首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 979 毫秒
1.
王奎华  高柳  肖偲  王宁 《岩土力学》2016,37(Z2):223-231
将桩土系统划分为数量足够多的微元段,相邻微元桩段接触面处的环形凸面与土的相互作用采用单个Voigt体模拟,求得Voigt体的弹簧和黏壶系数。结合相邻微元桩段接触面上的应力平衡条件和位移连续条件,得到修正的阻抗函数递推法,桩身采用Rayleigh杆考虑桩身的横向惯性效应。结合桩底的边界条件,运用拉普拉斯变换和修正的阻抗函数递推法求得了平面应变条件下成层土中考虑桩周土竖向作用时大直径楔形桩桩顶复阻抗的解析解。通过与已有解对比,研究了桩周土竖向作用对桩顶复刚度和桩顶在瞬态激振下的速度响应的影响,并在低频域内详细分析了桩周土的竖向作用与桩土系统参数对桩顶复刚度的影响的耦合作用。  相似文献   

2.
This paper presents a new method to derive the analytical solution for the vertical impedance of an end‐bearing pile in viscoelastic soil. The soil is assumed as a homogeneous and isotropic layer, and the pile is considered as a one‐dimensional Euler rod. Considering both the vertical and radial displacements of soil and soil–pile coupled vibration, the governing equations of the soil and pile are established. The volumetric strain of soil is obtained by transformation on the equations of soil and variable separation method. Then the vertical and radial displacements of soil are obtained accordingly. The displacement response and impedance function of pile are derived based on the continuity assumption of the displacement and stress between the pile and soil. The solution is verified by being compared with an existing solution obtained by introducing potential functions. Furthermore, a comparison with two other simplified solutions is conducted. Numerical examples are presented to analyze the vibration characteristics of the pile. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
This study theoretically investigates the dynamic response of an end‐bearing pile embedded in saturated soil considering the transverse inertial effect of the pile. The saturated soil surrounding the pile is described by Biot poroelastic theory, and the pile is represented by a Rayleigh‐Love rod because both the vertical and radial displacements at the soil‐pile interface are considered. The potential function decomposition method and variable separation method are introduced to solve the governing equations of the soil, in which the vertical and radial displacement components are coupled. The governing equation of the pile is solved using the continuity conditions at the pile‐soil interface. Next, the velocity admittance in the frequency domain and the velocity response in the time domain at the pile top are presented based on the Laplace transform and inverse Fourier transform, respectively. Subsequently, the reduced solution is compared with a 1‐dimensional model solution to verify the validity, and the influences of the slenderness ratio of the pile on the transverse inertial effect of the pile are analyzed. Moreover, Poisson ratio, the slenderness ratio of the pile, and the pile‐soil modulus ratio are studied. Finally, the theoretical and measured curves in the engineering project are compared, and the results demonstrate the good application prospects of the solution presented in this article.  相似文献   

4.
The dynamic response of an end bearing pile embedded in a linear visco‐elastic soil layer with hysteretic type damping is theoretically investigated when the pile is subjected to a time‐harmonic vertical loading at the pile top. The soil is modeled as a three‐dimensional axisymmetric continuum in which both its radial and vertical displacements are taken into account. The pile is assumed to be vertical, elastic and of uniform circular cross section. By using two potential functions to decompose the displacements of the soil layer and utilizing the separation of variables technique, the dynamic equilibrium equation is uncoupled and solved. At the interface of soil‐pile system, the boundary conditions of displacement continuity and force equilibrium are invoked to derive a closed‐form solution of the vertical dynamic response of the pile in frequency domain. The corresponding inverted solutions in time domain for the velocity response of a pile subjected to a semi‐sine excitation force applied at the pile top are obtained by means of inverse Fourier transform and the convolution theorem. A comparison with two other simplified solutions has been performed to verify the more rigorous solutions presented in this paper. Using the developed solutions, a parametric study has also been conducted to investigate the influence of the major parameters of the soil‐pile system on the vertical vibration characteristics of the pile. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
An analysis of a pile vertical response considering soil inhomogeneity in the radial direction under dynamic loads is presented. The solution technique is based on a three‐dimensional axisymmetric model, which includes the consideration of the vertical displacement of the soil. The soil domain is subdivided into a number of annular vertical zones, and the continuity of the displacements and stresses are imposed at both the interface of pile–soil and the interfaces of adjacent soil zones to establish the dynamic equilibrium equations of the pile–soil interaction. Then, the equations of each soil zone and of the pile are solved one by one to obtain the analytical and semi‐analytical dynamic responses at the top of the pile in the frequency domain and time domain. Parametric studies have been performed to examine the influence of soil parameters' variations in the radial direction caused by the construction effect on the dynamic responses of pile. The results of the studies have been summarized and presented in figures to illustrate the influences of the soil parameters as they change radially. The effect of the radius of the disturbed soil zone caused by construction is also studied in this paper. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
杨冬英  丁海平 《岩土力学》2014,35(Z1):311-318
根据桩端土应力扩散的规律,建立了桩端扩散虚土桩模型。基于该模型对非均质土中桩-土纵向耦合振动进行研究。利用复刚度传递多圈层平面应变模型,得到桩与虚土桩桩侧土的剪切复刚度。结合边界条件、初始条件和连续条件,对扩散虚土桩和实体桩动力方程从底层往顶层逐层进行求解,得到桩顶动力响应的频域解析解和时域半解析解。通过对桩端扩散虚土桩扩散角、扩散层厚度、桩侧土非均质性和桩长的影响进行计算分析,得到基于扩散虚土桩法桩-土纵向振动响应特性。研究结论可为桩基础动力设计和动态检测提供理论依据。  相似文献   

