首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Starting with the governing equations of motion and the constitutive equations of transversely isotropic elastic body, and based on the corresponding algebraic operations and the Hankel transform, the analytical layer-elements of a finite layer and a half-space are obtained in the transformed domain. According to the continuity conditions between adjacent layers, the global stiffness matrix equation is obtained by assembling the analytical layer-element of each single layer. The solutions in the transformed domain are acquired by introducing the boundary conditions into the global stiffness matrix equation, and thus, the corresponding solutions in frequency domain are achieved by taking the inversion of Hankel transform. Finally, some numerical examples are given to illustrate the accuracy of the proposed method, and to study the influence of properties and the frequency of excitation on the dynamic response of the medium.  相似文献   

2.
Based on the analytical layer-element method, an analytical solution is proposed to determine the dynamic interaction between the elastic circular plate and transversely isotropic multilayered half-space. The dynamic response of the elastic circular plate is governed by the classical thin-plate theory with the assumption that the contact surface between the plate and soil is frictionless. The total stiffness matrix of the transversely isotropic multilayered half-space is acquired by assembling the analytical layer-element of each soil layer with the aid of the continuity conditions between adjacent layers. According to the displacement condition of coordination between the plate and soil, the dynamic interaction problem is reduced to that of multilayered transversely isotropic half-space subjected to axisymmetric harmonic vertical loading. Some numerical examples are given to study the vertical vibration of the plate, and the results indicate that the dynamic response of elastic circular plate depends strongly on the material properties of the soils, the rigidity of the plate, the frequency of excitation and the external load form.  相似文献   

3.
In this paper, the analytical layer-element method is utilized to analyze the plane strain dynamic response of a transversely isotropic multilayered half-plane due to a moving load. We assume that the studied system moves synchronously with the moving load, then the moving load relative to the moving system is considered to be motionless. Therefore, the vertical stress and the vertical displacement under the moving load need not update for the variation of the load position. Based on the governing equations of motion in the moving system, the analytical layer-element solutions for a finite layer and a half-plane in the Fourier transform domain are derived by using the algebraic operations in Ref. [7]. The global matrix of the problem can be obtained by assembling the analytical layer-elements of all layers. The corresponding solution in the frequency domain is further recovered by the inverse Fourier transform. Several examples are given to confirm the accuracy of the proposed method and to illustrate the influence of material properties.  相似文献   

4.
A half-space containing horizontally multilayered regions of different transversely isotropic elastic materials as well as a homogeneous half-space as the lowest layer is considered such that the axes of material symmetries of different layers and the lowest half-space to be as depth-wise. A rigid circular disc rested on the free surface of the whole half-space is considered to be under a forced either vertical or horizontal vibration of constant amplitudes. Because of the involved integral transforms, the mixed boundary value problems due to mixed condition at the surface of the half-space are changed to some dual integral equations, which are reduced to Fredholm integral equations of second kind. With the help of contour integration, the governing Fredholm integral equations are numerically solved. Some numerical evaluations are given for different combinations of transversely isotropic layers to show the effect of degree of anisotropy of different layers on the response of the inhomogeneous half-space.  相似文献   

5.
A general formulation and solution procedure are proposed for harmonic response of rigid foundation on multilayered half-space. It is suitable for isotropic as well as anisotropic soil medium. The wave motion equation is formulated in frequency wave-number domain in the state space. A hybrid approach is proposed for its solution, where the precise integration algorithm (PIA) is employed to carry out the integration. Very high accuracy can be achieved. The mixed variable form of wave motion equation enables the assembly of layers simple and convenient. The surface Green׳s function is regarded as rigorous, because it is free from approximations and discretization errors. The algorithm is unconditionally stable. The numerical implementation is based on algebraic matrix operation. Numerical examples of vibration of rigid foundation validate the efficiency and accuracy of the proposed approach.  相似文献   

6.
The dynamic analysis of a surface rigid foundation in smooth contact with a transversely isotropic half-space under a buried inclined time-harmonic load is addressed. By virtue of the superposition technique, appropriate Green׳s functions, and employing further mathematical techniques, solution of the mixed-boundary-value problem is expressed in terms of two well-known Fredholm integral equations. Two limiting cases of the problem corresponding to the static loading and isotropic medium are considered and the available results in the literature are fully recovered. For the static case, the results pertinent to both frictionless and bonded contacts are obtained and compared. With the aid of the residue theorem and asymptotic decomposition method, an effective and robust approach is proposed for the numerical evaluation of the obtained semi-infinite integrals. For a wide range of the excitation frequency, both normal and rotational compliances are depicted in dimensionless plots for different transversely isotropic materials. Based on the obtained results, the effects of anisotropy are highlighted and discussed.  相似文献   

