首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents a numerical model for the analysis of the soil–structure kinematic interaction of single piles and pile groups embedded in layered soil deposits during seismic actions. A finite element model is considered for the pile group and the soil is assumed to be a Winkler‐type medium. The pile–soil–pile interaction and the radiation problem are accounted for by means of elastodynamic Green's functions. Condensation of the problem permits a consistent and straightforward derivation of both the impedance functions and the foundation input motion, which are necessary to perform the inertial soil–structure interaction analyses. The model proposed allows calculating the internal forces induced by soil–pile and pile‐to‐pile interactions. Comparisons with data available in literature are made to study the convergence and validate the model. An application to a realistic pile foundation is given to demonstrate the potential of the model to catch the dynamic behaviour of the soil–foundation system and the stress resultants in each pile. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Under the action of Rayleigh waves, pile head is easy to rotate with a concrete pile cap, and pure fixed-head condition is rarely achieved, which is a common phenomenon for it usually occurs on the precast piles with insufficient anchorage. In addition, the propagation characteristics of Rayleigh wave have been changed significantly due to the existence of capillary pressure and the coupling between phases in unsaturated soil, which significantly affects the pile-soil interaction. In order to study the above problems, a coupled vibration model of unsaturated soil–pile system subjected to Rayleigh waves is established on the basis that the pile cap is equivalent to a rigid mass block. Meanwhile, the soil constitution is simplified to linear-elastic and small deformations are assumed to occur during the vibration phase of soil–pile system. Then, the horizontal dynamic response of a homogeneous free-field unsaturated soil caused by propagating Rayleigh waves is obtained by using operator decomposition theory and variable separation method. The dynamic equilibrium equation of a pile is established by using the dynamic Winkler model and the Timoshenko beam theory, and the analytical solutions of the horizontal displacement, rotation angle, bending moment and shear force of pile body are derived according to the boundary conditions of flexible constraint of pile top. Based on the present solutions, the rationality of the proposed model is verified by comparing with the previous research results. Through parametric study, the influence of rotational stiffness and yield bending moment of pile top on the horizontal dynamic characteristics of Rayleigh waves induced pile is investigated in detailed. The analysis results can be utilized for the seismic design of pile foundation under Rayleigh waves.  相似文献   

3.
In this paper the kinematic seismic interaction of single piles embedded in soil deposits is evaluated by focusing the attention on the bending moments induced by the transient motion. The analysis is performed by modeling the pile like an Euler–Bernoulli beam embedded in a layered Winkler-type medium. The excitation motion is obtained by means of a one-D propagation analysis. A comprehensive parametric analysis is carried out by varying the main parameters governing the dynamic response of piles like the soil properties, the bedrock location, the diameter and embedment in the bedrock of piles. On the basis of the parametric analysis, a new design formula for predicting the kinematic bending moments for both the cross-sections at the deposit–bedrock interface and at the pile head is proposed.  相似文献   

4.
工程上广泛采用基于Winkler模型的层状地基反力系数法对桩土水平动力响应进行分析,该方法忽略了地基土剪切作用的影响,与工程实际有一定偏差。另外,对桩土的非线性相互作用和如扩底桩、楔形桩等变截面桩问题常用的传递矩阵法或中心差分法,计算过程较为繁琐。基于Pasternak地基模型和Adomian分解方法,提出一种考虑地基土剪切作用的桩土水平动力相互作用近似计算方法,该方法计算简便且结果精度较高,对变截面桩问题有很好的适用性;并基于该方法,对扩底桩水平动力响应问题和影响因素进行分析。结果指出,扩底半径和上部桩周土弹性模量对扩底桩水平动力响应影响较大,随着扩底半径的增加和桩周土弹性模量的增大,扩底桩水平振动位移幅值逐渐减小。另外,在较低频率的荷载激励下,应考虑土层对桩的剪切作用。  相似文献   