7.
饱和黏弹性地基土中管桩纵向振动研究   总被引:1,自引:0,他引:1  
应跃龙  罗海亮  闻敏杰 《岩土力学》2013,34(Z1):103-108
用解析方法在频率域内研究考虑质量耦合效应的饱和黏弹性地基土中管桩的纵向振动特性。基于Biot理论,采用薄层法,推导得到饱和黏弹性地基土的位移、应力等的表达式。将管桩等效为一维弹性杆件处理。根据界面连续性条件,给出饱和黏弹性地基土中管桩的纵向振动一般分析方法和桩顶动力复刚度的表达式。在该基础上,对比分析饱和地基土中实心桩和管桩纵向振动特性。通过算例分析,考察桩周土和桩芯土的力学参数对桩顶刚度因子和等效阻尼的影响。研究表明,饱和黏弹性地基土中实心桩和管桩的纵向振动有明显的差异。  相似文献   

8.
Assuming that the pile variable cross section interacts with the surrounding soil in the same way as the pile toe does with the bearing stratus, the interaction of pile variable cross section with the surrounding soil is represented by a Voigt model, which consists of a spring and a damper connected in parallel, and the spring constant and damper coefficient are derived. Thus, a more rigid pile–soil interaction model is proposed. The surrounding soil layers are modeled as axisymmetric continuum in which its vertical displacements are taken into account and the pile is assumed to be a Rayleigh–Love rod with material damping. Allowing for soil properties and pile defects, the pile–soil system is divided into several layers. By means of Laplace transform, the governing equations of soil layers are solved in frequency domain, and a new relationship linking the impedance functions at the variable‐section interface between the adjacent pile segments is derived using a Heaviside step function, which is called amended impedance function transfer method. On this basis, the impedance function at pile top is derived by amended impedance function transfer method proposed in this paper. Then, the velocity response at pile top can be obtained by means of inverse Fourier transform and convolution theorem. The effects of pile–soil system parameters are studied, and some conclusions are proposed. Then, an engineering example is given to confirm the rationality of the solution proposed in this paper. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
This investigation is concerned with the mathematical analysis of a viscoelastic prestressed pipe pile embedded in multilayered soil under vertical dynamic excitation. The pile surrounding soil is governed by the plane strain model, and the soil plug is assumed to be an additional mass connected to the pipe pile shaft by applying the distributed Voigt model. Meanwhile, the prestressed pipe pile is assumed to be a vertical, viscoelastic, and hollow cylinder governed by the one‐dimensional wave equation. Then, analytical solutions of the dynamic response of the pipe pile in the frequency domain are derived by means of the Laplace transform and impedance function transfer method. Subsequently, the corresponding quasi‐analytical solution in the time domain for the case of the prestressed pipe pile undergoing a vertical semi‐sinusoidal exciting force applied at the pile top is obtained by employing the inverse Fourier transform. Utilizing these solutions, selected results for the velocity admittance curve and the reflected wave curve are presented for different heights of the soil plug to examine the influence of weld properties on the vertical dynamic response of prestressed pipe pile. The reasonableness of the theoretical model is verified by comparing the calculated results based on the presented solutions with measured results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
An analytical solution is developed in this paper to investigate the vertical time-harmonic response of a pipe pile embedded in a viscoelastic saturated soil layer. The wave propagation in the saturated soil is simulated by Biot’s 3D poroelastic theory and that in the pipe pile is simulated by 1D elastodynamic theory. Potential functions are applied to decouple the governing equations of the soil. The analytical solutions of the outer and inner soil in frequency domain are obtained by the method of separation of variables. The vertical response of the pipe pile is then obtained based on the continuity assumption of the displacement and stress between the pipe pile and both the outer and inner soil. The solution is compared with existing solutions to verify the validity. Numerical examples are presented to analyze the vibration characteristics of the pile.  相似文献   