7.
A transversely isotropic material in the sense of Green is considered. Using a series of potential functions proposed in [Eskandari-Ghadi M. A complete solution of the wave equations for transversely isotropic media. J Elasticity 2005; 81:1–19], the solutions of the transient wave equations within a half-space under surface load are obtained in the Laplace–Hankel domain for axisymmetric problems. The solutions are investigated in detail in the special case of a surface point force pulse varying with time as Heaviside function. Using Cagniard–De Hoop method, the inverse Laplace transform and inverse Hankel transform of the solutions are then obtained in the form of integrals with finite limits. For validity of the analytical results, the final formulations for surface waves are degenerated for an isotropic material and compared with the existing formulation obtained by Pekeris [The seismic surface pulse. Proc Natl Acad Sci USA 1955;41:469–80], to show that they are exactly the same. The numerical evaluations of the integrals for some transversely isotropic materials as well as an isotropic one are obtained. The present approach is then numerically verified by comparing a particular case of displacements for the surface of an isotropic half-space subjected to a point load of Heaviside function with the solutions obtained by Pekeris [The seismic surface pulse. Proc Natl Acad Sci USA 1955;41:469–80]. In addition, the wave equations for the mentioned medium are obtained on the vertical line directly under the applied surface load. The final formulations are degenerated for an isotropic material and compared with the existing formulation given in Graff [Wave motion in elastic solids. New York: Dover Publications Inc; 1975 [New Ed edition, November 1991]], to show that they are also exactly the same. Then equations are presented in graphical forms using an appropriate numerical evaluation.  相似文献   

8.
By virtue of the precise integration method (PIM) and the technique of mixed variable formulations, solutions for the dynamic response of the multi-layered transversely isotropic medium subjected to the axisymmetric time-harmonic forces are presented. The planes of cross anisotropy are assumed to be parallel to the horizontal surface of the stratified media. Four kinds of vertically acting axisymmetric loads are prescribed either at the external surface or in the interior of the soil system. Thicknesses and number of the medium strata are not limited. Employing the Hankel integral transform in cylindrical coordinate, the axisymmetric governing equations in terms of displacements of the multi-layered media are uncoupled. Applying mixed variable formulations, more concise first-order ordinary differential matrix equations from the uncoupled motion equations can be obtained. Solutions of the ordinary differential matrix equations in the transformed domain are acquired by utilizing the approach of PIM. Since PIM is highly accurate to solve the sets of first-order ordinary differential equations, any desired accuracy of the solutions can be achieved. All calculations are based on the corresponding algebraic operations and computational efforts can be reduced to a great extent. Comparisons with the existing numerical solutions are made to confirm the accuracy of the present solutions proposed by this procedure. Several examples are illustrated to explore the influences of the type and degree of material anisotropy, the frequency of excitation and loading positions on the dynamic response of the stratified medium.  相似文献   

9.
The aim of this paper is to present a rigorous investigation for a two-layered transversely isotropic linear elastic half-space containing a circular cylindrical cavity of length equal to the top layer undergoing mono-harmonic ring shape shear stress applied either on the vertical cylindrical surface or on the base of the cavity. To this end, a combination of Fourier cosine integral transform for depth and Hankel integral transform for radial distance are used, which translate the boundary value problem to a singular integral equation for the shear stress comes out from the continuity of two layers. The integral equation is solved for some collocation points with a smoothed variable of distance, which is adapted with the use of a free parameter. It is shown that, although the shear stress is highly singular, it does not highly depend on this free parameter. Both the analytical and numerical results are verified with both the static isotropic and dynamic transversely isotropic homogeneous cases. In addition, some new graphical results are presented for more understanding in engineering point of view.  相似文献   

10.

随钻声场在各向异性地层中的传播一直是随钻声波测井的重要课题.该问题中钻铤与井孔和地层的相互作用极大地影响着声场,特别是系统中的模式波的传播特征.因此,本文采用分波计算法来详细地研究在横向各向同性(VTI)地层中随钻多极子声波的传播规律,将声场全波分解成来自波数域中的奇异点(包括支点和极点)的分波的贡献,以此模拟分析了声场中各个分波的传播特征,包括模式波在频域中的频散、激发响应及时域中的分波波形.结果表明:在快速VTI地层中,钻铤的存在使得单极伪瑞利波和二阶四极地层螺旋波的频散大为降低,可以此来测量地层垂直向横波速度;慢速VTI地层中仅存在单一四极地层螺旋波,其低频速度为地层垂直向横波速度.值得注意的是,在各向异性参数满足δ>ε+c44/2c33的地层中,上述模式波的低频截止速度均小于地层的垂向横波速度,这一结果与已知的裸眼井情况一致.