5.
为研究液化场地变截面桩的动力响应,依托翔安大桥实体工程,采用有限元软件,建立变截面桩-土和等截面桩-土相互作用模型,模拟液化场地变截面桩及等截面桩在地震作用下的振动反应,分析在地震作用下变截面位置不同的变截面桩及等截面桩的动力响应特征。结果表明:地震作用下,液化土层不同深度处的孔压比变化规律基本相同,均从0逐渐增大最后趋于稳定;变截面桩的桩身加速度和桩身位移均大于等截面桩,且桩顶加速度峰值出现的时刻均滞后于桩底;在饱和砂土层处,桩身位移变化趋势均较陡;变截面桩的桩身弯矩峰值和桩身剪力峰值均大于等截面桩,且其峰值出现的位置较等截面桩深;地震作用下,变截面桩及等截面桩的弯矩与剪力均在安全范围之内;液化场地变截面梁桥桩基础抗震设计时,应着重分析液化土层与非液化土层分界面以下的抗弯能力设计及液化土层中抗剪能力设计。  相似文献   

6.
This paper presents an investigation of the nonlinear behaviour of single piles subjected to varying levels of vertical dynamic load. A good number of tests are performed for the understanding of the dynamic behaviour of single hollow steel piles embedded in layered soil. Experimental results are validated with results obtained from a nonlinear numerical analysis using commercially available Finite Element Method (FEM) based software. The results of numerical analysis and experimental investigations showed that the length of pile has significant influence on resonant frequency and amplitude of the pile foundation. It has also been found that the slippage of pile from the surrounding soil considerably affects the resonance frequency and amplitude of the soil–pile foundation system.  相似文献   

7.
The paper presents a numerical model for the dynamic analysis of pile groups with inclined piles in horizontally layered soil deposits. Piles are modelled with Euler–Bernoulli beams, while the soil is supposed to be constituted by independent infinite viscoelastic horizontal layers. The pile–soil–pile interaction as well as the hysteretic and geometric damping is taken into account by means of two‐dimensional elastodynamic Green's functions. Piles cap is considered by introducing a rigid constraint; the condensation of the problem permits a consistent derivation of both the dynamic impedance matrix of the soil–foundation system and the foundation input motion. These quantities are those used to perform inertial soil–structure interaction analyses in the framework of the substructure approach. Furthermore, the model allows evaluating the kinematic stress resultants in piles resulting from waves propagating in the soil deposit, taking into account the pile–soil–pile interactions. The model validation is carried out by performing accuracy analyses and comparing results in terms of dynamic impedance functions, kinematic response parameters and pile stress resultants, with those furnished by 3D refined finite element models. To this purpose, classical elastodynamic solutions are adopted to define the soil–pile interaction problem. The model results in low computational demands without significant loss of precision, compared with more rigorous approaches or refined finite element models. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
刘宗贤  李玉亭 《地震研究》1995,18(4):388-396
本文对分层弹性地基中端承桩基础按Winkler(温克尔)地基土模型,通过特性分析,建立了合理的力学模型,经过动力分析,给出了端承桩基础横向自由振动特性及在横向动力载荷与地震载荷作用下强迫反应的解析解。文中的解析公式为分层弹性地基中端承桩基础在横向动力载荷与地震载荷作用下的动力反应分析,提供了一种新的解析方法。  相似文献   

9.
The characteristics of transverse free vibration of a tapered Timoshenko beam under an axially conservative compression resting on visco-Pasternak foundations are investigated by the interpolating matrix method. The research is executed in view of a three-parameter foundation which includes the effects of the Winkler coefficient, Pasternak coefficient and damping coefficient of the elastic medium. The governing equations of free vibration of a non-prismatic Timoshenko beam under an axially conservative force resting on visco-Pasternak foundations are transformed into ordinary differential equations with variable coefficients in light of the bending rotation angle and transverse displacement. All the natural frequencies orders together with the corresponding mode shapes of the beam are calculated at the same time, and a good convergence and accuracy of the proposed method is verified through two numerical examples. The influences of foundation mechanical characteristics together with rotary inertia and shear deformation on natural frequencies of the beam with different taper ratios are analyzed. A comprehensive parametric numerical study is carried out emphasizing the primary parameters that describe the dynamic property of the beam.  相似文献   

