首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental investigations on perforated hollow piles in two rows were conducted in a two dimensional wave flume. The influence of water depth, incident wave steepness, clear spacing between the piles and the spacing of pile rows on transmission coefficient have been studied. The effect of staggering of piles in rows is investigated. The results are also compared with the results of experiments on piles without perforations. The investigations have revealed that perforated piles attenuate more wave energy than non-perforated piles. The transmission coefficient Kt decreases as the wave steepness increases for both non-perforated and perforated piles. For non-perforated piles as relative clear spacing between the piles (b/D) decreases, for waves of higher steepness, Kt decreases while for perforated piles as b/D decreases, Kt is decreasing for all the steepness considered. As the relative clear spacing between the pile rows (B/D) increases Kt initially decreases till B/D is around one and later it starts increasing for both non-perforated and perforated piles. Staggering of piles has little effect on Kt. It is also found that water depth has insignificant influence on transmission coefficient at higher steepness for both perforated and non-perforated piles. Wave period alone does not directly influence transmission coefficient Kt.  相似文献   

2.
O.S. Rageh 《Ocean Engineering》2009,36(14):1112-1118
The efficiency of the breakwater, which consists of caissons supported on two or three rows of piles, was studied using physical models. The efficiency of the breakwater is presented as a function of the transmission, reflection and the wave energy dissipation coefficients. Regular waves with wide ranges of wave heights and periods and constant water depth were used. Different characteristics of the caisson structure and the supporting pile system were also tested. It was found that, the transmission coefficient (kt) decreases with increasing the relative breakwater draft D/L, increasing the relative breakwater width B/h, and decreasing the piles gap-diameter ratio G/d. It is possible to achieve kt values less than 0.25 when D/L≥0.1. The reflection coefficient takes the opposite trend especially when D/L≤0.15. The proposed breakwater dissipates about 10-25% of the incident wave energy. Also, simple empirical equations are developed for estimating the wave transmission and reflection. In addition, the proposed breakwater model is efficient compared with other floating breakwaters.  相似文献   

3.
Vortex generators are used extensively as a passive flow control devices to delay or remove the boundary layer separation, which affects the hydrodynamic performance of the hydrofoil. In this paper, a new approach is introduced to overcome the boundary layer separation on the NACA S1210 hydrofoil. The outcome of tube slots combination in the S1210 hydrofoil on the boundary layer separation are numerically investigated. The performance is compared with respect to the force coefficients and glide ratio. The effects of tube slot inlet positions with different diameters on S1210 hydrofoil are presented here. The results show that the smaller diameter tube slots starting near the leading edge improves the hydrodynamics performance of the hydrofoil.  相似文献   

4.
单立柱张力腿平台水动力性能试验研究   总被引:1,自引:0,他引:1  
通过耐波性水池进行单立柱张力腿平台(简称SCTLP)在系泊状态下的运动特性,以及张力筋键受力情况的试验研究。试验分别在规则波和不规则波(长峰波和短峰波)中进行,浪向选取180°。根据水池深度,模型试验采用1∶87.5的缩尺比进行全水深模拟,并对风力和流速进行了模拟。通过试验,获得较为丰富的试验数据,能很好地分析SCTLP的运动特性。  相似文献   

5.
The comprehensive utilization of floating breakwaters, specially acting as a supporting structure for offshore marine renewable energy explorations, has received more and more attention recently. Based on linear water-wave theory, the hydrodynamic performance of a T-shaped floating breakwater is semi-analytically investigated through the matched eigenfunction expansion method (MEEM). Auxiliary functions, to speed up the convergence and improve the accuracy in the numerical computations, are introduced to represent the singular behavior of fluid field near the lower salient corners of the structure. The effects of the height and installation position of the vertical screen on the reflection and transmission coefficients, dynamic response and wave forces are examined. It is found that the presence of the screen shifts the resonance frequency of RAO for both surge and pitch modes to the low-frequency area, while has no effect on heave mode. The identical added masses, damping and transmission coefficients can be obtained in the cases where the screen holds the same distance away from the longitudinal central axis of the upper box-type structure. Moreover, a relatively small pitch response can be achieved in a wide wave–frequency range, when the breakwater is Γ-shaped.  相似文献   