  相似文献   

11.
本文采用三维应力-速度有限差分(SV-FD)方法,数值模拟了横向各向同性(TI)地层对称主轴与井轴斜交情况下正交偶极子声源激发的井孔声场.主要解决了与倾斜角有关的三维空间弹性模量矩阵的推导,柱坐标系下应力-速度有限差分方程组的建立,井轴上场点奇异性与内边界处理等几个关键问题,提高了计算精度.在横向各向同性地层对称主轴与井轴平行的情况下,与实轴积分法所得结果进行了对比,验证了本文方法的正确性.计算了不同倾角情况下xx和yy两分量的弯曲波,并用频域加权相似法提取了弯曲波频散曲线,结果显示了横向各向同性介质中不同方向偏振的弯曲波传播的分裂现象,其频散曲线在低频段分裂,随频率增大而逐渐重合.弯曲波低频截止频率处速度与理论公式得到的横波速度基本符合.  相似文献   

12.
张雷  陈浩  王秀明 《地球物理学报》2012,55(10):3493-3505
详细推导了模拟倾斜线圈系在横向各向同性地层中响应的垂向数值模式匹配方法,在轴对称模型下,该方法采用垂直本征模式描述三维激励源,使得三维问题可以在二维条件下快速解决,另外,本文引入的高阶基函数进一步提高了算法的计算速度.为了验证算法的可靠性与准确性,分别与均匀无限厚各向同性地层的解析解和横向各向同性地层的有限差分解进行对比,结果表明,模式匹配方法与它们吻合的较好.在此基础上,利用模式匹配方法模拟了倾斜线圈系和水平线圈系在横向各向同性地层的响应特征,计算结果表明:在横向各向同性地层中,倾斜线圈系的响应既受水平电导率的影响,也受垂直电导率的影响,而水平线圈系则只与水平电导率有关,由此,可以通过倾斜线圈系评价地层的各向异性特征.此外,本文还分析了钻铤对倾斜线圈系响应的影响,模拟结果表明,虽然钻铤没有改变相位值和幅度值的变化趋势,但对它们的绝对值有一定的影响,而且这种影响与不同法向角度也有关系,因此当组合不同倾斜线圈系进行地层评价时,需要对钻铤的影响进行校正.最后研究了不同法向角度线圈系在横向各向同性地层中的响应特征,得出不同法向角度线圈系的探测特性和对各向异性的敏感性都有较大的差异.本文的研究表明倾斜线圈系的响应与水平线圈系的响应不同,通过利用不同倾斜线圈系组合可以进行油气储层评价.  相似文献   

13.
柱面波在半空间中洞室周围的散射   总被引:2,自引:1,他引:1  
采用一种间接边界积分方程法求解了柱面波在半空间中洞室周围的散射问题。通过边界条件的验算以及退化解答与精确解的比较,验证了本文方法的计算精度。文中主要分析了入射波频率、波源与洞室距离等参数对洞室附近地表位移响应和洞室动应力集中的影响,得出了一些有益的结论。  相似文献   

14.
A rigorous mathematical formulation is presented for the analysis of a thin cylindrical shell embedded in a transversely isotropic half-space under vertically incident P-wave excitation. By virtue of a set of ring-loads Green's functions for the shell and a group of dynamic fundamental solutions for the half-space under arbitrary interfacial dynamic loads, the problem is shown to be reducible to a pair of Fredholm integral equations. By utilizing an adaptive-gradient family capable of capturing regular-to-singular solution transitions smoothly, an accurate numerical procedure is developed. To assess the effect of material anisotropy on the dynamic load-transfer process, a set of comprehensive numerical results presented for various material and geometrical conditions. The accuracy of the proposed numerical scheme is confirmed by its comparison with a benchmark solution for the corresponding isotropic problem.  相似文献   

