrated geothermal barometers and ThermoCalc Program. The peak metamorphic con-dition of these high-pressure granulites is about 760―820℃,1.0―1.2 GPa and the retrograde meta-morphic condition is about 620―720℃,0.7―0.8 GPa. The petrological studies show that they have a near-isobaric cooling P-T...  相似文献   

13.
Foliated garnet-bearing granite, usually associated with high pressure and ultrahigh -pressure (UHP) metamophic rocks, is a particular rock-type extensively exposed in the Mesozoic Dabie-Sulu orogenic belt of China. This study focuses on deformation features and SHRIMP zircon dating of foliated garnet granite in a high-pressure metamorphic unit from Huwan, western Dabie Mountains in order to resolve discrepancies in current versions of its petrogenesis and structural evolution. SHRIMP dating reveals a zircon age of 762 ± 15 Ma (MSWD=1.7) for Huwan granites, representing the Middle to Late Neoproterozoic age of intrusion and crystallization. Field and microstructural studies show that the Huwan granite body underwent multiple-stage deformation. The deformation was manifested by an early stage of rootless folding and imposition of relict foliation (S1); an Indosinian main stage marked by imposition of north-dipping penetrative gneissosity (S2) and development of ductile shear zones under NNE-SSW directed compression; and a final Indosinian stage of southward thrusting of the Huwan high-pressure unit. Shallow level extension prevailed after the Late Triassic, giving rise to south-dipping thrust faults and north-dipping normal faults. Supported by the National Natural Science Foundation of China (Grant Nos. 40802046 and 40334037) and the Project of Science & Technology Research and Development from Sinopec (Grant No. P02009)  相似文献   

14.
The Hongzhen metamorphic core complex is situated in the Yangtze plate to the east of the Dabie oro- genic belt. Its ductile detachment zone in the foot wall overprints on the metamorphic complex of the Proterozoic Dongling Group. The present profile of the ductile shear zone with consistent SW-dipping mineral elongation lineation shows antiform and reversed S-shape from northeast to southwest respectively. Exposure structures, microstructures and quartz C-axis fabric all indicate top-to-SW movement for the ductile shear zone. Recrystallisation types of quartz and feldspar in the mylonites demonstrate that the shear zone was developed under the amphibolite facies condition and at mid-crust levels. The metamorphic core complex formed in the Early Cretaceous with a muscovite plateau age of 124.8±1.2 Ma. Regional NE-SW extension along a SW-dipping, gentle detachment zone was responsible for formation of the core complex. Intrusion of the Hongzhen granite with a biotite plateau age of 124.8±1.2 Ma rendered the ductile shear zone curved, uplifted and final localization of the core complex. The Hongzhen metamorphic core complex suggests that the Early Cretaceous magma- tism in this region took place under the condition of regional extension and the eastern Yangtze plate also experienced lithospheric thinning.  相似文献   

15.
The metamorphic complex of the Julin Group occurs in the Yuanmou area of Yunnan Province on the western margin of the Yangtze Platform, and connects with the Kangdian metamorphic complex to the north. Based on the detailed petrographic observations and studies of garnet growth zoning, aP-T-t path has been reconstructed for the staurolite-kyanite zone in the Julin Group. This path is characterized by (1) a counter-clockwise evolutional trend, (2) a quicker increase of temperature than that of pressure in the initial prograde metamorphism, but slower near the peak, then temperature and pressure simultaneously reaching the peak metamorphic conditions, and (3) a slow near-isobaric cooling during the retrograde process. TheP-T-t path for prograde metamorphism is closely related to magmatic accretion in the arc setting. The magmatic accretion model, metamorphism type and tectonic setting may be compared with the global Grenville tectono-metamorphic events, and related to the assembly of the Rodinia at the late Mesoproterozoic-early Neoproterozoic (∼1.0 Ga). The retrogradeP-T-t path shows a slow near-isobaric cooling, indicating sustained heat supplies from the upper mantle and no rapid erosion. This heat source may be originated from the Neoproterozoic (∼0.82 Ga) breakup of the Rodinia.  相似文献   

16.
Two localities on the Leizhou Peninsula, southern China (Yingfengling and Tianyang basaltic volcanoes) yield a wide variety of mantle-derived xenoliths including Cr-diopside series mantle wall rocks and two distinct types of Al-augite series pyroxenites. Metapyroxenites have re-equilibrated granoblastic microstructures whereas pyroxenites with igneous microstructures have not thermally equilibrated to the mantle conditions. An abundant suite of megacrysts and megacrystic aggregates (including garnet, plagioclase, clinopyroxene, ilmenite and apatite) is interpreted as the pegmatitic equivalents of the igneous pyroxenite suite. Layered spinel lherzolite/spinel websterite xenoliths were formed by metamorphic differentiation caused by mantle deformation, inferred to be related to lithospheric thinning. Some metapyroxenites have garnet websterite assemblages that allow calculation of their mantle equilibration temperatures and pressures and the construction of the first xenolith geotherm for the southernmost China lithosphere. Heat flow data measured at the surface in this region yield model conductive geotherms (using average crustal conductivity values) that are consistent with the xenolith geotherm for the mantle. The calculated mean surface heat flux is 110 mW/m2. This high heat flux and the high geotherm are consistent with young lithospheric thinning in southern China, and with recent tomography results showing shallow low-velocity zones in this region. The xenolith geotherm allows the construction of a lithospheric rock type section for the Leizhou region; it shows that the crust–mantle boundary lies at about 30 km, consistent with seismic data, and that the lithosphere–asthenosphere boundary lies at about 100 km.  相似文献   