10.
考虑地基土液化影响的桩基高层建筑体系地震反应分析   总被引:5,自引:2,他引:5  
本文建立了土体-结构体系地震反应分析的混合有限元法,并研究了地基土液化对地震反应的影响。本方法把土体-结构体系简化为一个完整的体系,该体系由梁(柱)单元、剪切杆单元、刚体单元、平面四边形等参单元与三角形单元、界面单元的任意组合来模拟。桩与上部结构材料视为线弹性体,土介质视为非线性材料。土的静应力-应变关系之间的非线性用邓肯一张模型来描述;土的动应力-应变关系之间的非线性和振动孔隙水压力对土的软化效  相似文献   

11.
A three-dimensional formulation based on Green's functions of cylindrical loads in layered semi-infinite media is employed to investigate the dynamic behaviour of piles in homogeneous and non-homogeneous half spaces. The pile-soil-pile interaction taking place in pile groups is incorporated in the model. The results presented in this paper include the dynamic stiffnesses and dampings of single piles as well as those of representative 2 × 2 and 4 × 4 square pile groups in the soil media considered in this study. In addition, the distribution of forces applied on the pile cap among the individual piles in a group is investigated.  相似文献   

12.
The influence of nonlinearity on the dynamic response of cast-in-situ reinforced concrete piles subjected to strong vertical excitation was studied. Forced vibration test of single piles (L/d=10, 15, 20) and 2×2 pile groups (s/d=2, 3, 4 for each L/d) were conducted in the field for two different embedded conditions of pile cap. From the measured nonlinear response curves, the effective pile–soil system mass, stiffness and damping were determined and the nonlinear response curves were back-calculated using the theory of nonlinear vibration. The test results were compared with the continuum approach of Novak with dynamic interaction factor approach using both linear and linear-equivalent numerical methods. Reasonable match between the measured and predicted response was found for linear-equivalent methods by introducing a weak boundary-zone around the pile to approximately account for the nonlinear behaviour of pile–soil system. The test data were used to establish the empirical relationship in order to estimate the extent of soil separation around the pile with soil under vertical vibration.  相似文献   

13.
基于简化的群桩动力计算模型,采用有限元子结构方法和薄层法,提出了与工程实际情况更为接近的完全埋入、部分埋入群桩和刚性桩筏基础的计算方法。分析了层状地基中不同激振频率条件下,承台板厚度、桩间距对于群桩动力阻抗的影响,研究了不同承台板厚度条件下群桩阻抗的分布规律。通过与传统刚性承台下群桩动力特性的比较分析,验证了本模型的合理性。  相似文献   

14.
对由碎石桩和CFG桩构成的多桩型复合地基的作用机理进行分析,通过数值模拟,对多桩型复合地基的动力特性进行研究,探讨桩型配比、桩径、桩长、CFG桩桩体刚度和碎石桩桩体渗透性等设计参数对多桩型复合地基动力特性的影响。研究结果表明:相同条件下地震期多桩型复合地基的动变形小于碎石桩复合地基而大于CFG桩复合地基,震后沉降量相对较小,在工程设计时碎石桩与CFG桩的桩型配比宜为4∶5;随桩体长度、桩体直径和CFG桩刚度的增加,多桩型复合地基地震期的竖向动变形逐渐减小;随碎石桩桩体渗透性的增加,多桩型复合地基中的超动孔隙水压力减小,震后沉降量降低。  相似文献   