15.
王小岗 《地球物理学报》2009,52(8):2084-2092
基于孔隙介质的Biot理论,首先利用Laplace变换,给出圆柱坐标系下横观各向同性饱和弹性多孔介质在变换域上的波动方程;将波动方程解耦后,根据方位角的Fourier展开和径向Hankel变换,求解了Biot波动方程,得到以土骨架位移、孔隙水压力和土介质总应力分量的积分形式的一般解;借助一般解,建立了有限厚度饱和土层和饱和半空间的精确动力刚度矩阵,并由土层的层间界面连续条件建立三维非轴对称层状饱和地基的总刚度方程;在此基础上,系统研究了横观各向同性饱和半空间体在内部集中荷载激励下的动力响应,并给出了问题的瞬态解答.该研究为运用边界元法求解饱和地基动力响应奠定了理论基础.  相似文献   

16.
The scattering of plane SH-waves by topographic features in a layered transversely isotropic (TI) half-space is investigated by using an indirect boundary element method (IBEM). Firstly, the anti-plane dynamic stiffness matrix of the layered TI half-space is established and the free fields are solved by using the direct stiffness method. Then, Green’s functions are derived for uniformly distributed loads acting on an inclined line in a layered TI half-space and the scattered fields are constructed with the deduced Green’s functions. Finally, the free fields are added to the scattered ones to obtain the global dynamic responses. The method is verified by comparing results with the published isotropic ones. Both the steady-state and transient dynamic responses are evaluated and discussed. Numerical results in the frequency domain show that surface motions for the TI media can be significantly different from those for the isotropic case, which are strongly dependent on the anisotropy property, incident angle and incident frequency. Results in the time domain show that the material anisotropy has important effects on the maximum duration and maximum amplitudes of the time histories.  相似文献   

17.
This paper outlines a method of analysis of the steady-state dynamic response of a stratified soil to a horizontal time-harmonic loading applied at a circular area. It is assumed the load to be uniformly distributed over the contact area and embedded at an arbitrary depth. It is shown that by means of application of integral Hankel transform, the problem can be reduced to a form of a single integral, which can be taken numerically. Results of the numerical simulations for an embedded horizontal impulse load are presented to demonstrate the efficiency of the developed procedure.  相似文献   

18.
The fundamental solutions of axisymmetric elastodynamic problem for the multilayered half-space due to an impulsive ring source acting within a layered elastic media are derived in time domain with the aid of Laplace–Hankel mixed transform and transfer matrix techniques. In addition, an effective numerical procedure, which utilizes the fast Hankel transform algorithm, is also proposed to calculate these solutions. Illustrative examples have been given to demonstrate that the fundamental solutions can be readily evaluated and the numerical results are of high accuracy. The present solutions can be directly applied to determine the transient wave fields caused by a seismic source and show the potential application to the elastodynamic problems solved by the boundary element method.  相似文献   

19.
横向各向同性地层中随钻声波测井模式波分析   总被引:2,自引:6,他引:2       下载免费PDF全文
针对横向各向同性地层随钻声波测井模型,通过模式分析的方法,考察了快速地层和慢速地层井孔内随钻单极子、偶极子和四极子声源激发的斯通利波、弯曲波和螺旋波的相速度频散和激发强度特征,计算了这些模式波对于地层弹性常数的灵敏度,并与电缆测井中的情况进行了比较.结果表明:随钻斯通利波在低频时对地层弹性常数中c66的灵敏度较电缆测井中有了很大提高,可用于反演地层水平向横波速度;随钻偶极子最低阶弯曲波在低频时不能用于直接获取地层横波信息,但在慢速地层中频率较高(例如6 kHz)时却可以间接得到地层垂直向横波速度;随钻四极子螺旋波的特征与电缆测井中的类似,可用于获取地层垂直向横波速度.  相似文献   

20.
张烨  林蔺  陈桂波  李强 《地球物理学报》2018,61(4):1639-1650

本文针对电导率横向同性地层中三轴发射-接收线圈系的井间电磁响应,开展三维正演算法及模拟研究.首先将发射线圈简化为三轴正交磁偶极子源.为克服低频电磁产生的数值迭代收敛缓慢问题,利用低感应数预处理方法将频域Maxwell方程组转化为基于矢势与标势的Helmholtz方程.采用非等间距的Yee氏交错网格、电导率的体积加权平均技术以及积分形式的有限差分格式实现对控制方程的离散化.借助于不完全LU分解预处理的稳定双共轭梯度法计算井间电磁响应的数值解,并通过与有限元软件COMSOL的数值结果对比验证本文模型与算法的有效性.数值计算结果表明:在横向同性地层的垂直井模型中,测井响应横向分量xxyy能反映出地层电导率各向异性信息,但横向探测能力较差.轴向分量zz虽只反映地层水平电阻率信息,但具有较好的横向探测能力,且对地层中异常体非常敏感,而交叉分量xzzx则具备较强的层边界识别能力.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号