17.
Wei  Lin  Masaki  Enami 《Island Arc》2006,15(4):483-502
Abstract Jadeite‐bearing eclogites and associated blueschists locally crop out in a greenschist facies area at Kuldkourla, near the Akeyazhi River in the western Chinese Tianshan region, northwestern China. Garnet in these metamorphic rocks shows prograde zoning with increasing Mg and decreasing Mn from the crystal center towards the rim, and is divided into Ca‐poor/Fe‐rich core and Ca‐rich/Fe‐poor mantle parts. The garnet cores include the assemblages of (i) jadeite/omphacite (Xjd = 0.34–0.96) + barroisite/taramite; and (ii) omphacite + barroisite/pargasite, with paragonite, epidote, rutile and quartz as major phases with rare albite. The garnet mantles rarely contain inclusions of omphacite, glaucophane, epidote, rutile and quartz. Major matrix phases of the pre‐exhumation stage are omphacite, glaucophane, paragonite, rutile and quartz. These mineral parageneses give pressure (P)‐temperature (T) conditions of 0.9 GPa/390°C?1.4 GPa/560°C for the stage of the garnet core formation, 1.8 GPa/520°C for the stage of the garnet mantle formation, and 2.2 GPa/495°C‐2.4 GPa/535°C for the peak eclogite facies assemblage in the matrix. The estimated P‐T conditions and continuous changes of mineral parageneses imply a counterclockwise P‐T path which is a combination of (i) an early prograde stage of high‐pressure/low‐temperature (HP/LT) blueschist facies and/or LP/LT eclogite facies; (ii) a later prograde stage involving compression with minimal heating; and (iii) a climax‐of‐subduction stage characterized by a slight decrease of temperature with increasing pressure. The negative dP/dT of the latest subduction stage is possibly a record of the following events after a continuous subduction and ridge approach: (i) material migration within the upper part of the subducting slab, which has an inverse thermal gradient caused by ductile flow and/or slab break during subduction; and/or (ii) temporary cooling of the wedge mantle–slab interface by continuous subduction of a relatively cold slab following subduction of a hotter ridge.  相似文献   

18.
Lower crustal high grade metamorphic rocks have been successively found at Pamirs nearby the western Himalayan syntaxis, Namjagbarwa and Dinggye nearby the eastern Himalayan syntaxis and the central segment of the Himalayan Orogenic Belt, respec-tively[1―4]. In particular, some researchers deduced that there were probably eclogites at some locations[5]. Moreover, some geochronological data of these lower crustal granulites also have been accumulated. For example, the high-pressure granulit…  相似文献   

19.
Metamorphic rocks experience change in the mode of deformation from ductile flow to brittle failure during their exhumation. We investigated the spatial variation of phengite K–Ar ages of pelitic schist of the Sambagawa metamorphic rocks (sensu lato) from the Saruta River area, central Shikoku, to evaluate if those ages are disturbed by faults or not. As a result, we found that these ages change by ca 5 my across the two boundaries between the lower‐garnet and albite–biotite, and the albite–biotite and upper‐garnet zones. These spatial changes in phengite K–Ar ages were perhaps caused by truncation of the metamorphic layers by large‐scale normal faulting at D2 phase under the brittle‐ductile transition conditions (ca 300°C) during exhumation, because an actinolite rock was formed along a fault near the former boundary. Assuming that the horizontal metamorphic layers and a previously estimated exhumation rate of 1 km/my before the D2 phase, the change of 5 my in phengite K–Ar ages is converted to a displacement of about 10 km along the north‐dipping, low‐angle normal fault documented in the previous study. Phengite 40Ar–39Ar ages (ca 85 to 78 Ma) in the actinolite rock could be reasonably comparable to the phengite K–Ar ages of the surrounding non‐faulted pelitic schist, because the K–Ar ages of pelitic schist could have been also reset at temperatures close to the brittle–ductile transition conditions far below the closure temperature for thermal retention of argon in phengite (about 500–600°C).  相似文献   

20.
The Higo metamorphic terrane situated in west-central Kyushu island, southwest Japan, is composed of greenschist- to granulite-facies metamorphic rocks. The southern part of the metamorphic terrane consists mainly of garnet–biotite gneiss and garnet–cordierite–biotite gneiss, and orthopyroxene or cordierite-bearing S-type tonalite with subordinate amounts of hornblende gabbro. Rb–Sr, Sm–Nd and K–Ar isotopic ages for these rocks have been determined here. The garnet–biotite gneiss gives an Sm–Nd age of 227.1 ± 4.9 Ma and a Rb–Sr age of 101.0 ± 1.0 Ma. The hornblende gabbro has an Sm–Nd age of 257.9 ± 2.5 Ma and a K–Ar age of 103.4 ± 1.1 Ma. These age differences of the same samples are due to the difference in the closure temperature for each system and minerals. The garnet-cordierite–biotite gneiss contains coarse-grained garnet with a zonal structure conspicuously distinguished in color difference (core: dark red; rim: pink). Sm–Nd internal isochrons of the garnet core and the rim give ages of 278.8 ± 4.9 Ma (initial 143Nd/144Nd ratio = 0.512311 ± 0.000005) and 226.1 ± 28.4 Ma (0.512277 ± 0.000038), respectively. These ages are close to formation of the garnet core and the rim. It has been previously suggested that the Higo metamorphic terrane belongs to the Ryoke metamorphic belt. But Sr and Nd isotopic features of the rocks from the former are different from those of the Ryoke metamorphic rocks, and are similar to those of the granulite xenoliths contained in the Ryoke younger granite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号