11.
The torsional dynamic response of a pile embedded in layered soil is investigated while considering the influence of the pile end soil. The finite soil layers under the end of the pile are modeled as a fictitious soil pile that has the same cross-sectional area as the pile and is in perfect contact with the pile end. To allow for variations of the modulus or cross-sectional area of the pile and soil, the soil surrounding and below the pile is vertically decomposed into finite layers. Using the Laplace transform and impedance function transfer method, the analytical solution for the dynamic response of the pile head in the frequency domain is then obtained, and the relevant semi-analytical solution in the time domain is derived using the inverse Fourier transform and convolution theorem. The rationality and accuracy of the solution is verified by comparing the torsional dynamic behavior of the pile calculated with the fictitious soil pile with those based on a rigid support model and a viscoelastic support model. Finally, a parametric study is conducted to investigate the influence of the properties and thickness of the pile end soil on the torsional dynamic response of the pile.  相似文献   

12.
This note presents a new method to derive closed‐form expressions describing the horizontal response of an end‐bearing pile in viscoelastic soil subjected to harmonic loads at its head. The soil surrounding the pile is assumed as a linearly viscoelastic layer. The propagation of waves in the soil and pile is treated mathematically by three‐dimensional and one‐dimensional theories, respectively. Unlike previous studies of the problem, the formulation presented allows the governing equations of the soil to be solved directly, eliminating the need to introduce potential functions. Accordingly, the dynamic response of the pile is obtained by means of the initial parameter method, invoking the requirement for continuity at the pile–soil interface. It is demonstrated that the derived compact solution matches exactly an existing solution that utilises potential functions to formulate the problem. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents an analytical solution for the vertical vibration of a large-diameter pipe pile considering the radial inhomogeneity of both the outer and inner soil caused by the construction disturbance effect. The radial inhomogeneity of the soil is simulated by gradually varying the soil parameters in the radial direction. The complex impedance at the pile head is obtained by introducing the variable separation method and impedance function transfer method. The proposed solution is compared with existing solutions to verify its reliability. Parametric studies are conducted to investigate the vertical vibration characteristics of the pile.  相似文献   

14.
郑长杰  丁选明  安淑红 《岩土力学》2016,37(9):2477-2483
考虑地基沉积过程中产生的竖向和水平向力学性质的差异,对横观各向同性地基中管桩扭转振动频域响应进行了理论研究。基于横观各向同性材料的本构关系以及桩-土耦合扭转振动,建立了桩土系统定解问题,通过Laplace变换和分离变量法求得了桩周土和桩芯土扭转振动位移形式解。通过桩-土接触面的连续条件,求得了管桩扭转频域响应解析解,并得到了桩顶复动刚度和速度导纳的表达式。将所得解退化到横观各向同性地基中实心桩解以及均匀地基中管桩解,并与已有文献进行了对比,验证了解的合理性。通过数值算例,分析了桩周土和桩芯土的横观各向同性力学参数对桩顶扭转复刚度及速度导纳的影响。  相似文献   

15.
成层饱和土中考虑横向惯性的单桩纵向振动   总被引:2,自引:0,他引:2  
杨骁  唐洁 《岩土力学》2013,34(6):1560-1566
基于饱和多孔介质理论,研究了成层饱和黏弹性土层中端承桩的纵向振动特性。首先利用Novak薄层法,得到了土层对纵向振动桩的动力阻抗。其次,将桩等效为Rayleigh-Love杆,给出了成层饱和黏弹性土中端承桩纵向振动的一般分析方法和桩头动力复刚度的解析表达式。具体分析了两层饱和黏弹性土中端承桩的纵向振动特性,得到了桩头动刚度因子和等效阻尼随频率的响应特征,讨论了物理和几何等参数对动刚度因子和等效阻尼的影响。结果表明:桩长径比、土层模量比以及桩土模量比等对桩头动刚度因子和等效阻尼有显著的影响。相比于均质土层中的桩,上层土越硬或下层为软弱土层,桩的动刚度因子和等效阻尼振动幅值增大,其周期随长径比显著变化,且对于大直径桩,动刚度因子和等效阻尼随频率呈振动变化。同时,土体与孔隙水相互作用系数和桩泊松比等的影响相对较小。其结果可作为桩基动力基础设计和动力检测等基础数据。  相似文献   