6.
Abstract

This study developed prestressed high-strength concrete (PHC) piles reinforced with high-strength materials (glass fiber-reinforced polymer (GFRP) bars) for flexural performance enhancement. Flexural strengths and behaviors of PHC piles reinforced with hybrid GFRP and steel bars were experimentally investigated, respectively. Large-scale specimens with total lengths of 12,000?mm and diameters of 600?mm were constructed and tested under bending, accompanied by evaluation of effects of non-prestressed reinforcement type and longitudinal reinforcement ratio. J-factors were calculated to evaluate deformability of all the specimens. PHC piles reinforced with GFRP bars were demonstrated to have much higher flexural capacity than those reinforced with steel bars. Moreover, strains at the midspans of cross sections of all the specimens basically conformed to the assumption of plane section. Failure of PHC piles reinforced with GFRP bars was attributable to gradual concrete crushing, while that of PHC piles reinforced with steel bars resulted from steel yielding. Results of this study were expected to provide theoretical basis for wide engineering applications of PHC piles reinforced with hybrid GFRP bars and steel bars in marine structures.  相似文献   

7.
Hydrodynamic performance of solid and porous heave plates   总被引:3,自引:0,他引:3  
Heave plates have been widely utilized in floating offshore structures as they can provide additional damping and added mass to improve the hydrodynamic response of the system. This study investigates the hydrodynamic characteristics (added mass and damping) of oscillatory solid or porous disks using model scale experiments. All experiments were conducted via forced oscillation model tests using a planar motion mechanism (PMM). The hydrodynamic coefficients of the solid or porous disk obtained from the force measurements are analysed and presented. The sensitivities of the damping and added mass coefficients to both motion amplitude and the disk porosity are examined.  相似文献   

8.
The hydrodynamic performance of a dual cylindrical caisson breakwater (DCBW) formed by a row of caissons each of which consisting of a porous outer cylinder circumscribing an impermeable inner cylinder has been theoretically investigated. The theoretical formulation is based on the eigenfunction expansion method proposed by Spring and Monkmeyer (1974) which was further modified by Linton and Evans [Linton, C.M., Evans, D.V., 1990. The interaction of waves with arrays of vertical circular cylinders. Journal of Fluid Mechanics 215, 549–569] for an array of impermeable cylinders. The present formulation is an extension of the work of Wang and Ren [Wang, K.H., Ren, X., 1994. Wave interaction with a concentric porous cylinder system. Ocean Engineering 21(4), 343–360], wherein; the interaction of linear waves with a single concentric porous cylinder system was studied. In the present study, the formulation has been extended to the case of a group of porous dual cylinder system. Parametric studies are carried out to study the influence of porosity (G0) on the outer caisson, width of the doughnut chamber (a/b) and the angle of wave incidence on the variation in the hydrodynamic loading, wave run-up, free-surface elevation in its vicinity as well as the transmission on its lee-side. The importance of the presence of the inner cylinder in achieving the required hydrodynamic performance in terms of either protection or providing tranquility on its lee side keeping higher stability for the breakwater system is highlighted.  相似文献   

9.
The hydrodynamic efficiency of the vertical porous structures is investigated under regular waves by use of physical models. The hydrodynamic efficiency of the breakwater is presented in terms of the wave transmission (kt ), reflection (kr) and energy dissipation (kd ) coefficients. Different wave and structural parameters affecting the breakwater efficiency are tested. It is found that, the transmission coefficient (kt ) decreases with the increase of the relative water depth (h/L), the wave steepness (Hi/L), the relative breakwater widths (B/L, B/h), the relative breakwater height (D/h), and the breakwater porosity (n). The reflection coefficient (kr) takes the opposite trend of kt when D/h=1.25 and it decreases with the increasing h/L, Hi/L and B/L when D/h 1.0. The dissipation coefficient (kd) increases with the increasing h/L, Hi/L and B/L when D/h 1.0 and it decreases when D/h=1.25. In which, it is possible to achieve values of kt smaller than 0.3, krlarger than 0.5, and kd larger than 0.6 when D/h=1.25, B/h=0.6, h/L 0.22, B/L 0.13, and Hi/L 0.04. Empirical equations are developed for the estimation of the transmission and reflection coefficients. The results of these equations are compared with other experimental and theoretical results and a reasonable agreement is obtained.  相似文献   

10.
桩基础是我国海上风电工程中应用最为广泛的基础形式,其中嵌岩桩因其施工难度大,承载力高备受关注。与其他类型的桩基础不同,嵌岩桩的水平承载力不仅受到围岩强度的影响,更与其成桩质量与灌浆材料的强度相关。采用有限元方法分析了嵌岩深度、桩基直径与壁厚、桩身倾斜度等多种因素对嵌岩桩水平承载力的影响,提出了确定嵌岩桩水平极限抗力的标准。研究表明:桩与围岩间的灌浆环会先于桩身发生破坏,因此可将灌浆环受拉破坏作为判断嵌岩桩达到水平极限承载力的标准;桩身倾斜度对嵌岩桩的水平极限承载力影响较大,直径和壁厚的增加,均能提高桩基的水平承载力。  相似文献   

