首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
By applying linear poro-elasticity theory, the body force effect on steady soil consolidation, i.e., settlement, caused by constant water table depression due to groundwater pumping was investigated. The result shows that when the soil is soft or thick, or both, neglecting the body force effect can lead to severe underestimation of soil displacement and incremental effective stress. However, the transient response of soil consolidation was not analyzed. In addition, the water table depression due to groundwater pumping in fact varies with time. In this study, the body force effect on transient consolidation of soil subjected to variable water table depression is further examined. A poroelastic consolidation numerical model is developed herein to conduct this examination.  相似文献   

2.
In this study, the viscosity effect on consolidation of poroelastic soil due to groundwater table depression is examined. A viscoelastic consolidation numerical model is developed to conduct this examination. By nondimensionalizing the governing equations the viscosity number that depends on hydraulic conductivity, viscous moduli, and thickness of soil is obtained to represent the viscosity effect on consolidation of poroelastic soil. The case of clay stratum sandwiched between sandy strata subjected to sudden and gradual groundwater table depressions is used to investigate the importance of viscosity effect to poroelastic consolidation. The results show that the displacement and pore water pressure of clay stratum are strongly related to the viscosity effect. The overestimation of soil displacement will occur if the viscosity effect is neglected. Hence, the viscosity effect needs to be considered in modeling consolidation of poroelastic soil under groundwater table depression.  相似文献   

3.
徐进  王少伟  杨伟涛 《岩土力学》2020,41(3):1065-1073
地下水开采等人类工程活动会引起地下水位变化,从而导致地面沉降问题。地面沉降具有土层变形长期发展的特点,土体的蠕变性是导致这一现象的重要原因之一。为此,针对基于Biot理论的地面沉降耦合模型,利用半解析数值原理和黏弹性流变理论,推导了可压缩土层黏弹性耦合变形的求解格式,该计算方法无需数值积分,且具有很好的解耦并行性。在此基础上,编制了FORTRAN计算程序,通过与已有解答的对比验证,说明了方法及程序的合理性,计算结果可以正确反映土体黏滞性所导致的变形滞后效应。通过数值算例,进一步探讨了渗透性、孔隙流体可压缩性和土体黏滞性等因素对土层长期变形的影响规律。  相似文献   

4.
循环荷载下黏弹性饱和土层的一维固结   总被引:4,自引:0,他引:4  
针对单层黏弹性地基Merchant模型,运用Laplace变换,求得频域内单层黏弹性地基的一维固结解。通过Laplace逆变换,计算了单层黏弹性地基在任意循环荷载下的有效应力及平均固结度。此外,结合工程实例,研究了Merchant模型各参数对循环荷载下黏弹性地基固结的影响。结果表明,在黏弹性地基的固结过程中,有效应力和沉降的发展速率是不一致的,黏壶的存在使地基固结初期的有效应力增长加快,而使固结后期的有效应力增长减慢,同时使变形的发展滞后于有效应力的发展。研究结果亦表明,循环荷载下土体的固结对独立弹簧模量的变化要比Kelvin体中弹簧模量的变化敏感。  相似文献   

5.
After the application of a Laplace–Hankel transform, the governing equations of Biot’s consolidation are solved analytically by using the eigenvalue approach. Then the analytical layer-element of a single soil layer can be obtained in the transformed domain by synthesizing the generalized displacements and stresses, which are both expressed by six arbitrary constants. The elements of the analytical layer-element only contain negative exponential functions, which leads to a considerable improvement in computation efficiency and stability. The global stiffness matrix equation of multilayered soils is further obtained by assembling the interrelated layer-elements, and the actual solution is achieved by numerical inversion of the Laplace–Hankel transform after the solution in the transformed domain is obtained. Numerical examples are given to demonstrate the accuracy of this method and to study the influence of the layered soil properties and time history on the consolidation behavior.  相似文献   