16.
非饱和土中端承桩水平振动特性研究   总被引:1,自引:0,他引:1  
章敏  王星华  冯国瑞 《岩土力学》2015,36(2):409-422
针对非饱和土中桩的水平稳态振动问题,采用三相多孔介质波动方程,考虑固、液、气三相材料间的惯性和黏性耦合效应以及基质吸力的影响,通过Helmholtz矢量分解及分离变量法解耦波动方程,并将基桩等效为能描述其剪切变形和转动惯性效应的铁摩辛柯(Timoshenko)梁模型,采用Novak三维连续介质模型对非饱和土中端承桩的稳态水平振动进行了理论推导,获得了桩顶水平频域响应解析解,讨论了饱和度对土层和桩顶阻抗的影响以及桩身位移、内力沿深度的分布规律。结果表明,随着土体饱和度的升高,土层复阻抗和桩顶动力阻抗增大,桩身位移和内力则相应地减小;饱和度,包括渗透系数在内的影响仅在土体接近准饱和时才得以发挥;频率较低时,短桩拥有较大的刚度因子。桩长越长,阻抗因子越大,而共振频率越低。当长径比超过10时,桩顶阻抗不再随长径比的增加而改变。  相似文献   

17.
熊辉  杨丰 《岩土力学》2020,41(1):103-110
在桩基顶部承受竖向荷载作用的条件下,将完全液化后的上层土体视为流体,将桩基等效为欧拉-伯努利梁模型,探讨了桩底嵌固时桩基顶部的水平振动阻抗。运用流体动力方程模拟顶部液化土层的运动,运用文克尔地基模拟下部非液化分层土的运动。结合传递矩阵法,利用液化土与非液化分层土交界面处的位移、转角和内力连续条件,得到桩基顶部和底部的相关位移?内力表达关系式。根据桩基底部的嵌固条件,求得桩顶阻抗的表达式。与已有文献解进行对比,验证了分析过程的正确性。对阻抗影响条件进行参数分析,表明液化深度、轴力和流体密度大小对桩顶阻抗有不同的影响。  相似文献   

18.
This paper presents a new analytical model for calculating the steady-state impedance of pile groups subjected to vertical dynamic loads. The derived solution allows considering effects of radially but also vertically propagating soil waves on the soil attenuation function, pile interaction factor, and pile group impedance. The proposed model provides accurate estimates of the soil stress field and of the response of the pile group in the low as well as in the high-frequency range, unlike earlier solutions based on the plane-strain model to describe the soil surrounding the piles, which ignores the vertical soil stress gradient. The latter assumption results in underestimating pile group impedance and overestimating radiation damping for frequencies lower than the cutoff frequencies of the system, which are explicitly captured with the proposed solution.  相似文献   

19.
The vertical dynamic response of an inhomogeneous viscoelastic pile embedded in layered soil subjected to axial loading has been investigated. The interaction between pile and soil is simulated by a general Voigt model, one that has been demonstrated by earlier investigators to be capable of representing the plane strain case of soil adequately. The analytical solutions of pile responses in the frequency domain are obtained by using the (two-sided) Laplace transform. The corresponding semi-analytical solutions in the time domain for the case of a pile subjected to an instantaneous half-sine exciting force applied at the pile top are obtained via Fourier transform inversion. Using these solutions, a parametric study of the influence of the pile and soil properties on the vertical dynamic responses has been undertaken. It is shown that an abrupt variation of the soil properties with depth cannot yield evident reflection signal that may lead geotechnical engineers to assess the pile integrity wrongly from the velocity curve of the pile top, and the influence of viscosity of the pile material on the response is different from that of the damping of the soil surrounding the pile. The theoretical model developed in the present paper has also been validated in field studies, where it is shown by means of three examples that the solution developed in this study has been adequately verified by comparison of the theoretical pile model and field measurements of the dynamic responses.  相似文献   

20.
An analytical solution is developed in this paper to investigate the dynamic response of a large‐diameter end‐bearing pipe pile subjected to torsional loading in viscoelastic saturated soil. The wave propagation in saturated soil and pile are simulated by Biot's two‐phased linear theory and one‐dimensional elastic theory, respectively. The dynamic equilibrium equations of the outer soil, inner soil, and pile are established. The solutions for the outer and inner soils in frequency domain are obtained by Laplace transform technique and the separation of variables method. Then, the dynamic response of the pile is obtained on the basis of the perfect contacts between the pile and the outer soil as well as the inner soil. The results in this paper are compared with that of a solid pile in elastic saturated soil to verify the validity of the solution. Furthermore, the solution in this paper is compared with the classic plane strain solution to verify the solution further and check the accuracy of the plane strain solution. Numerical results are presented to analyze the vibration characteristics and illustrate the effect of the soil parameters and the geometry size of the pile on the complex impedance and velocity admittance of the pile head. Finally, the displacement of the soil at different depth and frequency is analyzed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号