11.
A pile-supported OWC breakwater is a novel marine structure in which an oscillating water column (OWC) is integrated into a pile-supported breakwater, with a dual function: generating carbon-free energy and providing shelter for port activities by limiting wave transmission. In this work we investigate the hydrodynamics of this novel structure by means of an analytical model based on linear wave theory and matched eigenfunction expansion method. A local increase in the back-wall draft is adopted as an effective strategy to enhance wave power extraction and reduce wave transmission. The effects of chamber breadth, wall draft and air chamber volume on the hydrodynamic performance are examined in detail. We find that optimizing power take-off (PTO) damping for maximum power leads to both satisfactory power extraction and wave transmission, whereas optimizing for minimum wave transmission penalizes power extraction excessively; the former is, therefore, preferable. An appropriate large enough air chamber volume can enhance the bandwidth of high extraction efficiency through the air compressibility effect, with minimum repercussions for wave transmission. Meanwhile, the air chamber volume is found to be not large enough for the air compressibility effect to be relevant at engineering scales. Finally, a two-level practical optimization strategy on PTO damping is adopted. We prove that this strategy yields similar wave power extraction and wave transmission as the ideal optimization approach.  相似文献   

12.
为探讨不同地形特征对单浮子集成装置水动力特性的影响,本文基于黏性计算流体动力学理论,应用Star-CCM+软件建立二维数值波浪水槽,研究了规则波作用下受不同地形影响的单浮子式防波堤与波能转换装置集成系统的水动力性能.结果表明:在低频区,不同地形下单浮子集成系统的波能转换效率均大于无地形影响下单浮子集成系统的波能转换效率...  相似文献   

13.
Finite element analyses of prestressed fiber-reinforced polymer floating piles subjected to uplift force have been conducted in this paper. First, parameters of the modified BPE model (bond–slip model at the fiber-reinforced polymer–concrete interface) were calibrated using existing pullout testing data on fiber-reinforced polymer rebars embedded in concrete. Nonlinear spring elements were used in numerical modeling to characterize the bond–slip behavior at the fiber-reinforced polymer–concrete interface. A parametric study was performed to assess the influence of rebar diameter, fiber-reinforced polymer material, embedment length, and concrete strength on the mobilized bond stress. Upon the successful modeling of the pullout performance of fiber-reinforced polymer rebars in concrete, numerical models were developed to investigate the dependence of the uplift performance of floating piles on the prestress level, uplift force, fiber-reinforced polymer type, and compressive strength of concrete.  相似文献   

14.
Bragg reflection of water waves by multiple floating horizontal flexible membranes is investigated based on the linear wave theory and the assumption of small membrane response. Under the floating horizontal membranes, periodical submerged rectangular bars are arranged on the flat seabed. The total reflection and transmission coefficients are obtained by using the eigenfunction expansion method and the wide spacing approximation. The calculated coefficients are validated with the results available in the literature, which shows that the present method is applicable. The characteristics of Bragg reflection are systematically investigated by changing various parameters including the height of the rectangular bars, the number, the tension, the spacing, and the length of the flexible membranes. The results can help designing multiple floating horizontal flexible membranes as effective floating breakwaters by taking advantage of Bragg reflection.  相似文献   

15.
王佳玉  余龙 《海洋工程》2021,39(2):110-120
海流发电机(MCT)是开发海洋可再生能源的重要装置。在预测海流发电机水动力性能方面,修正叶素动量理论(M-BEMT)方法被验证是一种简单有效的方法。为了进一步提高M-BEMT方法的适用性和准确性,基于M-BEMT方法开发M-BEMT2.0方法包括时均法(TA-BEMT2.0)和瞬态积分法(TI-BEMT2.0),新方法考虑了来流的轴向非均匀性和周向非均匀性。首先使用文献的试验结果验证均匀来流时新方法的适用性。然后使用计算流体力学(CFD)计算结果验证非均匀来流时新方法的适用性。最后结合新方法和CFD方法深入研究两个串列排布海流发电机(MCTA)的水动力性能。基于M-BEMT2.0研究发现,均匀来流时计算结果与试验结果基本吻合,非均匀来流时新方法的计算结果优于M-BEMT的计算结果。对于MCTA,当第一个MCT的叶尖速度比越大,第二个MCT功率比和推力比恢复到90%的距离越短。  相似文献   