6.
An exact steady‐state closed‐form solution is presented for coupled flow and deformation of an axisymmetric isotropic homogeneous fluid‐saturated poroelastic layer with a finite radius due to a point sink. The hydromechanical behavior of the poroelastic layer is governed by Biot's consolidation theory. Boundary conditions on the lateral surface are specifically chosen to match the appropriate finite Hankel transforms and simplify the transforms of the governing equations. Ordinary differential equations in the transformed domain are solved, and then the analytical solutions in the physical space for the pore pressure and the displacements are finally obtained by using finite Hankel inversions. The analytical solutions at some special locations such as the top and bottom surfaces, lateral surface, and the symmetrical axis are given and analyzed. And a case study for the consolidation of a water‐saturated soft clay layer due to pumping is conducted. The analytical solution is verified against the finite element solution. Meanwhile, an analysis of coupled hydromechanical behavior is carried out herein. The presented analytical solution is an exact solution to the practical poroelastic problem within an axisymmetric finite layer. It can provide us a better understanding of the poroelastic behavior of the finite layer due to fluid extraction. Besides, it can be applied to calibrate numerical schemes of axisymmetric poroelasticity within finite domains. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents the analytical solutions for nonlinear consolidation of soft soil around a shield tunnel with idealized sealing linings. By introducing the empirical relation between permeability and compressibility, along with the conformal transformation, the governing equations of nonlinear consolidation are established, and the corresponding analytical solutions are derived. Then, the Terzaghi consolidation solutions are derived from the degenerate governing equation of nonlinear consolidation. Through the predictions of different consolidation theories in both completely permeable and impermeable lining conditions, the influences of a tunnel acting as a drain and impacting the dissipation of pore pressure, degree of consolidation, long-term ground settlements and ground settlement rates are investigated. During the early stages of consolidation, the case studies reveal that the predictions made by this study strongly agree with the field data when a completely permeable lining is applied. This study confirms that a tunnel acting as a drain can accelerate the consolidation of soil and enlarge soil deformation due to consolidation. During long term consolidation, a notable nonlinearity of the soil consolidation is exhibited by a small and gradually decreasing settlement rate, showing agreement with the tendency of field data from the impermeable conditions.  相似文献   

8.
轴对称多层可压缩渗透各向异性岩基固结分析   总被引:1,自引:0,他引:1  
曾文泽  艾智勇 《岩土力学》2010,31(Z2):212-217
从轴对称固结基本方程出发,通过对时间t、坐标r的Laplace-Hankel变换,再对坐标z的Laplace变换,得到三元一次方程组,解此方程组,并进行Laplace逆变换,得到了单层可压缩渗透各向异性岩基轴对称固结问题的传递矩阵,然后利用传递矩阵法,结合层间连续性条件和边界条件,得到了多层可压缩渗透各向异性岩基轴对称固结问题在积分变换域内的解。最后应用Laplace-Hankel逆变换技术得到轴对称固结问题在物理域内的理论解。编制了相应的计算程序,并进行了数值计算与分析,讨论了可压缩性和渗透各向异性对岩基固结的影响,结果表明:可压缩性越大,岩基瞬时沉降越大;渗透各向异性对固结过程影响明显,但对初始和最终沉降的影响很小。  相似文献   

9.
耿雪玉  于洁 《岩土力学》2012,33(5):1366-1374
在竖向荷载和切向荷载共同作用下,求解了具有下卧基岩的横观各向同性土的Biot固结问题。首先,基于Biot固结理论得到控制方程,同时引入3个状态变量;然后,对时间t进行Laplace变换和对半径r进行Hankel变换。利用Laplace-Hankel联合积分变换求解状态方程,得到交通荷载作用下横观各向同性土骨架位移、孔隙水压力等的一般积分形式解。结合算例验证了该方法的正确性,并分析了切向荷载和竖向荷载共同作用下对横观各向同性土层沉降和孔压的影响,可以发现切向荷载和竖向荷载共同作用所产生的前期沉降明显小于竖向荷载单独作用的情况。为了更好地模拟实际情况,竖向荷载还采用正弦循环荷载。在循环荷载作用下,沉降变化周期滞后于荷载周期。  相似文献   