15.
薛富春  张建民 《地震工程学报》2015,37(2):310-316,323
高速铁路中的桥梁常采用灌注桩基础以控制沉降,地震作用是桩基础的设计工况之一。建立桥梁-桥墩-桩基础-地基为一体的耦合系统非线性三维数值分析模型,以典型地震波为输入,考虑上部结构和基础的共同工作、土-结构动力相互作用、材料非线性和土层对桩的侧阻及端阻作用,开展三向地震作用下的动力有限元计算,并对地基主要土层压缩模量、桩体材料弹性模量、桩径和桩长进行参数敏感性分析。计算结果表明:现行的桩基础设计方案能有效控制地震荷载作用下桥梁的变形;地震过程中的不同时刻,桩侧阻发挥程度不同且不可忽略,以单纯的梁单元模拟桩的动力学行为的适用性值得商榷;桩长和地基主要土层压缩模量对桥梁地震反应影响最大,桩体材料弹性模量的影响次之,桩径的影响最小。  相似文献   

16.
采用动力文克尔地基模型模拟均质粘弹性土层,推导出了均质土中单桩动阻抗;引用桩-桩动力相互作用因子,得到了刚性承台下群桩的动阻抗;而且建立了柔性承台与桩基础的竖向振动模型,该模型考虑了筏板自身的变形,并导出了其共同作用的运动方程。最后对柔性承台与刚性承台的计算结果作了对比分析。  相似文献   

17.
18.
基于黏弹性人工边界,建立上部结构-桩-土的共同作用三维有限元模型,分析地震作用下预应力混凝土管桩的运动响应特性。分别针对预应力混凝土管桩的桩径、双层软硬土剪切波速比值、上覆土层厚度、上部结构荷载等影响因素进行数值计算。参数分析表明:在地震作用下,桩径的增大会导致桩身整体弯矩相应增加,特别是桩身土层分界面处增大明显;软硬土层剪切波速比及上覆土层厚度的增加,引起土层分界面处桩身峰值弯矩增加;固定桩头条件下,桩头与桩身软硬土层分界面处均会产生较大的运动弯矩;上部结构的惯性荷载对固定桩头的内力有着较大影响,对桩身深处段弯矩影响较小。本文研究结论可为预应力混凝土管桩抗震设计提供有益的理论参考。  相似文献   

19.
The effect of soil inhomogeneity and material nonlinearity on kinematic soil–pile interaction and ensuing bending under the passage of vertically propagating seismic shear waves in layered soil, is investigated by means of 1-g shaking table tests and nonlinear numerical simulations. To this end, a suite of scale model tests on a group of five piles embedded in two-layers of sand in a laminar container at the shaking table facility in BLADE Laboratory at University of Bristol, are reported. Results from white noise and sine dwell tests were obtained and interpreted by means of one-dimensional lumped parameter models, suitable for inhomogeneous soil, encompassing material nonlinearity. A frequency range from 0.1 Hz to 100 Hz and 5 Hz to 35 Hz for white noise and sine dwell tests, respectively, and an input acceleration range from 0.015 g to 0.1 g, were employed. The paper elucidates that soil nonlinearity and inhomogeneity strongly affect both site response and kinematic pile bending, so that accurate nonlinear analyses are often necessary to predict the dynamic response of pile foundations.  相似文献   

20.
Nonlinear lateral interaction in pile dynamics   总被引:4,自引:0,他引:4  
A model for pile lateral response to transient dynamic loading and to harmonic loading is presented allowing for nonlinear soil behaviour, discontinuity conditions at the pile-soil interface and energy dissipation through different types of damping. The approach is used to establish equivalent linear stiffness and damping parameters of single piles as well as dynamic interaction factors for approximate nonlinear analysis of pile groups. The applicability of these parameters to the pile-group analysis was examined, and a reasonable agreement with the direct analysis was found. The superposition technique may be used to analyze the response of small pile groups. Also, the dynamic stiffness of pile groups is greatly affected by both the nonlinear behavior of the soil and the slippage and gapping between the pile and soil. For a basic range of soil and pile parameters, equivalent linear stiffness and damping parameters of single piles and interaction factors for approximate nonlinear analysis are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号