16.
The hydrodynamic performance of a vertical wall with permeable lower part (horizontal slots) was experimentally and theoretically studied under normal regular waves. The effect of different wave and structural parameters was investigated e.g. the wave length, the upper part draft, and the lower part porosity. Also, the theoretical model based on an Eigen Function Expansion Method and a Least Square Technique was developed. In order to examine the validity of the theoretical model, the theoretical results were compared with the present experimental results and with the results obtained from different previous studies. Comparison between experiments and predictions showed that the theoretical model provides a good estimate of the wave transmission, reflection, and energy dissipation coefficients when the friction factor f = 5.5. In general, the tested model gives transmission coefficients less than 0.5 and reflection coefficients larger than 0.5 when the relative wave length h/L is larger than 0.3, the relative upper part draft D/h larger than 0.36, and lower part porosity ε less than 0.5. Also, the tested model dissipates about 50% of the incident wave energy when the relative wave length h/L is in the range of 0.25 to 0.35.  相似文献   

17.
为提升波能转换装置的经济竞争力,针对非对称垂荡式振荡水柱(OWC)波能转换装置,基于势流理论和匹配特征函数展开法,通过引入盖根堡多项式近似表征结构尖角附近的流场奇异性行为,深入研究后墙吃水深度(非对称)、墙体厚度和线性弹簧系数对垂荡式OWC装置的波能转换效率、透射系数、气室内平均液面高程等水动力参数的影响规律。研究结果显示,后墙吃水深度及墙体厚度的增加会提升装置在长波区域的高效转换能力,并且显著提高结构物整体阻波防浪性能;线性弹簧的出现,能调节水柱振荡和结构垂荡运动响应之间的相位差,从而有效拓宽垂荡式OWC装置的高效频率带。  相似文献   

18.
A novel tidal turbine with winglet is given, and the influences of winglets on the hydrodynamic performance of horizontal axis current turbines (HACT) are investigated. The incompressible Reynolds-Averaged Navier–Stokes (RANS) Equations with the k − ω shear stress transport (SST) turbulence model are solved. Two HACTs with the winglet that bent towards the pressure side or suction side are designed as the conceptual designs. The pressure distribution and tip vortices are analyzed and compared to investigate the effect of the winglets. Based on the simulation results, the parameter study of the winglet is performed to investigate the effect of length, tip chord and cant angle on the hydrodynamic performance. Results demonstrate that the numerical simulation shows good agreement with the experimental data. The performance of HACT could be improved only when the winglet bends towards the suction side. At the optimum tip speed ratio (TSR), the best design can achieve 4.66% power increase rate compared with that of the baseline turbine. The proper length, tip chord and cant angle of the winglet could improve power at the whole conditions.  相似文献   

19.
在现有的矩形方箱和透空结构的基础上,提出一种由立管和水平板组合而成的消浪结构。利用波浪水槽物理模型试验,测试该结构在单向规则波作用下的消浪性能。分别探讨了其单排布置和双排布置时的透射系数随结构宽度、相对吃水深 度、相对间距等因素的变化规律。结果表明:单排布置时,透射系数随结构宽度的增大而减小,总体上随吃水深度的增大而减小;双排布置时,透射系数相对总宽度相同的单体结构减少 10 %,透射系数随吃水深度的增大而减小,前后间距对透射系数的影响不明显。对试验结果数据进行曲线拟合,得到了透射系数关于各影响因素的函数表达式。  相似文献   

20.
针对水平轴潮流能水轮机被动旋转问题,基于Fluent 17.0,运用UDF(User Defined Function)控制滑移网格对网格进行动态调整,仿真研究水轮机在不同安放角下被动旋转的水动力特性。通过仿真分析,结果表明:潮流能水轮机随着叶片安放角度的增加,尖速比、输出功率、捕能系数都是先增大后减小,叶片安放角为6°时,叶轮前后速度差最大,对潮流能利用充分,且各项性能均达到最佳;通过分析叶片受力,叶尖叶素在安放角为2°时阻力最大,3°时升力最大,升阻比在6°时最大,此时叶尖叶素升阻比C_L/C_D=6.27、攻角α=3.06°。由仿真结果可知水平轴潮流能叶轮的自启动过程由5个阶段组成,即加速度增大的加速运动段—加速度减小的加速运动段—加速度反向增大的减速运动段—加速度反向减小的减速运动段—稳定运行段,这对潮流能水轮机的设计具有重要的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号