10.
In present study, the non-linear variations of soil compressibility, hydraulic and electro-osmosis conductivities were analyzed through laboratory experiments, and incorporated in a one-dimensional model. The analytical solutions for excess pore water pressure and degree of consolidation were derived, and numerical simulations were performed to verify its effectiveness. The results indicated that both the non-linear variations of hydraulic and electro-osmosis conductivities showed remarkable impacts on the excess pore water pressure and degree of consolidation, especially for soils with relative high compressibility. A further comparison with previous analytical solutions indicated that more accurate predictions could be obtained with the proposed analytical solutions.  相似文献   

11.
This paper presents semi-analytical solutions to Fredlund and Hasan’s one-dimensional consolidation for unsaturated soils under symmetric semi-permeable drainage boundary conditions. Two variables are introduced to transform two coupled governing equations of pore-air and pore-water pressures into an equivalent set of partial differential equations, which are easily solved by the Laplace transform. Then, the pore-air and pore-water pressures, and soil settlement are obtained in the Laplace domain. Crump’s method is adopted to perform the inverse Laplace transform in order to obtain semi-analytical solutions in time domain. It is shown that the present solution is more applicable to various types of drainage boundary conditions, and in a good agreement with existing solutions from the literature. Furthermore, several numerical examples are provided to investigate the consolidation behavior of an unsaturated single-layer soil with traditional drainage boundary (single or double), and single-sided and double-sided semi-permeable drainage boundaries. Finally, it illustrates the changes in pore-air and pore-water pressures and soil settlement with time at different values of symmetric semi-permeable drainage boundary conditions parameters. In addition, parametric studies are conducted by the variations of pore-air and pore-water pressures at different ratios of air-water permeability coefficient and the depth.  相似文献   

12.
苏万鑫  谢康和 《岩土力学》2010,31(8):2661-2665
对采用混合可压缩流体方法分析非饱和土一维固结问题的固结方程进行了求解,在得到的解析解的基础上,对影响非饱和土一维固结的因素进行了分析。分析结果表明,在采用混合流体方法计算非饱和土一维固结的孔隙水压力时,所用公式与计算饱和土一维固结的太沙基理论公式基本相同,不同之处在于引入Bishop有效应力系数来体现孔隙气对孔隙水的影响。而在非饱和土孔隙气压的计算公式中除了体现孔隙水对孔隙气的影响参数以外,还有体现孔隙气体的可压缩性对固结影响的参数。在所有影响因素中,影响非饱和土一维固结最重要的因素是孔隙流体的渗流路径。  相似文献   

13.
This paper presents an analytical layer element solution to axisymmetric thermal consolidation of multilayered porous thermoelastic media containing a deep buried heat source. By applying the Laplace–Hankel transform to the state variables involved in the basic governing equations of porous thermoelasticity, the analytical layer elements that describe the relationship between the transformed generalized stresses and displacements of a finite layer and a half‐space are derived. The global stiffness matrix equation is obtained by assembling the interrelated layer elements, and the real solutions in the physical domain are achieved by numerical inversion of the Laplace–Hankel transform after obtaining the solutions in the transformed domain. Finally, numerical calculations are performed to demonstrate the accuracy of this method and to investigate the influence of heat source's types, layering, and the porous thermoelastic material parameters on thermal consolidation behavior. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
变荷载作用下轴对称饱和半空间均质地基Biot固结分析   总被引:3,自引:0,他引:3  
耿雪玉  蔡袁强 《岩土力学》2009,30(8):2264-2270
基于Biot固结理论,对随时间变化的变荷载作用下轴对称饱和半空间均质地基固结问题进行了分析。引入状态变量,利用Laplace-Haknel联合变换法,求解了状态方程,得到变荷载作用下饱和土骨架位移、应力、孔隙水压力及渗流量的一般积分形式解,通过算例详细分析了变荷载作用下二维地基固结问题。结果表明,对缓加荷载作用下地基,只有加载较快时,在地基较深处才有明显的Mandel-Cryer效应出现。在循环荷载作用下,多维固结情况下会出现负孔压现象。  相似文献   

15.
In this paper, a simple semi‐analytical method has been developed to solve the one‐dimensional non‐linear consolidation problems by considering the changes of compressibility and permeability of the soil layer, subjected to complicated time‐dependent cyclic loadings at the ground surface. The solution presented here takes into account e ~ lg kv and e ~ lg σ′ linear responses. With ck the slope of the e ~ lg kv line and cc as the slope of the e ~ lg σ′ line, the identified parameter cc/ck is found to control the rate of consolidation. Using the solutions obtained, some diagrams are prepared and the relevant behaviours of one‐dimensional non‐linear consolidation of saturated soft soil under cyclic loadings are discussed. The method in this paper does not require any special data; conventional oedometer data can be used. Therefore, the method is particularly efficient and convenient for engineering practice. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Axisymmetric consolidation of multi-layered soils induced by groundwater extraction from a dewatering well is studied with consideration of the anisotropic permeability and the well length. Laplace-Hankel transforms are utilized to solve the governing equations. The analytical layer-element method is used to build relationships between displacements, stresses, excess pore pressure and seepage velocity in the transformed domain. The real solutions can be obtained by the inversion of Laplace-Hankel transforms. A series of parametric studies, especially the length of a dewatering well and the combined effect of pumping and recharging, are conducted to analyze the consolidation behaviors of layered soils.  相似文献   

17.
General approximate analytical solutions are developed for one-dimensional consolidation with consideration of the threshold gradient under a time-dependent loading. A comparison is made between the present solution and some available numerical solutions for a particular case, and the results show that the approach employed in this article is reasonable. The influence of the threshold gradient and the loading period on consolidation behaviour is investigated, and the results show that the moving boundary of seepage moves downward gradually. The greater the threshold gradient is, the slower the boundary moves. The excess pore pressure will not be completely dissipated at the end of consolidation, and the larger the threshold gradient is, the greater the residual excess pore pressure is. The average degree of consolidation considering the threshold gradient defined by settlement is different from that defined by pore pressure. Moreover, the greater the threshold gradient is, the larger the average degree of consolidation in terms of strain, whereas the smaller the average degree of consolidation in terms of stress. It is also shown that the longer the loading period is, the longer the time moving boundary takes to reach the bottom of the layer, and the greater the average degree of consolidation is.  相似文献   

18.
This paper presents a theoretical approach to analyse coupled, linear thermoporoelastic fields in a saturated porous medium under radial and spherical symmetry. The governing equations account for compressibility and thermal expansion of constituents, heat sink due to thermal dilatation of water and thermal expansion of the medium, and thermodynamically coupled heatwater flow. It has been reported in the literature that thermodynamically coupled heat–water flows known as thermo-osmosis and thermal filtration have the potential to significantly alter the flow fields in clay-rich barriers in the near field of a underground waste containment scheme. This study presents a mathematical model and examines the effects of thermo-osmosis and thermal-filtration on coupled consolidation fields in a porous medium with a cavity. Analytical solutions of the governing equations are presented in the Laplace transform space. A numerical inversion scheme is used to obtain the time-domain solutions for a cylindrical cavity in a homogeneous or a non-homogeneous medium. A closed form time-domain solution is presented for a spherical cavity in a homogeneous medium. Selected numerical solutions for homogeneous and non-homogeneous media show a significant increase in pore pressure and displacements due to the presence of thermodynamically coupled flows and a negligible influence on temperature. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
耿雪玉  蔡袁强  徐长节 《岩土力学》2008,29(6):1521-1529
针对任意复杂变荷载作用下未打穿的竖井地基,通过在竖井底面以下土层中设置虚拟竖井,使其能够合理考虑下卧层土体三维渗流问题,运用Laplace变换,求得频域内竖井地基的固结解。通过Laplace逆变换,得到了任意荷载作用下竖井地基的平均固结度、孔压消散曲线、沉降曲线。结合具体算例,对影响竖井地基固结的主要影响因素进行了详细分析,并将现有未打穿竖井地基平均固结度近似计算方法的精度和适用的范围进行了对比,得到了一些有益于工程实践的结论。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号